Now doing a single transport step as well.

This commit is contained in:
Atgeirr Flø Rasmussen 2013-05-03 11:00:17 +02:00
parent 62e321d069
commit 7e240913a4

View File

@ -108,6 +108,43 @@ struct HelperOps
}
};
/// Returns fw(sw).
template <class ADB>
ADB fluxFunc(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const typename ADB::V& sw)
{
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
typedef Eigen::Array<double, Eigen::Dynamic, 4, Eigen::RowMajor> FourCol;
typedef typename ADB::V V;
typedef typename ADB::M M;
const int nc = props.numCells();
TwoCol s(nc, 2);
s.leftCols<1>() = sw;
s.rightCols<1>() = 1.0 - s.leftCols<1>();
TwoCol kr(nc, 2);
FourCol dkr(nc, 4);
props.relperm(nc, s.data(), cells.data(), kr.data(), dkr.data());
V krw = kr.leftCols<1>();
V kro = kr.rightCols<1>();
V dkrw = dkr.leftCols<1>(); // Left column is top-left of dkr/ds 2x2 matrix.
V dkro = -dkr.rightCols<1>(); // Right column is bottom-right of dkr/ds 2x2 matrix.
M krwjac(nc,nc);
M krojac(nc,nc);
auto sizes = Eigen::ArrayXi::Ones(nc);
krwjac.reserve(sizes);
krojac.reserve(sizes);
for (int c = 0; c < nc; ++c) {
krwjac.insert(c,c) = dkrw(c);
krojac.insert(c,c) = dkro(c);
}
const double* mu = props.viscosity();
ADB mw_ad = ADB::function(krw/mu[0], { krwjac/mu[0] });
ADB mo_ad = ADB::function(kro/mu[1], { krojac/mu[1] });
ADB fw = mw_ad / (mw_ad + mo_ad);
// std::cout << mw_ad << mo_ad << (mw_ad + mo_ad) << fw;
return fw;
}
int main()
@ -118,14 +155,24 @@ int main()
Opm::time::StopWatch clock;
clock.start();
Opm::GridManager gm(50, 50, 10);
Opm::GridManager gm(3,3);//(50, 50, 10);
const UnstructuredGrid& grid = *gm.c_grid();
using namespace Opm::unit;
using namespace Opm::prefix;
Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Quadratic,
{ 1000.0, 800.0 },
{ 1.0*centi*Poise, 5.0*centi*Poise },
0.2, 100*milli*darcy,
// Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
// { 1000.0, 800.0 },
// { 1.0*centi*Poise, 5.0*centi*Poise },
// 0.2, 100*milli*darcy,
// grid.dimensions, grid.number_of_cells);
// Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
// { 1000.0, 1000.0 },
// { 1.0, 1.0 },
// 1.0, 1.0,
// grid.dimensions, grid.number_of_cells);
Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
{ 1000.0, 1000.0 },
{ 1.0, 30.0 },
1.0, 1.0,
grid.dimensions, grid.number_of_cells);
std::vector<double> htrans(grid.cell_facepos[grid.number_of_cells]);
tpfa_htrans_compute((UnstructuredGrid*)&grid, props.permeability(), htrans.data());
@ -157,15 +204,15 @@ int main()
q[0] = 1.0;
q[nc-1] = -1.0;
// s - this is explicit now
// s0 - this is explicit now
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
TwoCol s(nc, 2);
s.leftCols<1>().setZero();
s.rightCols<1>().setOnes();
TwoCol s0(nc, 2);
s0.leftCols<1>().setZero();
s0.rightCols<1>().setOnes();
// totmob - explicit as well
TwoCol kr(nc, 2);
props.relperm(nc, s.data(), allcells.data(), kr.data(), 0);
props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0);
V krw = kr.leftCols<1>();
V kro = kr.rightCols<1>();
const double* mu = props.viscosity();
@ -197,11 +244,6 @@ int main()
ADB residual = ops.div*flux - ADB::constant(q, block_pattern);
std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl;
// std::cout << div << pdiff_face;
// std::cout << div*pdiff_face;
// std::cout << q << std::endl;
// std::cout << residual << std::endl;
// It's the residual we want to be zero. We know it's linear in p,
// so we just need a single linear solve. Since we have formulated
// ourselves with a residual and jacobian we do this with a single
@ -224,7 +266,68 @@ int main()
// std::cerr << "Solve failure!\n";
// return 1;
// }
V p_new = p0 - x.array();
V p1 = p0 - x.array();
std::cerr << "Solve " << clock.secsSinceLast() << std::endl;
std::cout << p_new << std::endl;
// std::cout << p1 << std::endl;
// ------ Transport solve ------
// Now we'll try to do a transport step as well.
// Residual formula is
// R_w = s_w - s_w^0 + dt/pv * (div v_w)
// where
// v_w = f_w v
// and f_w is (for now) based on averaged mobilities, not upwind.
double res_norm = 1e100;
V s1 = /*s0.leftCols<1>()*/0.5*V::Ones(nc,1); // Initial guess.
do {
const std::vector<int>& bp = block_pattern;
ADB s = ADB::variable(0, s1, bp);
const double dt = 0.0005;
V pv = Eigen::Map<const V>(props.porosity(), nc, 1)
* Eigen::Map<const V>(grid.cell_volumes, nc, 1);
V dtpv = dt/pv;
// std::cout << dtpv;
V ngradp1 = ops.ngrad*p1.matrix();
// std::cout << ngradp1 << std::endl;
ADB fw_cell = fluxFunc<ADB>(props, allcells, s.value());
// std::cout << fw_cell;
ADB fw_face = ops.caver*fw_cell;
// std::cout << fw_face;
ADB flux1 = fw_face*ADB::constant(ngradp1, bp);
// std::cout << flux1;
V qneg = dtpv*q;
V qpos = dtpv*q;
// Cheating a bit...
qneg[0] = 0.0;
qpos[nc-1] = 0.0;
ADB qtr_ad = ADB::constant(qpos, bp) + fw_cell*ADB::constant(qneg, bp);
ADB transport_residual = s - ADB::constant(s0.leftCols<1>(), bp)
+ ADB::constant(dtpv, bp)*(ops.div*flux1)
- qtr_ad;
res_norm = transport_residual.value().matrix().norm();
std::cout << "res_norm = " << res_norm << std::endl;
matr = transport_residual.derivative()[0];
matr.makeCompressed();
// std::cout << transport_residual;
solver.compute(matr);
// if (solver.info() != Eigen::Succeeded) {
// std::cerr << "Decomposition error!\n";
// return 1;
// }
x = solver.solve(transport_residual.value().matrix());
// if (solver.info() != Eigen::Succeeded) {
// std::cerr << "Solve failure!\n";
// return 1;
// }
// std::cout << x << std::endl;
s1 = s.value() - x.array();
std::cerr << "Solve for s " << clock.secsSinceLast() << std::endl;
for (int c = 0; c < nc; ++c) {
s1[c] = std::min(1.0, std::max(0.0, s1[c]));
}
std::cout << "s1 = \n" << s1 << std::endl;
} while (res_norm > 1e-7);
}