mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
cosmetics
do not indent for namespace
This commit is contained in:
parent
861899de2e
commit
7c29453512
opm/simulators/wells
928
opm/simulators/wells/WellStateFullyImplicitBlackoil.cpp
Normal file
928
opm/simulators/wells/WellStateFullyImplicitBlackoil.cpp
Normal file
@ -0,0 +1,928 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2017 IRIS AS
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
|
||||
|
||||
#include <opm/common/ErrorMacros.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
||||
#include <opm/simulators/wells/ParallelWellInfo.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
void WellStateFullyImplicitBlackoil::init(const std::vector<double>& cellPressures,
|
||||
const Schedule& schedule,
|
||||
const std::vector<Well>& wells_ecl,
|
||||
const std::vector<ParallelWellInfo*>& parallel_well_info,
|
||||
const int report_step,
|
||||
const WellStateFullyImplicitBlackoil* prevState,
|
||||
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
||||
const SummaryState& summary_state)
|
||||
{
|
||||
// call init on base class
|
||||
BaseType :: init(cellPressures, wells_ecl, parallel_well_info, well_perf_data, summary_state);
|
||||
this->global_well_info = std::make_optional<GlobalWellInfo>( schedule, report_step, wells_ecl );
|
||||
for (const auto& winfo: parallel_well_info)
|
||||
{
|
||||
well_rates.insert({winfo->name(), std::make_pair(winfo->isOwner(), std::vector<double>())});
|
||||
}
|
||||
|
||||
const int nw = wells_ecl.size();
|
||||
|
||||
if( nw == 0 ) return ;
|
||||
|
||||
// Initialize perfphaserates_, which must be done here.
|
||||
const auto& pu = this->phaseUsage();
|
||||
const int np = pu.num_phases;
|
||||
|
||||
int nperf = 0;
|
||||
for (const auto& wpd : well_perf_data) {
|
||||
nperf += wpd.size();
|
||||
}
|
||||
|
||||
well_reservoir_rates_.resize(nw * this->numPhases(), 0.0);
|
||||
well_dissolved_gas_rates_.resize(nw, 0.0);
|
||||
well_vaporized_oil_rates_.resize(nw, 0.0);
|
||||
|
||||
this->events_.clear();
|
||||
{
|
||||
const auto& wg_events = schedule[report_step].wellgroup_events();
|
||||
for (const auto& ecl_well : wells_ecl) {
|
||||
const auto& wname = ecl_well.name();
|
||||
if (wg_events.has(wname))
|
||||
this->events_.add( wname, wg_events.at(wname) );
|
||||
else
|
||||
this->events_.add( wname, Events() );
|
||||
}
|
||||
}
|
||||
// Ensure that we start out with zero rates by default.
|
||||
perfphaserates_.clear();
|
||||
perfphaserates_.resize(nperf * this->numPhases(), 0.0);
|
||||
|
||||
// these are only used to monitor the injectivity
|
||||
perf_water_throughput_.clear();
|
||||
perf_water_throughput_.resize(nperf, 0.0);
|
||||
perf_water_velocity_.clear();
|
||||
perf_water_velocity_.resize(nperf, 0.0);
|
||||
perf_skin_pressure_.clear();
|
||||
perf_skin_pressure_.resize(nperf, 0.0);
|
||||
|
||||
num_perf_.resize(nw, 0);
|
||||
first_perf_index_.resize(nw, 0);
|
||||
first_perf_index_[0] = 0;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
// Initialize perfphaserates_ to well
|
||||
// rates divided by the number of perforations.
|
||||
const auto& wname = wells_ecl[w].name();
|
||||
const auto& well_info = this->wellMap().at(wname);
|
||||
const int connpos = well_info[1];
|
||||
const int num_perf_this_well = well_info[2];
|
||||
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
|
||||
auto * perf_press = &this->perfPress()[connpos];
|
||||
auto * phase_rates = &this->mutable_perfPhaseRates()[connpos * this->numPhases()];
|
||||
|
||||
for (int perf = 0; perf < num_perf_this_well; ++perf) {
|
||||
if (wells_ecl[w].getStatus() == Well::Status::OPEN) {
|
||||
for (int p = 0; p < this->numPhases(); ++p) {
|
||||
phase_rates[this->numPhases()*perf + p] = wellRates()[this->numPhases()*w + p] / double(global_num_perf_this_well);
|
||||
}
|
||||
}
|
||||
perf_press[perf] = cellPressures[well_perf_data[w][perf].cell_index];
|
||||
}
|
||||
num_perf_[w] = num_perf_this_well;
|
||||
first_perf_index_[w] = connpos;
|
||||
}
|
||||
|
||||
is_producer_.resize(nw, false);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
is_producer_[w] = wells_ecl[w].isProducer();
|
||||
}
|
||||
|
||||
current_injection_controls_.resize(nw, Well::InjectorCMode::CMODE_UNDEFINED);
|
||||
current_production_controls_.resize(nw, Well::ProducerCMode::CMODE_UNDEFINED);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
if (wells_ecl[w].isProducer()) {
|
||||
const auto controls = wells_ecl[w].productionControls(summary_state);
|
||||
currentProductionControls()[w] = controls.cmode;
|
||||
}
|
||||
else {
|
||||
const auto controls = wells_ecl[w].injectionControls(summary_state);
|
||||
currentInjectionControls()[w] = controls.cmode;
|
||||
}
|
||||
}
|
||||
|
||||
perfRateSolvent_.clear();
|
||||
perfRateSolvent_.resize(nperf, 0.0);
|
||||
productivity_index_.resize(nw * this->numPhases(), 0.0);
|
||||
conn_productivity_index_.resize(nperf * this->numPhases(), 0.0);
|
||||
well_potentials_.resize(nw * this->numPhases(), 0.0);
|
||||
|
||||
perfRatePolymer_.clear();
|
||||
perfRatePolymer_.resize(nperf, 0.0);
|
||||
|
||||
perfRateBrine_.clear();
|
||||
perfRateBrine_.resize(nperf, 0.0);
|
||||
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
switch (wells_ecl[w].getStatus()) {
|
||||
case Well::Status::SHUT:
|
||||
this->shutWell(w);
|
||||
break;
|
||||
|
||||
case Well::Status::STOP:
|
||||
this->stopWell(w);
|
||||
break;
|
||||
|
||||
default:
|
||||
this->openWell(w);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// intialize wells that have been there before
|
||||
// order may change so the mapping is based on the well name
|
||||
if (prevState && !prevState->wellMap().empty()) {
|
||||
auto end = prevState->wellMap().end();
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const Well& well = wells_ecl[w];
|
||||
if (well.getStatus() == Well::Status::SHUT) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto it = prevState->wellMap().find(well.name());
|
||||
if (it != end)
|
||||
{
|
||||
const int newIndex = w;
|
||||
const int oldIndex = it->second[ 0 ];
|
||||
if (prevState->status_[oldIndex] == Well::Status::SHUT) {
|
||||
// Well was shut in previous state, do not use its values.
|
||||
continue;
|
||||
}
|
||||
|
||||
if (is_producer_[newIndex] != prevState->is_producer_[oldIndex]) {
|
||||
// Well changed to/from injector from/to producer, do not use its privious values.
|
||||
continue;
|
||||
}
|
||||
|
||||
// bhp
|
||||
bhp()[ newIndex ] = prevState->bhp()[ oldIndex ];
|
||||
|
||||
// thp
|
||||
thp()[ newIndex ] = prevState->thp()[ oldIndex ];
|
||||
|
||||
// If new target is set using WCONPROD, WCONINJE etc. we use the new control
|
||||
if (!this->events_[w].hasEvent(WellStateFullyImplicitBlackoil::event_mask)) {
|
||||
current_injection_controls_[ newIndex ] = prevState->currentInjectionControls()[ oldIndex ];
|
||||
current_production_controls_[ newIndex ] = prevState->currentProductionControls()[ oldIndex ];
|
||||
}
|
||||
|
||||
// wellrates
|
||||
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
|
||||
{
|
||||
wellRates()[ idx ] = prevState->wellRates()[ oldidx ];
|
||||
}
|
||||
|
||||
// wellResrates
|
||||
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
|
||||
{
|
||||
wellReservoirRates()[ idx ] = prevState->wellReservoirRates()[ oldidx ];
|
||||
}
|
||||
|
||||
// Well potentials
|
||||
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
|
||||
{
|
||||
wellPotentials()[ idx ] = prevState->wellPotentials()[ oldidx ];
|
||||
}
|
||||
|
||||
// perfPhaseRates
|
||||
const int oldPerf_idx_beg = (*it).second[ 1 ];
|
||||
const int num_perf_old_well = (*it).second[ 2 ];
|
||||
const auto new_iter = this->wellMap().find(well.name());
|
||||
if (new_iter == this->wellMap().end()) {
|
||||
throw std::logic_error {
|
||||
well.name() + " is not in internal well map - "
|
||||
"Bug in WellStateFullyImplicitBlackoil"
|
||||
};
|
||||
}
|
||||
|
||||
const int connpos = new_iter->second[1];
|
||||
const int num_perf_this_well = new_iter->second[2];
|
||||
|
||||
const int num_perf_changed = parallel_well_info[w]->communication()
|
||||
.sum(static_cast<int>(num_perf_old_well != num_perf_this_well));
|
||||
const bool global_num_perf_same = num_perf_changed == 0;
|
||||
|
||||
|
||||
// copy perforation rates when the number of
|
||||
// perforations is equal, otherwise initialize
|
||||
// perfphaserates to well rates divided by the
|
||||
// number of perforations.
|
||||
if (global_num_perf_same)
|
||||
{
|
||||
const auto * src_rates = &prevState->perfPhaseRates()[oldPerf_idx_beg* np];
|
||||
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
|
||||
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
|
||||
for (int p = 0; p < np; p++) {
|
||||
target_rates[perf_index*np + p] = src_rates[perf_index*np + p];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
|
||||
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
|
||||
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
target_rates[perf_index*np + p] = wellRates()[np*newIndex + p] / double(global_num_perf_this_well);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// perfPressures
|
||||
if (global_num_perf_same)
|
||||
{
|
||||
auto * target_press = &perfPress()[connpos];
|
||||
const auto * src_press = &prevState->perfPress()[oldPerf_idx_beg];
|
||||
for (int perf = 0; perf < num_perf_this_well; ++perf)
|
||||
{
|
||||
target_press[perf] = src_press[perf];
|
||||
}
|
||||
}
|
||||
|
||||
// perfSolventRates
|
||||
if (pu.has_solvent) {
|
||||
if (global_num_perf_same)
|
||||
{
|
||||
int oldPerf_idx = oldPerf_idx_beg;
|
||||
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
|
||||
{
|
||||
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// polymer injectivity related
|
||||
//
|
||||
// here we did not consider the case that we close
|
||||
// some perforation during the running and also,
|
||||
// wells can be shut and re-opened
|
||||
if (pu.has_polymermw) {
|
||||
if (global_num_perf_same)
|
||||
{
|
||||
int oldPerf_idx = oldPerf_idx_beg;
|
||||
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
|
||||
{
|
||||
perf_water_throughput_[ perf ] = prevState->perfThroughput()[ oldPerf_idx ];
|
||||
perf_skin_pressure_[ perf ] = prevState->perfSkinPressure()[ oldPerf_idx ];
|
||||
perf_water_velocity_[ perf ] = prevState->perfWaterVelocity()[ oldPerf_idx ];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Productivity index.
|
||||
{
|
||||
auto* thisWellPI = &this ->productivityIndex()[newIndex*np + 0];
|
||||
const auto* thatWellPI = &prevState->productivityIndex()[oldIndex*np + 0];
|
||||
|
||||
for (int p = 0; p < np; ++p) {
|
||||
thisWellPI[p] = thatWellPI[p];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If in the new step, there is no THP related
|
||||
// target/limit anymore, its thp value should be set to
|
||||
// zero.
|
||||
const bool has_thp = well.isInjector()
|
||||
? well.injectionControls (summary_state).hasControl(Well::InjectorCMode::THP)
|
||||
: well.productionControls(summary_state).hasControl(Well::ProducerCMode::THP);
|
||||
|
||||
if (!has_thp) {
|
||||
thp()[w] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// we need to create a trival segment related values to avoid there will be some
|
||||
// multi-segment wells added later.
|
||||
nseg_ = nw;
|
||||
top_segment_index_.resize(nw);
|
||||
seg_number_.resize(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
top_segment_index_[w] = w;
|
||||
seg_number_[w] = 1; // Top segment is segment #1
|
||||
}
|
||||
seg_press_ = bhp();
|
||||
seg_rates_ = wellRates();
|
||||
|
||||
seg_pressdrop_.assign(nw, 0.);
|
||||
seg_pressdrop_hydorstatic_.assign(nw, 0.);
|
||||
seg_pressdrop_friction_.assign(nw, 0.);
|
||||
seg_pressdrop_acceleration_.assign(nw, 0.);
|
||||
}
|
||||
|
||||
updateWellsDefaultALQ(wells_ecl);
|
||||
do_glift_optimization_ = true;
|
||||
}
|
||||
|
||||
void WellStateFullyImplicitBlackoil::resize(const std::vector<Well>& wells_ecl,
|
||||
const std::vector<ParallelWellInfo*>& parallel_well_info,
|
||||
const Schedule& schedule,
|
||||
const bool handle_ms_well,
|
||||
const size_t numCells,
|
||||
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
||||
const SummaryState& summary_state)
|
||||
{
|
||||
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
|
||||
init(tmp, schedule, wells_ecl, parallel_well_info, 0, nullptr, well_perf_data, summary_state);
|
||||
|
||||
if (handle_ms_well) {
|
||||
initWellStateMSWell(wells_ecl, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
const std::vector<double>&
|
||||
WellStateFullyImplicitBlackoil::currentWellRates(const std::string& wellName) const
|
||||
{
|
||||
auto it = well_rates.find(wellName);
|
||||
|
||||
if (it == well_rates.end())
|
||||
OPM_THROW(std::logic_error, "Could not find any rates for well " << wellName);
|
||||
|
||||
return it->second.second;
|
||||
}
|
||||
|
||||
data::Wells
|
||||
WellStateFullyImplicitBlackoil::report(const int* globalCellIdxMap,
|
||||
const std::function<bool(const int)>& wasDynamicallyClosed) const
|
||||
{
|
||||
data::Wells res =
|
||||
WellState::report(globalCellIdxMap, wasDynamicallyClosed);
|
||||
|
||||
const int nw = this->numWells();
|
||||
if (nw == 0) {
|
||||
return res;
|
||||
}
|
||||
|
||||
const auto& pu = this->phaseUsage();
|
||||
const int np = pu.num_phases;
|
||||
|
||||
using rt = data::Rates::opt;
|
||||
std::vector<rt> phs(np);
|
||||
if (pu.phase_used[Water]) {
|
||||
phs.at( pu.phase_pos[Water] ) = rt::wat;
|
||||
}
|
||||
|
||||
if (pu.phase_used[Oil]) {
|
||||
phs.at( pu.phase_pos[Oil] ) = rt::oil;
|
||||
}
|
||||
|
||||
if (pu.phase_used[Gas]) {
|
||||
phs.at( pu.phase_pos[Gas] ) = rt::gas;
|
||||
}
|
||||
|
||||
// This is a reference or example on **how** to convert from
|
||||
// WellState to something understood by opm-common's output
|
||||
// layer. It is intended to be properly implemented and
|
||||
// maintained as a part of simulators, as it relies on simulator
|
||||
// internals, details and representations.
|
||||
|
||||
for (const auto& wt : this->wellMap()) {
|
||||
const auto w = wt.second[ 0 ];
|
||||
if (((this->status_[w] == Well::Status::SHUT) &&
|
||||
! wasDynamicallyClosed(w)) ||
|
||||
! this->parallel_well_info_[w]->isOwner())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
auto& well = res.at(wt.first);
|
||||
const int well_rate_index = w * pu.num_phases;
|
||||
|
||||
if (pu.phase_used[Water]) {
|
||||
const auto i = well_rate_index + pu.phase_pos[Water];
|
||||
well.rates.set(rt::reservoir_water, this->well_reservoir_rates_[i]);
|
||||
well.rates.set(rt::productivity_index_water, this->productivity_index_[i]);
|
||||
well.rates.set(rt::well_potential_water, this->well_potentials_[i]);
|
||||
}
|
||||
|
||||
if (pu.phase_used[Oil]) {
|
||||
const auto i = well_rate_index + pu.phase_pos[Oil];
|
||||
well.rates.set(rt::reservoir_oil, this->well_reservoir_rates_[i]);
|
||||
well.rates.set(rt::productivity_index_oil, this->productivity_index_[i]);
|
||||
well.rates.set(rt::well_potential_oil, this->well_potentials_[i]);
|
||||
}
|
||||
|
||||
if (pu.phase_used[Gas]) {
|
||||
const auto i = well_rate_index + pu.phase_pos[Gas];
|
||||
well.rates.set(rt::reservoir_gas, this->well_reservoir_rates_[i]);
|
||||
well.rates.set(rt::productivity_index_gas, this->productivity_index_[i]);
|
||||
well.rates.set(rt::well_potential_gas, this->well_potentials_[i]);
|
||||
}
|
||||
|
||||
if (pu.has_solvent || pu.has_zFraction) {
|
||||
well.rates.set(rt::solvent, solventWellRate(w));
|
||||
}
|
||||
|
||||
if (pu.has_polymer) {
|
||||
well.rates.set(rt::polymer, polymerWellRate(w));
|
||||
}
|
||||
|
||||
if (pu.has_brine) {
|
||||
well.rates.set(rt::brine, brineWellRate(w));
|
||||
}
|
||||
|
||||
if (is_producer_[w]) {
|
||||
well.rates.set(rt::alq, getALQ(/*wellName=*/wt.first));
|
||||
}
|
||||
else {
|
||||
well.rates.set(rt::alq, 0.0);
|
||||
}
|
||||
|
||||
well.rates.set(rt::dissolved_gas, this->well_dissolved_gas_rates_[w]);
|
||||
well.rates.set(rt::vaporized_oil, this->well_vaporized_oil_rates_[w]);
|
||||
|
||||
{
|
||||
auto& curr = well.current_control;
|
||||
|
||||
curr.isProducer = this->is_producer_[w];
|
||||
curr.prod = this->currentProductionControls()[w];
|
||||
curr.inj = this->currentInjectionControls() [w];
|
||||
}
|
||||
|
||||
const auto nseg = this->numSegments(w);
|
||||
for (auto seg_ix = 0*nseg; seg_ix < nseg; ++seg_ix) {
|
||||
const auto seg_no = this->segmentNumber(w, seg_ix);
|
||||
well.segments[seg_no] =
|
||||
this->reportSegmentResults(pu, w, seg_ix, seg_no);
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void WellStateFullyImplicitBlackoil::reportConnections(data::Well& well,
|
||||
const PhaseUsage &pu,
|
||||
const WellMapType::value_type& wt,
|
||||
const int* globalCellIdxMap) const
|
||||
{
|
||||
using rt = data::Rates::opt;
|
||||
WellState::reportConnections(well, pu, wt, globalCellIdxMap);
|
||||
const int np = pu.num_phases;
|
||||
size_t local_comp_index = 0;
|
||||
std::vector< rt > phs( np );
|
||||
std::vector<rt> pi(np);
|
||||
if( pu.phase_used[Water] ) {
|
||||
phs.at( pu.phase_pos[Water] ) = rt::wat;
|
||||
pi .at( pu.phase_pos[Water] ) = rt::productivity_index_water;
|
||||
}
|
||||
|
||||
if( pu.phase_used[Oil] ) {
|
||||
phs.at( pu.phase_pos[Oil] ) = rt::oil;
|
||||
pi .at( pu.phase_pos[Oil] ) = rt::productivity_index_oil;
|
||||
}
|
||||
|
||||
if( pu.phase_used[Gas] ) {
|
||||
phs.at( pu.phase_pos[Gas] ) = rt::gas;
|
||||
pi .at( pu.phase_pos[Gas] ) = rt::productivity_index_gas;
|
||||
}
|
||||
for( auto& comp : well.connections) {
|
||||
const auto connPhaseOffset = np * (wt.second[1] + local_comp_index);
|
||||
|
||||
const auto rates = this->perfPhaseRates().begin() + connPhaseOffset;
|
||||
const auto connPI = this->connectionProductivityIndex().begin() + connPhaseOffset;
|
||||
|
||||
for( int i = 0; i < np; ++i ) {
|
||||
comp.rates.set( phs[ i ], *(rates + i) );
|
||||
comp.rates.set( pi [ i ], *(connPI + i) );
|
||||
}
|
||||
if ( pu.has_polymer ) {
|
||||
comp.rates.set( rt::polymer, this->perfRatePolymer()[wt.second[1] + local_comp_index]);
|
||||
}
|
||||
if ( pu.has_brine ) {
|
||||
comp.rates.set( rt::brine, this->perfRateBrine()[wt.second[1] + local_comp_index]);
|
||||
}
|
||||
if ( pu.has_solvent ) {
|
||||
comp.rates.set( rt::solvent, this->perfRateSolvent()[wt.second[1] + local_comp_index]);
|
||||
}
|
||||
|
||||
++local_comp_index;
|
||||
}
|
||||
assert(local_comp_index == this->well_perf_data_[wt.second[0]].size());
|
||||
}
|
||||
|
||||
void WellStateFullyImplicitBlackoil::initWellStateMSWell(const std::vector<Well>& wells_ecl,
|
||||
const WellStateFullyImplicitBlackoil* prev_well_state)
|
||||
{
|
||||
// still using the order in wells
|
||||
const int nw = wells_ecl.size();
|
||||
const auto& pu = this->phaseUsage();
|
||||
const int np = pu.num_phases;
|
||||
if (nw == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
top_segment_index_.clear();
|
||||
top_segment_index_.reserve(nw);
|
||||
seg_press_.clear();
|
||||
seg_press_.reserve(nw);
|
||||
seg_rates_.clear();
|
||||
seg_rates_.reserve(nw * numPhases());
|
||||
seg_number_.clear();
|
||||
|
||||
nseg_ = 0;
|
||||
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
|
||||
// what we do here, is to set the segment rates and perforation rates
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const auto& well_ecl = wells_ecl[w];
|
||||
const auto& wname = wells_ecl[w].name();
|
||||
const auto& well_info = this->wellMap().at(wname);
|
||||
const int connpos = well_info[1];
|
||||
const int num_perf_this_well = well_info[2];
|
||||
|
||||
top_segment_index_.push_back(nseg_);
|
||||
if ( !well_ecl.isMultiSegment() ) { // not multi-segment well
|
||||
nseg_ += 1;
|
||||
seg_number_.push_back(1); // Assign single segment (top) as number 1.
|
||||
seg_press_.push_back(bhp()[w]);
|
||||
for (int p = 0; p < np; ++p) {
|
||||
seg_rates_.push_back(wellRates()[np * w + p]);
|
||||
}
|
||||
} else { // it is a multi-segment well
|
||||
const WellSegments& segment_set = well_ecl.getSegments();
|
||||
// assuming the order of the perforations in well_ecl is the same with Wells
|
||||
const WellConnections& completion_set = well_ecl.getConnections();
|
||||
// number of segment for this single well
|
||||
const int well_nseg = segment_set.size();
|
||||
int n_activeperf = 0;
|
||||
nseg_ += well_nseg;
|
||||
for (auto segID = 0*well_nseg; segID < well_nseg; ++segID) {
|
||||
this->seg_number_.push_back(segment_set[segID].segmentNumber());
|
||||
}
|
||||
|
||||
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
|
||||
// that is why I think we should use a well model to initialize the WellState here
|
||||
std::vector<std::vector<int>> segment_perforations(well_nseg);
|
||||
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
|
||||
const Connection& connection = completion_set.get(perf);
|
||||
if (connection.state() == Connection::State::OPEN) {
|
||||
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
|
||||
segment_perforations[segment_index].push_back(n_activeperf);
|
||||
n_activeperf++;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::vector<int>> segment_inlets(well_nseg);
|
||||
for (int seg = 0; seg < well_nseg; ++seg) {
|
||||
const Segment& segment = segment_set[seg];
|
||||
const int segment_number = segment.segmentNumber();
|
||||
const int outlet_segment_number = segment.outletSegment();
|
||||
if (outlet_segment_number > 0) {
|
||||
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
|
||||
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
|
||||
segment_inlets[outlet_segment_index].push_back(segment_index);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// for the seg_rates_, now it becomes a recursive solution procedure.
|
||||
{
|
||||
const int start_perf = connpos;
|
||||
|
||||
// make sure the information from wells_ecl consistent with wells
|
||||
assert((n_activeperf == num_perf_this_well) &&
|
||||
"Inconsistent number of reservoir connections in well");
|
||||
|
||||
if (pu.phase_used[Gas]) {
|
||||
auto * perf_rates = &this->mutable_perfPhaseRates()[np * start_perf];
|
||||
const int gaspos = pu.phase_pos[Gas];
|
||||
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
|
||||
// it will probably benefit the standard well too, while it needs to be justified
|
||||
// TODO: to see if this strategy can benefit StandardWell too
|
||||
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
|
||||
// maybe the best way is to initialize the fractions first then get the rates
|
||||
for (int perf = 0; perf < n_activeperf; perf++)
|
||||
perf_rates[perf*np + gaspos] *= 100;
|
||||
}
|
||||
|
||||
const auto * perf_rates = &perfPhaseRates()[np*start_perf];
|
||||
std::vector<double> perforation_rates(perf_rates, perf_rates + num_perf_this_well*np);
|
||||
std::vector<double> segment_rates;
|
||||
|
||||
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
|
||||
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(seg_rates_));
|
||||
}
|
||||
|
||||
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
|
||||
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
|
||||
// which requres the ordering is successful
|
||||
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
|
||||
// improved during the solveWellEq process
|
||||
{
|
||||
// top segment is always the first one, and its pressure is the well bhp
|
||||
seg_press_.push_back(bhp()[w]);
|
||||
const int top_segment = top_segment_index_[w];
|
||||
const int start_perf = connpos;
|
||||
const auto * perf_press = &this->perfPress()[start_perf];
|
||||
for (int seg = 1; seg < well_nseg; ++seg) {
|
||||
if ( !segment_perforations[seg].empty() ) {
|
||||
const int first_perf = segment_perforations[seg][0];
|
||||
seg_press_.push_back(perf_press[first_perf]);
|
||||
} else {
|
||||
// seg_press_.push_back(bhp); // may not be a good decision
|
||||
// using the outlet segment pressure // it needs the ordering is correct
|
||||
const int outlet_seg = segment_set[seg].outletSegment();
|
||||
seg_press_.push_back(
|
||||
seg_press_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(int(seg_press_.size()) == nseg_);
|
||||
assert(int(seg_rates_.size()) == nseg_ * numPhases() );
|
||||
|
||||
seg_pressdrop_.assign(nseg_, 0.);
|
||||
seg_pressdrop_hydorstatic_.assign(nseg_, 0.);
|
||||
seg_pressdrop_friction_.assign(nseg_, 0.);
|
||||
seg_pressdrop_acceleration_.assign(nseg_, 0.);
|
||||
|
||||
if (prev_well_state && !prev_well_state->wellMap().empty()) {
|
||||
const auto& end = prev_well_state->wellMap().end();
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const Well& well = wells_ecl[w];
|
||||
if (well.getStatus() == Well::Status::SHUT)
|
||||
continue;
|
||||
|
||||
const auto& it = prev_well_state->wellMap().find( wells_ecl[w].name() );
|
||||
if (it != end) { // the well is found in the prev_well_state
|
||||
// TODO: the well with same name can change a lot, like they might not have same number of segments
|
||||
// we need to handle that later.
|
||||
// for now, we just copy them.
|
||||
const int old_index_well = (*it).second[0];
|
||||
const int new_index_well = w;
|
||||
if (prev_well_state->status_[old_index_well] == Well::Status::SHUT) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const int old_top_segment_index = prev_well_state->topSegmentIndex(old_index_well);
|
||||
const int new_top_segmnet_index = topSegmentIndex(new_index_well);
|
||||
int number_of_segment = 0;
|
||||
// if it is the last well in list
|
||||
if (new_index_well == int(top_segment_index_.size()) - 1) {
|
||||
number_of_segment = nseg_ - new_top_segmnet_index;
|
||||
} else {
|
||||
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segmnet_index;
|
||||
}
|
||||
|
||||
for (int i = 0; i < number_of_segment * np; ++i) {
|
||||
seg_rates_[new_top_segmnet_index * np + i] = prev_well_state->segRates()[old_top_segment_index * np + i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < number_of_segment; ++i) {
|
||||
seg_press_[new_top_segmnet_index + i] = prev_well_state->segPress()[old_top_segment_index + i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
WellStateFullyImplicitBlackoil::calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets,
|
||||
const std::vector<std::vector<int>>&segment_perforations,
|
||||
const std::vector<double>& perforation_rates,
|
||||
const int np, const int segment,
|
||||
std::vector<double>& segment_rates)
|
||||
{
|
||||
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
|
||||
// the first segment is always the top segment, its rates should be equal to the well rates.
|
||||
assert(segment_inlets.size() == segment_perforations.size());
|
||||
const int well_nseg = segment_inlets.size();
|
||||
if (segment == 0) { // beginning the calculation
|
||||
segment_rates.resize(np * well_nseg, 0.0);
|
||||
}
|
||||
// contributions from the perforations belong to this segment
|
||||
for (const int& perf : segment_perforations[segment]) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
|
||||
}
|
||||
}
|
||||
for (const int& inlet_seg : segment_inlets[segment]) {
|
||||
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
|
||||
for (int p = 0; p < np; ++p) {
|
||||
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double WellStateFullyImplicitBlackoil::solventWellRate(const int w) const
|
||||
{
|
||||
return parallel_well_info_[w]->sumPerfValues(&perfRateSolvent_[0] + first_perf_index_[w],
|
||||
&perfRateSolvent_[0] + first_perf_index_[w] + num_perf_[w]);
|
||||
}
|
||||
|
||||
double WellStateFullyImplicitBlackoil::polymerWellRate(const int w) const
|
||||
{
|
||||
return parallel_well_info_[w]->sumPerfValues(&perfRatePolymer_[0] + first_perf_index_[w],
|
||||
&perfRatePolymer_[0] + first_perf_index_[w] + num_perf_[w]);
|
||||
}
|
||||
|
||||
double WellStateFullyImplicitBlackoil::brineWellRate(const int w) const
|
||||
{
|
||||
return parallel_well_info_[w]->sumPerfValues(&perfRateBrine_[0] + first_perf_index_[w],
|
||||
&perfRateBrine_[0] + first_perf_index_[w] + num_perf_[w]);
|
||||
}
|
||||
|
||||
int WellStateFullyImplicitBlackoil::topSegmentIndex(const int w) const
|
||||
{
|
||||
assert(w < int(top_segment_index_.size()) );
|
||||
|
||||
return top_segment_index_[w];
|
||||
}
|
||||
|
||||
void WellStateFullyImplicitBlackoil::shutWell(int well_index)
|
||||
{
|
||||
WellState::shutWell(well_index);
|
||||
const int np = numPhases();
|
||||
|
||||
auto* resv = &this->well_reservoir_rates_[np*well_index + 0];
|
||||
auto* wpi = &this->productivity_index_[np*well_index + 0];
|
||||
|
||||
for (int p = 0; p < np; ++p) {
|
||||
resv[p] = 0.0;
|
||||
wpi[p] = 0.0;
|
||||
}
|
||||
|
||||
const auto first = this->first_perf_index_[well_index]*np;
|
||||
const auto last = first + this->num_perf_[well_index]*np;
|
||||
std::fill(this->conn_productivity_index_.begin() + first,
|
||||
this->conn_productivity_index_.begin() + last, 0.0);
|
||||
}
|
||||
|
||||
template<class Comm>
|
||||
void WellStateFullyImplicitBlackoil::communicateGroupRates(const Comm& comm)
|
||||
{
|
||||
// Note that injection_group_vrep_rates is handled separate from
|
||||
// the forAllGroupData() function, since it contains single doubles,
|
||||
// not vectors.
|
||||
|
||||
// Create a function that calls some function
|
||||
// for all the individual data items to simplify
|
||||
// the further code.
|
||||
auto iterateRatesContainer = [](auto& container, auto& func) {
|
||||
for (auto& x : container) {
|
||||
if (x.second.first)
|
||||
{
|
||||
func(x.second.second);
|
||||
}
|
||||
else
|
||||
{
|
||||
// We might actually store non-zero values for
|
||||
// distributed wells even if they are not owned.
|
||||
std::vector<double> dummyRate;
|
||||
dummyRate.assign(x.second.second.size(), 0);
|
||||
func(dummyRate);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Compute the size of the data.
|
||||
std::size_t sz = 0;
|
||||
auto computeSize = [&sz](const auto& v) {
|
||||
sz += v.size();
|
||||
};
|
||||
iterateRatesContainer(this->well_rates, computeSize);
|
||||
sz += this->alq_state.pack_size();
|
||||
|
||||
// Make a vector and collect all data into it.
|
||||
std::vector<double> data(sz);
|
||||
std::size_t pos = 0;
|
||||
auto collect = [&data, &pos](const auto& v) {
|
||||
for (const auto& x : v) {
|
||||
data[pos++] = x;
|
||||
}
|
||||
};
|
||||
iterateRatesContainer(this->well_rates, collect);
|
||||
pos += this->alq_state.pack_data(&data[pos]);
|
||||
assert(pos == sz);
|
||||
|
||||
// Communicate it with a single sum() call.
|
||||
comm.sum(data.data(), data.size());
|
||||
|
||||
// Distribute the summed vector to the data items.
|
||||
pos = 0;
|
||||
auto distribute = [&data, &pos](auto& v) {
|
||||
for (auto& x : v) {
|
||||
x = data[pos++];
|
||||
}
|
||||
};
|
||||
iterateRatesContainer(this->well_rates, distribute);
|
||||
pos += this->alq_state.unpack_data(&data[pos]);
|
||||
assert(pos == sz);
|
||||
}
|
||||
|
||||
template<class Comm>
|
||||
void WellStateFullyImplicitBlackoil::updateGlobalIsGrup(const Comm& comm)
|
||||
{
|
||||
this->global_well_info.value().update_group(this->status_, this->currentInjectionControls(), this->currentProductionControls());
|
||||
this->global_well_info.value().communicate(comm);
|
||||
}
|
||||
|
||||
data::Segment
|
||||
WellStateFullyImplicitBlackoil::reportSegmentResults(const PhaseUsage& pu,
|
||||
const int well_id,
|
||||
const int seg_ix,
|
||||
const int seg_no) const
|
||||
{
|
||||
auto seg_res = data::Segment{};
|
||||
|
||||
const auto seg_dof =
|
||||
this->topSegmentIndex(well_id) + seg_ix;
|
||||
|
||||
const auto* rate =
|
||||
&this->segRates()[seg_dof * this->numPhases()];
|
||||
|
||||
{
|
||||
using Value = data::SegmentPressures::Value;
|
||||
auto& segpress = seg_res.pressures;
|
||||
segpress[Value::Pressure] = this->segPress()[seg_dof];
|
||||
segpress[Value::PDrop] = this->segPressDrop()[seg_dof];
|
||||
segpress[Value::PDropHydrostatic] = this->segPressDropHydroStatic()[seg_dof];
|
||||
segpress[Value::PDropFriction] = this->segPressDropFriction()[seg_dof];
|
||||
segpress[Value::PDropAccel] = this->segPressDropAcceleration()[seg_dof];
|
||||
}
|
||||
|
||||
if (pu.phase_used[Water]) {
|
||||
seg_res.rates.set(data::Rates::opt::wat,
|
||||
rate[pu.phase_pos[Water]]);
|
||||
}
|
||||
|
||||
if (pu.phase_used[Oil]) {
|
||||
seg_res.rates.set(data::Rates::opt::oil,
|
||||
rate[pu.phase_pos[Oil]]);
|
||||
}
|
||||
|
||||
if (pu.phase_used[Gas]) {
|
||||
seg_res.rates.set(data::Rates::opt::gas,
|
||||
rate[pu.phase_pos[Gas]]);
|
||||
}
|
||||
|
||||
seg_res.segNumber = seg_no;
|
||||
|
||||
return seg_res;
|
||||
}
|
||||
|
||||
int WellStateFullyImplicitBlackoil::numSegments(const int well_id) const
|
||||
{
|
||||
const auto topseg = this->topSegmentIndex(well_id);
|
||||
|
||||
return (well_id + 1 == this->numWells()) // Last well?
|
||||
? (this->numSegment() - topseg)
|
||||
: (this->topSegmentIndex(well_id + 1) - topseg);
|
||||
}
|
||||
|
||||
int WellStateFullyImplicitBlackoil::segmentNumber(const int well_id, const int seg_id) const
|
||||
{
|
||||
const auto top_offset = this->topSegmentIndex(well_id);
|
||||
|
||||
return this->seg_number_[top_offset + seg_id];
|
||||
}
|
||||
|
||||
void WellStateFullyImplicitBlackoil::updateWellsDefaultALQ( const std::vector<Well>& wells_ecl )
|
||||
{
|
||||
const int nw = wells_ecl.size();
|
||||
for (int i = 0; i<nw; i++) {
|
||||
const Well &well = wells_ecl[i];
|
||||
if (well.isProducer()) {
|
||||
// NOTE: This is the value set in item 12 of WCONPROD, or with WELTARG
|
||||
auto alq = well.alq_value();
|
||||
this->alq_state.update_default(well.name(), alq);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template void WellStateFullyImplicitBlackoil::updateGlobalIsGrup<ParallelWellInfo::Communication>(const ParallelWellInfo::Communication& comm);
|
||||
template void WellStateFullyImplicitBlackoil::communicateGroupRates<ParallelWellInfo::Communication>(const ParallelWellInfo::Communication& comm);
|
||||
} // namespace Opm
|
@ -40,449 +40,444 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class ParallelWellInfo;
|
||||
class Schedule;
|
||||
class ParallelWellInfo;
|
||||
class Schedule;
|
||||
|
||||
/// The state of a set of wells, tailored for use by the fully
|
||||
/// implicit blackoil simulator.
|
||||
class WellStateFullyImplicitBlackoil
|
||||
: public WellState
|
||||
/// The state of a set of wells, tailored for use by the fully
|
||||
/// implicit blackoil simulator.
|
||||
class WellStateFullyImplicitBlackoil
|
||||
: public WellState
|
||||
{
|
||||
typedef WellState BaseType;
|
||||
public:
|
||||
static const uint64_t event_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::PRODUCTION_UPDATE + ScheduleEvents::INJECTION_UPDATE;
|
||||
typedef BaseType :: WellMapType WellMapType;
|
||||
|
||||
virtual ~WellStateFullyImplicitBlackoil() = default;
|
||||
|
||||
// TODO: same definition with WellInterface, eventually they should go to a common header file.
|
||||
static const int Water = BlackoilPhases::Aqua;
|
||||
static const int Oil = BlackoilPhases::Liquid;
|
||||
static const int Gas = BlackoilPhases::Vapour;
|
||||
|
||||
using BaseType :: wellRates;
|
||||
using BaseType :: bhp;
|
||||
using BaseType :: perfPress;
|
||||
using BaseType :: wellMap;
|
||||
using BaseType :: numWells;
|
||||
using BaseType :: numPhases;
|
||||
using BaseType :: resetConnectionTransFactors;
|
||||
using BaseType :: updateStatus;
|
||||
|
||||
explicit WellStateFullyImplicitBlackoil(const PhaseUsage& pu) :
|
||||
WellState(pu)
|
||||
{
|
||||
typedef WellState BaseType;
|
||||
public:
|
||||
static const uint64_t event_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::PRODUCTION_UPDATE + ScheduleEvents::INJECTION_UPDATE;
|
||||
typedef BaseType :: WellMapType WellMapType;
|
||||
|
||||
virtual ~WellStateFullyImplicitBlackoil() = default;
|
||||
|
||||
// TODO: same definition with WellInterface, eventually they should go to a common header file.
|
||||
static const int Water = BlackoilPhases::Aqua;
|
||||
static const int Oil = BlackoilPhases::Liquid;
|
||||
static const int Gas = BlackoilPhases::Vapour;
|
||||
|
||||
using BaseType :: wellRates;
|
||||
using BaseType :: bhp;
|
||||
using BaseType :: perfPress;
|
||||
using BaseType :: wellMap;
|
||||
using BaseType :: numWells;
|
||||
using BaseType :: numPhases;
|
||||
using BaseType :: resetConnectionTransFactors;
|
||||
using BaseType :: updateStatus;
|
||||
|
||||
explicit WellStateFullyImplicitBlackoil(const PhaseUsage& pu) :
|
||||
WellState(pu)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// Allocate and initialize if wells is non-null. Also tries
|
||||
/// to give useful initial values to the bhp(), wellRates()
|
||||
/// and perfPhaseRates() fields, depending on controls
|
||||
void init(const std::vector<double>& cellPressures,
|
||||
const Schedule& schedule,
|
||||
const std::vector<Well>& wells_ecl,
|
||||
const std::vector<ParallelWellInfo*>& parallel_well_info,
|
||||
const int report_step,
|
||||
const WellStateFullyImplicitBlackoil* prevState,
|
||||
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
||||
const SummaryState& summary_state);
|
||||
|
||||
void resize(const std::vector<Well>& wells_ecl,
|
||||
const std::vector<ParallelWellInfo*>& parallel_well_info,
|
||||
const Schedule& schedule,
|
||||
const bool handle_ms_well,
|
||||
const size_t numCells,
|
||||
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
||||
const SummaryState& summary_state);
|
||||
|
||||
/// One rate per phase and well connection.
|
||||
std::vector<double>& mutable_perfPhaseRates() { return perfphaserates_; }
|
||||
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
|
||||
|
||||
/// One current control per injecting well.
|
||||
std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() { return current_injection_controls_; }
|
||||
const std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() const { return current_injection_controls_; }
|
||||
|
||||
|
||||
/// One current control per producing well.
|
||||
std::vector<Well::ProducerCMode>& currentProductionControls() { return current_production_controls_; }
|
||||
const std::vector<Well::ProducerCMode>& currentProductionControls() const { return current_production_controls_; }
|
||||
|
||||
void setCurrentWellRates(const std::string& wellName, const std::vector<double>& rates ) {
|
||||
well_rates[wellName].second = rates;
|
||||
}
|
||||
|
||||
const std::vector<double>& currentWellRates(const std::string& wellName) const;
|
||||
|
||||
bool hasWellRates(const std::string& wellName) const {
|
||||
return this->well_rates.find(wellName) != this->well_rates.end();
|
||||
}
|
||||
|
||||
|
||||
|
||||
data::Wells
|
||||
report(const int* globalCellIdxMap,
|
||||
const std::function<bool(const int)>& wasDynamicallyClosed) const override;
|
||||
|
||||
void reportConnections(data::Well& well, const PhaseUsage &pu,
|
||||
const WellMapType::value_type& wt,
|
||||
const int* globalCellIdxMap) const override;
|
||||
|
||||
/// init the MS well related.
|
||||
void initWellStateMSWell(const std::vector<Well>& wells_ecl,
|
||||
const WellStateFullyImplicitBlackoil* prev_well_state);
|
||||
|
||||
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
|
||||
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates);
|
||||
|
||||
Events& events(std::size_t well_index) {
|
||||
return this->events_[well_index];
|
||||
}
|
||||
|
||||
const std::vector<int>& firstPerfIndex() const
|
||||
{
|
||||
return first_perf_index_;
|
||||
}
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
|
||||
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
|
||||
|
||||
/// One rate pr well
|
||||
double solventWellRate(const int w) const;
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRatePolymer() { return perfRatePolymer_; }
|
||||
const std::vector<double>& perfRatePolymer() const { return perfRatePolymer_; }
|
||||
|
||||
/// One rate pr well
|
||||
double polymerWellRate(const int w) const;
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRateBrine() { return perfRateBrine_; }
|
||||
const std::vector<double>& perfRateBrine() const { return perfRateBrine_; }
|
||||
|
||||
/// One rate pr well
|
||||
double brineWellRate(const int w) const;
|
||||
|
||||
std::vector<double>& wellReservoirRates()
|
||||
{
|
||||
return well_reservoir_rates_;
|
||||
}
|
||||
|
||||
const std::vector<double>& wellReservoirRates() const
|
||||
{
|
||||
return well_reservoir_rates_;
|
||||
}
|
||||
|
||||
std::vector<double>& wellDissolvedGasRates()
|
||||
{
|
||||
return well_dissolved_gas_rates_;
|
||||
}
|
||||
|
||||
std::vector<double>& wellVaporizedOilRates()
|
||||
{
|
||||
return well_vaporized_oil_rates_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segRates() const
|
||||
{
|
||||
return seg_rates_;
|
||||
}
|
||||
|
||||
std::vector<double>& segRates()
|
||||
{
|
||||
return seg_rates_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPress() const
|
||||
{
|
||||
return seg_press_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDrop()
|
||||
{
|
||||
return seg_pressdrop_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDrop() const
|
||||
{
|
||||
return seg_pressdrop_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDropFriction()
|
||||
{
|
||||
return seg_pressdrop_friction_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDropFriction() const
|
||||
{
|
||||
return seg_pressdrop_friction_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDropHydroStatic()
|
||||
{
|
||||
return seg_pressdrop_hydorstatic_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDropHydroStatic() const
|
||||
{
|
||||
return seg_pressdrop_hydorstatic_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDropAcceleration()
|
||||
{
|
||||
return seg_pressdrop_acceleration_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDropAcceleration() const
|
||||
{
|
||||
return seg_pressdrop_acceleration_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPress()
|
||||
{
|
||||
return seg_press_;
|
||||
}
|
||||
|
||||
int numSegment() const
|
||||
{
|
||||
return nseg_;
|
||||
}
|
||||
|
||||
int topSegmentIndex(const int w) const;
|
||||
|
||||
std::vector<double>& productivityIndex() {
|
||||
return productivity_index_;
|
||||
}
|
||||
|
||||
const std::vector<double>& productivityIndex() const {
|
||||
return productivity_index_;
|
||||
}
|
||||
|
||||
std::vector<double>& connectionProductivityIndex() {
|
||||
return this->conn_productivity_index_;
|
||||
}
|
||||
|
||||
const std::vector<double>& connectionProductivityIndex() const {
|
||||
return this->conn_productivity_index_;
|
||||
}
|
||||
|
||||
std::vector<double>& wellPotentials() {
|
||||
return well_potentials_;
|
||||
}
|
||||
|
||||
const std::vector<double>& wellPotentials() const {
|
||||
return well_potentials_;
|
||||
}
|
||||
|
||||
std::vector<double>& perfThroughput() {
|
||||
return perf_water_throughput_;
|
||||
}
|
||||
|
||||
const std::vector<double>& perfThroughput() const {
|
||||
return perf_water_throughput_;
|
||||
}
|
||||
|
||||
std::vector<double>& perfSkinPressure() {
|
||||
return perf_skin_pressure_;
|
||||
}
|
||||
|
||||
const std::vector<double>& perfSkinPressure() const {
|
||||
return perf_skin_pressure_;
|
||||
}
|
||||
|
||||
std::vector<double>& perfWaterVelocity() {
|
||||
return perf_water_velocity_;
|
||||
}
|
||||
|
||||
const std::vector<double>& perfWaterVelocity() const {
|
||||
return perf_water_velocity_;
|
||||
}
|
||||
|
||||
void shutWell(int well_index) override;
|
||||
|
||||
template<class Comm>
|
||||
void communicateGroupRates(const Comm& comm);
|
||||
|
||||
template<class Comm>
|
||||
void updateGlobalIsGrup(const Comm& comm);
|
||||
|
||||
bool isInjectionGrup(const std::string& name) const {
|
||||
return this->global_well_info.value().in_injecting_group(name);
|
||||
}
|
||||
|
||||
bool isProductionGrup(const std::string& name) const {
|
||||
return this->global_well_info.value().in_producing_group(name);
|
||||
}
|
||||
|
||||
double getALQ( const std::string& name) const
|
||||
{
|
||||
return this->alq_state.get(name);
|
||||
}
|
||||
|
||||
void setALQ( const std::string& name, double value)
|
||||
{
|
||||
this->alq_state.set(name, value);
|
||||
}
|
||||
|
||||
bool gliftCheckAlqOscillation(const std::string &name) const {
|
||||
return this->alq_state.oscillation(name);
|
||||
}
|
||||
|
||||
int gliftGetAlqDecreaseCount(const std::string &name) {
|
||||
return this->alq_state.get_decrement_count(name);
|
||||
}
|
||||
|
||||
int gliftGetAlqIncreaseCount(const std::string &name) {
|
||||
return this->alq_state.get_increment_count(name);
|
||||
}
|
||||
|
||||
void gliftUpdateAlqIncreaseCount(const std::string &name, bool increase) {
|
||||
this->alq_state.update_count(name, increase);
|
||||
}
|
||||
|
||||
bool gliftOptimizationEnabled() const {
|
||||
return do_glift_optimization_;
|
||||
}
|
||||
|
||||
void gliftTimeStepInit() {
|
||||
this->alq_state.reset_count();
|
||||
disableGliftOptimization();
|
||||
}
|
||||
|
||||
void disableGliftOptimization() {
|
||||
do_glift_optimization_ = false;
|
||||
}
|
||||
|
||||
void enableGliftOptimization() {
|
||||
do_glift_optimization_ = true;
|
||||
}
|
||||
|
||||
int wellNameToGlobalIdx(const std::string &name) {
|
||||
return this->global_well_info.value().well_index(name);
|
||||
}
|
||||
|
||||
std::string globalIdxToWellName(const int index) {
|
||||
return this->global_well_info.value().well_name(index);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
std::vector<double> perfphaserates_;
|
||||
std::vector<bool> is_producer_; // Size equal to number of local wells.
|
||||
|
||||
// vector with size number of wells +1.
|
||||
// iterate over all perforations of a given well
|
||||
// for (int perf = first_perf_index_[well_index]; perf < first_perf_index_[well_index] + num_perf_[well_index]; ++perf)
|
||||
std::vector<int> first_perf_index_;
|
||||
std::vector<int> num_perf_;
|
||||
std::vector<Opm::Well::InjectorCMode> current_injection_controls_;
|
||||
std::vector<Well::ProducerCMode> current_production_controls_;
|
||||
|
||||
// Use of std::optional<> here is a technical crutch, the
|
||||
// WellStateFullyImplicitBlackoil class should be default constructible,
|
||||
// whereas the GlobalWellInfo is not.
|
||||
std::optional<GlobalWellInfo> global_well_info;
|
||||
std::map<std::string, std::pair<bool, std::vector<double>>> well_rates;
|
||||
|
||||
ALQState alq_state;
|
||||
bool do_glift_optimization_;
|
||||
|
||||
std::vector<double> perfRateSolvent_;
|
||||
|
||||
// only for output
|
||||
std::vector<double> perfRatePolymer_;
|
||||
std::vector<double> perfRateBrine_;
|
||||
|
||||
// it is the throughput of water flow through the perforations
|
||||
// it is used as a measure of formation damage around well-bore due to particle deposition
|
||||
// it will only be used for injectors to check the injectivity
|
||||
std::vector<double> perf_water_throughput_;
|
||||
|
||||
// skin pressure of peforation
|
||||
// it will only be used for injectors to check the injectivity
|
||||
std::vector<double> perf_skin_pressure_;
|
||||
|
||||
// it will only be used for injectors to check the injectivity
|
||||
// water velocity of perforation
|
||||
std::vector<double> perf_water_velocity_;
|
||||
|
||||
// phase rates under reservoir condition for wells
|
||||
// or voidage phase rates
|
||||
std::vector<double> well_reservoir_rates_;
|
||||
|
||||
// dissolved gas rates or solution gas production rates
|
||||
// should be zero for injection wells
|
||||
std::vector<double> well_dissolved_gas_rates_;
|
||||
|
||||
// vaporized oil rates or solution oil producation rates
|
||||
// should be zero for injection wells
|
||||
std::vector<double> well_vaporized_oil_rates_;
|
||||
|
||||
// some events happens to the well, like this well is a new well
|
||||
// or new well control keywords happens
|
||||
// \Note: for now, only WCON* keywords, and well status change is considered
|
||||
WellContainer<Events> events_;
|
||||
|
||||
// MS well related
|
||||
// for StandardWell, the number of segments will be one
|
||||
std::vector<double> seg_rates_;
|
||||
std::vector<double> seg_press_;
|
||||
// The following data are only recorded for output
|
||||
// pressure drop
|
||||
std::vector<double> seg_pressdrop_;
|
||||
// frictional pressure drop
|
||||
std::vector<double> seg_pressdrop_friction_;
|
||||
// hydrostatic pressure drop
|
||||
std::vector<double> seg_pressdrop_hydorstatic_;
|
||||
// accelerational pressure drop
|
||||
std::vector<double> seg_pressdrop_acceleration_;
|
||||
// the index of the top segments, which is used to locate the
|
||||
// multisegment well related information in WellState
|
||||
std::vector<int> top_segment_index_;
|
||||
int nseg_; // total number of the segments
|
||||
|
||||
// Productivity Index
|
||||
std::vector<double> productivity_index_;
|
||||
|
||||
// Connection-level Productivity Index
|
||||
std::vector<double> conn_productivity_index_;
|
||||
|
||||
// Well potentials
|
||||
std::vector<double> well_potentials_;
|
||||
|
||||
/// Map segment index to segment number, mostly for MS wells.
|
||||
///
|
||||
/// Segment number (one-based) of j-th segment in i-th well is
|
||||
/// \code
|
||||
/// const auto top = topSegmentIndex(i);
|
||||
/// const auto seg_No = seg_number_[top + j];
|
||||
/// \end
|
||||
std::vector<int> seg_number_;
|
||||
|
||||
data::Segment
|
||||
reportSegmentResults(const PhaseUsage& pu,
|
||||
const int well_id,
|
||||
const int seg_ix,
|
||||
const int seg_no) const;
|
||||
|
||||
int numSegments(const int well_id) const;
|
||||
|
||||
int segmentNumber(const int well_id, const int seg_id) const;
|
||||
|
||||
// If the ALQ has changed since the previous report step,
|
||||
// reset current_alq and update default_alq. ALQ is used for
|
||||
// constant lift gas injection and for gas lift optimization
|
||||
// (THP controlled wells).
|
||||
//
|
||||
// NOTE: If a well is no longer used (e.g. it is shut down)
|
||||
// it is still kept in the maps "default_alq_" and "current_alq_". Since the
|
||||
// number of unused entries should be small (negligible memory
|
||||
// overhead) this is simpler than writing code to delete it.
|
||||
//
|
||||
void updateWellsDefaultALQ(const std::vector<Well>& wells_ecl);
|
||||
};
|
||||
}
|
||||
|
||||
/// Allocate and initialize if wells is non-null. Also tries
|
||||
/// to give useful initial values to the bhp(), wellRates()
|
||||
/// and perfPhaseRates() fields, depending on controls
|
||||
void init(const std::vector<double>& cellPressures,
|
||||
const Schedule& schedule,
|
||||
const std::vector<Well>& wells_ecl,
|
||||
const std::vector<ParallelWellInfo*>& parallel_well_info,
|
||||
const int report_step,
|
||||
const WellStateFullyImplicitBlackoil* prevState,
|
||||
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
||||
const SummaryState& summary_state);
|
||||
|
||||
void resize(const std::vector<Well>& wells_ecl,
|
||||
const std::vector<ParallelWellInfo*>& parallel_well_info,
|
||||
const Schedule& schedule,
|
||||
const bool handle_ms_well,
|
||||
const size_t numCells,
|
||||
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
||||
const SummaryState& summary_state);
|
||||
|
||||
/// One rate per phase and well connection.
|
||||
std::vector<double>& mutable_perfPhaseRates() { return perfphaserates_; }
|
||||
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
|
||||
|
||||
/// One current control per injecting well.
|
||||
std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() { return current_injection_controls_; }
|
||||
const std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() const { return current_injection_controls_; }
|
||||
|
||||
/// One current control per producing well.
|
||||
std::vector<Well::ProducerCMode>& currentProductionControls() { return current_production_controls_; }
|
||||
const std::vector<Well::ProducerCMode>& currentProductionControls() const { return current_production_controls_; }
|
||||
|
||||
void setCurrentWellRates(const std::string& wellName, const std::vector<double>& rates ) {
|
||||
well_rates[wellName].second = rates;
|
||||
}
|
||||
|
||||
const std::vector<double>& currentWellRates(const std::string& wellName) const;
|
||||
|
||||
bool hasWellRates(const std::string& wellName) const {
|
||||
return this->well_rates.find(wellName) != this->well_rates.end();
|
||||
}
|
||||
|
||||
data::Wells
|
||||
report(const int* globalCellIdxMap,
|
||||
const std::function<bool(const int)>& wasDynamicallyClosed) const override;
|
||||
|
||||
void reportConnections(data::Well& well, const PhaseUsage &pu,
|
||||
const WellMapType::value_type& wt,
|
||||
const int* globalCellIdxMap) const override;
|
||||
|
||||
/// init the MS well related.
|
||||
void initWellStateMSWell(const std::vector<Well>& wells_ecl,
|
||||
const WellStateFullyImplicitBlackoil* prev_well_state);
|
||||
|
||||
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
|
||||
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates);
|
||||
|
||||
Events& events(std::size_t well_index) {
|
||||
return this->events_[well_index];
|
||||
}
|
||||
|
||||
const std::vector<int>& firstPerfIndex() const
|
||||
{
|
||||
return first_perf_index_;
|
||||
}
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
|
||||
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
|
||||
|
||||
/// One rate pr well
|
||||
double solventWellRate(const int w) const;
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRatePolymer() { return perfRatePolymer_; }
|
||||
const std::vector<double>& perfRatePolymer() const { return perfRatePolymer_; }
|
||||
|
||||
/// One rate pr well
|
||||
double polymerWellRate(const int w) const;
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRateBrine() { return perfRateBrine_; }
|
||||
const std::vector<double>& perfRateBrine() const { return perfRateBrine_; }
|
||||
|
||||
/// One rate pr well
|
||||
double brineWellRate(const int w) const;
|
||||
|
||||
std::vector<double>& wellReservoirRates()
|
||||
{
|
||||
return well_reservoir_rates_;
|
||||
}
|
||||
|
||||
const std::vector<double>& wellReservoirRates() const
|
||||
{
|
||||
return well_reservoir_rates_;
|
||||
}
|
||||
|
||||
std::vector<double>& wellDissolvedGasRates()
|
||||
{
|
||||
return well_dissolved_gas_rates_;
|
||||
}
|
||||
|
||||
std::vector<double>& wellVaporizedOilRates()
|
||||
{
|
||||
return well_vaporized_oil_rates_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segRates() const
|
||||
{
|
||||
return seg_rates_;
|
||||
}
|
||||
|
||||
std::vector<double>& segRates()
|
||||
{
|
||||
return seg_rates_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPress() const
|
||||
{
|
||||
return seg_press_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDrop()
|
||||
{
|
||||
return seg_pressdrop_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDrop() const
|
||||
{
|
||||
return seg_pressdrop_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDropFriction()
|
||||
{
|
||||
return seg_pressdrop_friction_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDropFriction() const
|
||||
{
|
||||
return seg_pressdrop_friction_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDropHydroStatic()
|
||||
{
|
||||
return seg_pressdrop_hydorstatic_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDropHydroStatic() const
|
||||
{
|
||||
return seg_pressdrop_hydorstatic_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPressDropAcceleration()
|
||||
{
|
||||
return seg_pressdrop_acceleration_;
|
||||
}
|
||||
|
||||
const std::vector<double>& segPressDropAcceleration() const
|
||||
{
|
||||
return seg_pressdrop_acceleration_;
|
||||
}
|
||||
|
||||
std::vector<double>& segPress()
|
||||
{
|
||||
return seg_press_;
|
||||
}
|
||||
|
||||
int numSegment() const
|
||||
{
|
||||
return nseg_;
|
||||
}
|
||||
|
||||
int topSegmentIndex(const int w) const;
|
||||
|
||||
std::vector<double>& productivityIndex() {
|
||||
return productivity_index_;
|
||||
}
|
||||
|
||||
const std::vector<double>& productivityIndex() const {
|
||||
return productivity_index_;
|
||||
}
|
||||
|
||||
std::vector<double>& connectionProductivityIndex() {
|
||||
return this->conn_productivity_index_;
|
||||
}
|
||||
|
||||
const std::vector<double>& connectionProductivityIndex() const {
|
||||
return this->conn_productivity_index_;
|
||||
}
|
||||
|
||||
std::vector<double>& wellPotentials() {
|
||||
return well_potentials_;
|
||||
}
|
||||
|
||||
const std::vector<double>& wellPotentials() const {
|
||||
return well_potentials_;
|
||||
}
|
||||
|
||||
std::vector<double>& perfThroughput() {
|
||||
return perf_water_throughput_;
|
||||
}
|
||||
|
||||
const std::vector<double>& perfThroughput() const {
|
||||
return perf_water_throughput_;
|
||||
}
|
||||
|
||||
std::vector<double>& perfSkinPressure() {
|
||||
return perf_skin_pressure_;
|
||||
}
|
||||
|
||||
const std::vector<double>& perfSkinPressure() const {
|
||||
return perf_skin_pressure_;
|
||||
}
|
||||
|
||||
std::vector<double>& perfWaterVelocity() {
|
||||
return perf_water_velocity_;
|
||||
}
|
||||
|
||||
const std::vector<double>& perfWaterVelocity() const {
|
||||
return perf_water_velocity_;
|
||||
}
|
||||
|
||||
void shutWell(int well_index) override;
|
||||
|
||||
template<class Comm>
|
||||
void communicateGroupRates(const Comm& comm);
|
||||
|
||||
template<class Comm>
|
||||
void updateGlobalIsGrup(const Comm& comm);
|
||||
|
||||
bool isInjectionGrup(const std::string& name) const {
|
||||
return this->global_well_info.value().in_injecting_group(name);
|
||||
}
|
||||
|
||||
bool isProductionGrup(const std::string& name) const {
|
||||
return this->global_well_info.value().in_producing_group(name);
|
||||
}
|
||||
|
||||
double getALQ( const std::string& name) const
|
||||
{
|
||||
return this->alq_state.get(name);
|
||||
}
|
||||
|
||||
void setALQ( const std::string& name, double value)
|
||||
{
|
||||
this->alq_state.set(name, value);
|
||||
}
|
||||
|
||||
bool gliftCheckAlqOscillation(const std::string &name) const {
|
||||
return this->alq_state.oscillation(name);
|
||||
}
|
||||
|
||||
int gliftGetAlqDecreaseCount(const std::string &name) {
|
||||
return this->alq_state.get_decrement_count(name);
|
||||
}
|
||||
|
||||
int gliftGetAlqIncreaseCount(const std::string &name) {
|
||||
return this->alq_state.get_increment_count(name);
|
||||
}
|
||||
|
||||
void gliftUpdateAlqIncreaseCount(const std::string &name, bool increase) {
|
||||
this->alq_state.update_count(name, increase);
|
||||
}
|
||||
|
||||
bool gliftOptimizationEnabled() const {
|
||||
return do_glift_optimization_;
|
||||
}
|
||||
|
||||
void gliftTimeStepInit() {
|
||||
this->alq_state.reset_count();
|
||||
disableGliftOptimization();
|
||||
}
|
||||
|
||||
void disableGliftOptimization() {
|
||||
do_glift_optimization_ = false;
|
||||
}
|
||||
|
||||
void enableGliftOptimization() {
|
||||
do_glift_optimization_ = true;
|
||||
}
|
||||
|
||||
int wellNameToGlobalIdx(const std::string &name) {
|
||||
return this->global_well_info.value().well_index(name);
|
||||
}
|
||||
|
||||
std::string globalIdxToWellName(const int index) {
|
||||
return this->global_well_info.value().well_name(index);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<double> perfphaserates_;
|
||||
std::vector<bool> is_producer_; // Size equal to number of local wells.
|
||||
|
||||
// vector with size number of wells +1.
|
||||
// iterate over all perforations of a given well
|
||||
// for (int perf = first_perf_index_[well_index]; perf < first_perf_index_[well_index] + num_perf_[well_index]; ++perf)
|
||||
std::vector<int> first_perf_index_;
|
||||
std::vector<int> num_perf_;
|
||||
std::vector<Opm::Well::InjectorCMode> current_injection_controls_;
|
||||
std::vector<Well::ProducerCMode> current_production_controls_;
|
||||
|
||||
// Use of std::optional<> here is a technical crutch, the
|
||||
// WellStateFullyImplicitBlackoil class should be default constructible,
|
||||
// whereas the GlobalWellInfo is not.
|
||||
std::optional<GlobalWellInfo> global_well_info;
|
||||
std::map<std::string, std::pair<bool, std::vector<double>>> well_rates;
|
||||
|
||||
ALQState alq_state;
|
||||
bool do_glift_optimization_;
|
||||
|
||||
std::vector<double> perfRateSolvent_;
|
||||
|
||||
// only for output
|
||||
std::vector<double> perfRatePolymer_;
|
||||
std::vector<double> perfRateBrine_;
|
||||
|
||||
// it is the throughput of water flow through the perforations
|
||||
// it is used as a measure of formation damage around well-bore due to particle deposition
|
||||
// it will only be used for injectors to check the injectivity
|
||||
std::vector<double> perf_water_throughput_;
|
||||
|
||||
// skin pressure of peforation
|
||||
// it will only be used for injectors to check the injectivity
|
||||
std::vector<double> perf_skin_pressure_;
|
||||
|
||||
// it will only be used for injectors to check the injectivity
|
||||
// water velocity of perforation
|
||||
std::vector<double> perf_water_velocity_;
|
||||
|
||||
// phase rates under reservoir condition for wells
|
||||
// or voidage phase rates
|
||||
std::vector<double> well_reservoir_rates_;
|
||||
|
||||
// dissolved gas rates or solution gas production rates
|
||||
// should be zero for injection wells
|
||||
std::vector<double> well_dissolved_gas_rates_;
|
||||
|
||||
// vaporized oil rates or solution oil producation rates
|
||||
// should be zero for injection wells
|
||||
std::vector<double> well_vaporized_oil_rates_;
|
||||
|
||||
// some events happens to the well, like this well is a new well
|
||||
// or new well control keywords happens
|
||||
// \Note: for now, only WCON* keywords, and well status change is considered
|
||||
WellContainer<Events> events_;
|
||||
|
||||
// MS well related
|
||||
// for StandardWell, the number of segments will be one
|
||||
std::vector<double> seg_rates_;
|
||||
std::vector<double> seg_press_;
|
||||
// The following data are only recorded for output
|
||||
// pressure drop
|
||||
std::vector<double> seg_pressdrop_;
|
||||
// frictional pressure drop
|
||||
std::vector<double> seg_pressdrop_friction_;
|
||||
// hydrostatic pressure drop
|
||||
std::vector<double> seg_pressdrop_hydorstatic_;
|
||||
// accelerational pressure drop
|
||||
std::vector<double> seg_pressdrop_acceleration_;
|
||||
// the index of the top segments, which is used to locate the
|
||||
// multisegment well related information in WellState
|
||||
std::vector<int> top_segment_index_;
|
||||
int nseg_; // total number of the segments
|
||||
|
||||
// Productivity Index
|
||||
std::vector<double> productivity_index_;
|
||||
|
||||
// Connection-level Productivity Index
|
||||
std::vector<double> conn_productivity_index_;
|
||||
|
||||
// Well potentials
|
||||
std::vector<double> well_potentials_;
|
||||
|
||||
/// Map segment index to segment number, mostly for MS wells.
|
||||
///
|
||||
/// Segment number (one-based) of j-th segment in i-th well is
|
||||
/// \code
|
||||
/// const auto top = topSegmentIndex(i);
|
||||
/// const auto seg_No = seg_number_[top + j];
|
||||
/// \end
|
||||
std::vector<int> seg_number_;
|
||||
|
||||
data::Segment
|
||||
reportSegmentResults(const PhaseUsage& pu,
|
||||
const int well_id,
|
||||
const int seg_ix,
|
||||
const int seg_no) const;
|
||||
|
||||
int numSegments(const int well_id) const;
|
||||
|
||||
int segmentNumber(const int well_id, const int seg_id) const;
|
||||
|
||||
// If the ALQ has changed since the previous report step,
|
||||
// reset current_alq and update default_alq. ALQ is used for
|
||||
// constant lift gas injection and for gas lift optimization
|
||||
// (THP controlled wells).
|
||||
//
|
||||
// NOTE: If a well is no longer used (e.g. it is shut down)
|
||||
// it is still kept in the maps "default_alq_" and "current_alq_". Since the
|
||||
// number of unused entries should be small (negligible memory
|
||||
// overhead) this is simpler than writing code to delete it.
|
||||
//
|
||||
void updateWellsDefaultALQ(const std::vector<Well>& wells_ecl);
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user