Merge pull request #822 from hnil/tpfa_temp

TPFA version for energy
This commit is contained in:
Kai Bao 2023-08-31 11:17:23 +02:00 committed by GitHub
commit 7ec77ada7e
4 changed files with 284 additions and 127 deletions

View File

@ -31,6 +31,7 @@
#include "blackoilproperties.hh" #include "blackoilproperties.hh"
#include <opm/models/io/vtkblackoilenergymodule.hh> #include <opm/models/io/vtkblackoilenergymodule.hh>
#include <opm/models/common/quantitycallbacks.hh> #include <opm/models/common/quantitycallbacks.hh>
#include <opm/models/discretization/common/linearizationtype.hh>
#include <opm/material/common/Tabulated1DFunction.hpp> #include <opm/material/common/Tabulated1DFunction.hpp>
@ -53,7 +54,6 @@ class BlackOilEnergyModule
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>; using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>; using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using Model = GetPropType<TypeTag, Properties::Model>; using Model = GetPropType<TypeTag, Properties::Model>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>; using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>; using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
@ -70,6 +70,7 @@ class BlackOilEnergyModule
static constexpr unsigned numPhases = FluidSystem::numPhases; static constexpr unsigned numPhases = FluidSystem::numPhases;
public: public:
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
/*! /*!
* \brief Register all run-time parameters for the black-oil energy module. * \brief Register all run-time parameters for the black-oil energy module.
*/ */
@ -191,6 +192,30 @@ public:
} }
} }
static void addHeatFlux(RateVector& flux,
const Evaluation& heatFlux)
{
if constexpr (enableEnergy) {
// diffusive energy flux
flux[contiEnergyEqIdx] += heatFlux;
flux[contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
}
}
template <class UpEval, class Eval, class FluidState>
static void addPhaseEnthalpyFluxes_(RateVector& flux,
unsigned phaseIdx,
const Eval& volumeFlux,
const FluidState& upFs)
{
flux[contiEnergyEqIdx] +=
decay<UpEval>(upFs.enthalpy(phaseIdx))
* decay<UpEval>(upFs.density(phaseIdx))
* volumeFlux;
}
template <class UpstreamEval> template <class UpstreamEval>
static void addPhaseEnthalpyFlux_(RateVector& flux, static void addPhaseEnthalpyFlux_(RateVector& flux,
unsigned phaseIdx, unsigned phaseIdx,
@ -202,12 +227,11 @@ public:
unsigned upIdx = extQuants.upstreamIndex(phaseIdx); unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx); const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
const auto& fs = up.fluidState(); const auto& fs = up.fluidState();
const auto& volFlux = extQuants.volumeFlux(phaseIdx); const auto& volFlux = extQuants.volumeFlux(phaseIdx);
flux[contiEnergyEqIdx] += addPhaseEnthalpyFluxes_<UpstreamEval>(flux,
decay<UpstreamEval>(fs.enthalpy(phaseIdx)) phaseIdx,
* decay<UpstreamEval>(fs.density(phaseIdx)) volFlux,
* volFlux; fs);
} }
static void addToEnthalpyRate(RateVector& flux, static void addToEnthalpyRate(RateVector& flux,
@ -317,6 +341,7 @@ class BlackOilEnergyIntensiveQuantities
using ThermalConductionLaw = GetPropType<TypeTag, Properties::ThermalConductionLaw>; using ThermalConductionLaw = GetPropType<TypeTag, Properties::ThermalConductionLaw>;
using Indices = GetPropType<TypeTag, Properties::Indices>; using Indices = GetPropType<TypeTag, Properties::Indices>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>; using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using EnergyModule = BlackOilEnergyModule<TypeTag>; using EnergyModule = BlackOilEnergyModule<TypeTag>;
@ -341,6 +366,20 @@ public:
fs.setTemperature(priVars.makeEvaluation(temperatureIdx, timeIdx, elemCtx.linearizationType())); fs.setTemperature(priVars.makeEvaluation(temperatureIdx, timeIdx, elemCtx.linearizationType()));
} }
/*!
* \brief Update the temperature of the intensive quantity's fluid state
*
*/
void updateTemperature_([[maybe_unused]] const Problem& problem,
const PrimaryVariables& priVars,
[[maybe_unused]] unsigned globalDofIdx,
const unsigned timeIdx,
const LinearizationType& lintype)
{
auto& fs = asImp_().fluidState_;
fs.setTemperature(priVars.makeEvaluation(temperatureIdx, timeIdx, lintype));
}
/*! /*!
* \brief Compute the intensive quantities needed to handle energy conservation * \brief Compute the intensive quantities needed to handle energy conservation
* *
@ -400,12 +439,13 @@ template <class TypeTag>
class BlackOilEnergyIntensiveQuantities<TypeTag, false> class BlackOilEnergyIntensiveQuantities<TypeTag, false>
{ {
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>; using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>; using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>; using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>; using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>; using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
static constexpr bool enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>(); static constexpr bool enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>();
public: public:
@ -417,7 +457,24 @@ public:
// even if energy is conserved, the temperature can vary over the spatial // even if energy is conserved, the temperature can vary over the spatial
// domain if the EnableTemperature property is set to true // domain if the EnableTemperature property is set to true
auto& fs = asImp_().fluidState_; auto& fs = asImp_().fluidState_;
Scalar T = elemCtx.problem().temperature(elemCtx, dofIdx, timeIdx); const Scalar T = elemCtx.problem().temperature(elemCtx, dofIdx, timeIdx);
fs.setTemperature(T);
}
}
template<class Problem>
void updateTemperature_([[maybe_unused]] const Problem& problem,
[[maybe_unused]] const PrimaryVariables& priVars,
[[maybe_unused]] unsigned globalDofIdx,
[[maybe_unused]] unsigned timeIdx,
[[maybe_unused]] const LinearizationType& lintype
)
{
if constexpr (enableTemperature) {
auto& fs = asImp_().fluidState_;
// even if energy is conserved, the temperature can vary over the spatial
// domain if the EnableTemperature property is set to true
const Scalar T = problem.temperature(globalDofIdx, timeIdx);
fs.setTemperature(T); fs.setTemperature(T);
} }
} }
@ -469,29 +526,26 @@ class BlackOilEnergyExtensiveQuantities
static const int dimWorld = GridView::dimensionworld; static const int dimWorld = GridView::dimensionworld;
using DimVector = Dune::FieldVector<Scalar, dimWorld>; using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>; using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
public: public:
void updateEnergy(const ElementContext& elemCtx, template<class FluidState>
unsigned scvfIdx, static void updateEnergy(Evaluation& energyFlux,
unsigned timeIdx) const unsigned& focusDofIndex,
const unsigned& inIdx,
const unsigned& exIdx,
const IntensiveQuantities& inIq,
const IntensiveQuantities& exIq,
const FluidState& inFs,
const FluidState& exFs,
const Scalar& inAlpha,
const Scalar& outAlpha,
const Scalar& faceArea)
{ {
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
Scalar faceArea = scvf.area();
unsigned inIdx = scvf.interiorIndex();
unsigned exIdx = scvf.exteriorIndex();
const auto& inIq = elemCtx.intensiveQuantities(inIdx, timeIdx);
const auto& exIq = elemCtx.intensiveQuantities(exIdx, timeIdx);
const auto& inFs = inIq.fluidState();
const auto& exFs = exIq.fluidState();
Evaluation deltaT; Evaluation deltaT;
if (elemCtx.focusDofIndex() == inIdx) if (focusDofIndex == inIdx)
deltaT = deltaT =
decay<Scalar>(exFs.temperature(/*phaseIdx=*/0)) decay<Scalar>(exFs.temperature(/*phaseIdx=*/0))
- inFs.temperature(/*phaseIdx=*/0); - inFs.temperature(/*phaseIdx=*/0);
else if (elemCtx.focusDofIndex() == exIdx) else if (focusDofIndex == exIdx)
deltaT = deltaT =
exFs.temperature(/*phaseIdx=*/0) exFs.temperature(/*phaseIdx=*/0)
- decay<Scalar>(inFs.temperature(/*phaseIdx=*/0)); - decay<Scalar>(inFs.temperature(/*phaseIdx=*/0));
@ -501,28 +555,23 @@ public:
- decay<Scalar>(inFs.temperature(/*phaseIdx=*/0)); - decay<Scalar>(inFs.temperature(/*phaseIdx=*/0));
Evaluation inLambda; Evaluation inLambda;
if (elemCtx.focusDofIndex() == inIdx) if (focusDofIndex == inIdx)
inLambda = inIq.totalThermalConductivity(); inLambda = inIq.totalThermalConductivity();
else else
inLambda = decay<Scalar>(inIq.totalThermalConductivity()); inLambda = decay<Scalar>(inIq.totalThermalConductivity());
Evaluation exLambda; Evaluation exLambda;
if (elemCtx.focusDofIndex() == exIdx) if (focusDofIndex == exIdx)
exLambda = exIq.totalThermalConductivity(); exLambda = exIq.totalThermalConductivity();
else else
exLambda = decay<Scalar>(exIq.totalThermalConductivity()); exLambda = decay<Scalar>(exIq.totalThermalConductivity());
auto distVec = elemCtx.pos(exIdx, timeIdx);
distVec -= elemCtx.pos(inIdx, timeIdx);
Evaluation H; Evaluation H;
if (inLambda > 0.0 && exLambda > 0.0) { if (inLambda > 0.0 && exLambda > 0.0) {
// compute the "thermal transmissibility". In contrast to the normal // compute the "thermal transmissibility". In contrast to the normal
// transmissibility this cannot be done as a preprocessing step because the // transmissibility this cannot be done as a preprocessing step because the
// average thermal thermal conductivity is analogous to the permeability but // average thermal conductivity is analogous to the permeability but
// depends on the solution. // depends on the solution.
Scalar inAlpha = elemCtx.problem().thermalHalfTransmissibilityIn(elemCtx, scvfIdx, timeIdx);
Scalar outAlpha = elemCtx.problem().thermalHalfTransmissibilityOut(elemCtx, scvfIdx, timeIdx);
const Evaluation& inH = inLambda*inAlpha; const Evaluation& inH = inLambda*inAlpha;
const Evaluation& exH = exLambda*outAlpha; const Evaluation& exH = exLambda*outAlpha;
H = 1.0/(1.0/inH + 1.0/exH); H = 1.0/(1.0/inH + 1.0/exH);
@ -530,7 +579,36 @@ public:
else else
H = 0.0; H = 0.0;
energyFlux_ = deltaT * (-H/faceArea); energyFlux = deltaT * (-H/faceArea);
}
void updateEnergy(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
const Scalar faceArea = scvf.area();
const unsigned inIdx = scvf.interiorIndex();
const unsigned exIdx = scvf.exteriorIndex();
const auto& inIq = elemCtx.intensiveQuantities(inIdx, timeIdx);
const auto& exIq = elemCtx.intensiveQuantities(exIdx, timeIdx);
const auto& inFs = inIq.fluidState();
const auto& exFs = exIq.fluidState();
const Scalar inAlpha = elemCtx.problem().thermalHalfTransmissibilityIn(elemCtx, scvfIdx, timeIdx);
const Scalar outAlpha = elemCtx.problem().thermalHalfTransmissibilityOut(elemCtx, scvfIdx, timeIdx);
updateEnergy(energyFlux_,
elemCtx.focusDofIndex(),
inIdx,
exIdx,
inIq,
exIq,
inFs,
exFs,
inAlpha,
outAlpha,
faceArea);
} }
template <class Context, class BoundaryFluidState> template <class Context, class BoundaryFluidState>
@ -544,10 +622,22 @@ public:
unsigned inIdx = scvf.interiorIndex(); unsigned inIdx = scvf.interiorIndex();
const auto& inIq = ctx.intensiveQuantities(inIdx, timeIdx); const auto& inIq = ctx.intensiveQuantities(inIdx, timeIdx);
const auto& inFs = inIq.fluidState(); const auto& focusDofIdx = ctx.focusDofIndex();
const Scalar alpha = ctx.problem().thermalHalfTransmissibilityBoundary(ctx, scvfIdx);
updateEnergyBoundary(energyFlux_, inIq, focusDofIdx, inIdx, alpha, boundaryFs);
}
template <class BoundaryFluidState>
static void updateEnergyBoundary(Evaluation& energyFlux,
const IntensiveQuantities& inIq,
unsigned focusDofIndex,
unsigned inIdx,
Scalar alpha,
const BoundaryFluidState& boundaryFs)
{
const auto& inFs = inIq.fluidState();
Evaluation deltaT; Evaluation deltaT;
if (ctx.focusDofIndex() == inIdx) if (focusDofIndex == inIdx)
deltaT = deltaT =
boundaryFs.temperature(/*phaseIdx=*/0) boundaryFs.temperature(/*phaseIdx=*/0)
- inFs.temperature(/*phaseIdx=*/0); - inFs.temperature(/*phaseIdx=*/0);
@ -557,24 +647,21 @@ public:
- decay<Scalar>(inFs.temperature(/*phaseIdx=*/0)); - decay<Scalar>(inFs.temperature(/*phaseIdx=*/0));
Evaluation lambda; Evaluation lambda;
if (ctx.focusDofIndex() == inIdx) if (focusDofIndex == inIdx)
lambda = inIq.totalThermalConductivity(); lambda = inIq.totalThermalConductivity();
else else
lambda = decay<Scalar>(inIq.totalThermalConductivity()); lambda = decay<Scalar>(inIq.totalThermalConductivity());
auto distVec = scvf.integrationPos();
distVec -= ctx.pos(inIdx, timeIdx);
if (lambda > 0.0) { if (lambda > 0.0) {
// compute the "thermal transmissibility". In contrast to the normal // compute the "thermal transmissibility". In contrast to the normal
// transmissibility this cannot be done as a preprocessing step because the // transmissibility this cannot be done as a preprocessing step because the
// average thermal conductivity is analogous to the permeability but depends // average thermal conductivity is analogous to the permeability but depends
// on the solution. // on the solution.
Scalar alpha = ctx.problem().thermalHalfTransmissibilityBoundary(ctx, scvfIdx); energyFlux = deltaT*lambda*(-alpha);
energyFlux_ = deltaT*lambda*(-alpha);
} }
else else
energyFlux_ = 0.0; energyFlux = 0.0;
} }
const Evaluation& energyFlux() const const Evaluation& energyFlux() const
@ -592,8 +679,23 @@ class BlackOilEnergyExtensiveQuantities<TypeTag, false>
{ {
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>; using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>; using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public: public:
template<class FluidState>
static void updateEnergy(Evaluation& energyFlux,
const unsigned& focusDofIndex,
const unsigned& inIdx,
const unsigned& exIdx,
const IntensiveQuantities& inIq,
const IntensiveQuantities& exIq,
const FluidState& inFs,
const FluidState& exFs,
const Scalar& inAlpha,
const Scalar& outAlpha,
const Scalar& faceArea)
{};
void updateEnergy(const ElementContext&, void updateEnergy(const ElementContext&,
unsigned, unsigned,
unsigned) unsigned)
@ -606,6 +708,16 @@ public:
const BoundaryFluidState&) const BoundaryFluidState&)
{} {}
template <class BoundaryFluidState>
static void updateEnergyBoundary(Evaluation& heatFlux,
const IntensiveQuantities& inIq,
unsigned focusDofIndex,
unsigned inIdx,
unsigned timeIdx,
Scalar alpha,
const BoundaryFluidState& boundaryFs){
}
const Evaluation& energyFlux() const const Evaluation& energyFlux() const
{ throw std::logic_error("Requested the energy flux, but energy is not conserved"); } { throw std::logic_error("Requested the energy flux, but energy is not conserved"); }
}; };

View File

@ -106,6 +106,19 @@ class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLo
using Toolbox = MathToolbox<Evaluation>; using Toolbox = MathToolbox<Evaluation>;
public: public:
struct ResidualNBInfo
{
double trans;
double faceArea;
double thpres;
double dZg;
FaceDir::DirEnum faceDirection;
double Vin;
double Vex;
double inAlpha;
double outAlpha;
};
/*! /*!
* \copydoc FvBaseLocalResidual::computeStorage * \copydoc FvBaseLocalResidual::computeStorage
*/ */
@ -205,53 +218,23 @@ public:
*/ */
static void computeFlux(RateVector& flux, static void computeFlux(RateVector& flux,
RateVector& darcy, RateVector& darcy,
const Problem& problem,
const unsigned globalIndexIn, const unsigned globalIndexIn,
const unsigned globalIndexEx, const unsigned globalIndexEx,
const IntensiveQuantities& intQuantsIn, const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx, const IntensiveQuantities& intQuantsEx,
const Scalar trans, const ResidualNBInfo& nbInfo)
const Scalar faceArea,
const FaceDir::DirEnum facedir)
{ {
OPM_TIMEBLOCK_LOCAL(computeFlux); OPM_TIMEBLOCK_LOCAL(computeFlux);
flux = 0.0; flux = 0.0;
darcy = 0.0; darcy = 0.0;
Scalar Vin = problem.model().dofTotalVolume(globalIndexIn);
Scalar Vex = problem.model().dofTotalVolume(globalIndexEx);
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = problem.gravity()[dimWorld - 1];
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(globalIndexIn);
Scalar zEx = problem.dofCenterDepth(globalIndexEx);
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx; // NB could be precalculated
calculateFluxes_(flux, calculateFluxes_(flux,
darcy, darcy,
intQuantsIn, intQuantsIn,
intQuantsEx, intQuantsEx,
Vin,
Vex,
globalIndexIn, globalIndexIn,
globalIndexEx, globalIndexEx,
distZ * g, nbInfo);
thpres,
trans,
faceArea,
facedir);
} }
// This function demonstrates compatibility with the ElementContext-based interface. // This function demonstrates compatibility with the ElementContext-based interface.
@ -262,7 +245,7 @@ public:
unsigned scvfIdx, unsigned scvfIdx,
unsigned timeIdx) unsigned timeIdx)
{ {
OPM_TIMEBLOCK_LOCAL(computeFlux); OPM_TIMEBLOCK_LOCAL(computeFlux);
assert(timeIdx == 0); assert(timeIdx == 0);
flux = 0.0; flux = 0.0;
@ -303,43 +286,45 @@ public:
// solution would be to take the Z coordinate of the element centroids, but since // solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like // ECL seems to like to be inconsistent on that front, it needs to be done like
// here... // here...
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx); const Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx); const Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
// the distances from the DOF's depths. (i.e., the additional depth of the // the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF) // exterior DOF)
Scalar distZ = zIn - zEx; const Scalar distZ = zIn - zEx;
// for thermal harmonic mean of half trans
const Scalar inAlpha = problem.thermalHalfTransmissibility(globalIndexIn, globalIndexEx);
const Scalar outAlpha = problem.thermalHalfTransmissibility(globalIndexEx, globalIndexIn);
const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, facedir, Vin, Vex, inAlpha, outAlpha};
calculateFluxes_(flux, calculateFluxes_(flux,
darcy, darcy,
intQuantsIn, intQuantsIn,
intQuantsEx, intQuantsEx,
Vin,
Vex,
globalIndexIn, globalIndexIn,
globalIndexEx, globalIndexEx,
distZ * g, res_nbinfo);
thpres,
trans,
faceArea,
facedir);
} }
static void calculateFluxes_(RateVector& flux, static void calculateFluxes_(RateVector& flux,
RateVector& darcy, RateVector& darcy,
const IntensiveQuantities& intQuantsIn, const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx, const IntensiveQuantities& intQuantsEx,
const Scalar& Vin,
const Scalar& Vex,
const unsigned& globalIndexIn, const unsigned& globalIndexIn,
const unsigned& globalIndexEx, const unsigned& globalIndexEx,
const Scalar& distZg, const ResidualNBInfo& nbInfo)
const Scalar& thpres,
const Scalar& trans,
const Scalar& faceArea,
const FaceDir::DirEnum facedir)
{ {
OPM_TIMEBLOCK_LOCAL(calculateFluxes); OPM_TIMEBLOCK_LOCAL(calculateFluxes);
const Scalar Vin = nbInfo.Vin;
const Scalar Vex = nbInfo.Vex;
const Scalar distZg = nbInfo.dZg;
const Scalar thpres = nbInfo.thpres;
const Scalar trans = nbInfo.trans;
const Scalar faceArea = nbInfo.faceArea;
const FaceDir::DirEnum facedir = nbInfo.faceDirection;
const Scalar inAlpha = nbInfo.inAlpha;
const Scalar outAlpha = nbInfo.outAlpha;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) if (!FluidSystem::phaseIsActive(phaseIdx))
continue; continue;
@ -358,7 +343,7 @@ public:
intQuantsEx, intQuantsEx,
phaseIdx, // input phaseIdx, // input
interiorDofIdx, // input interiorDofIdx, // input
exteriorDofIdx, // intput exteriorDofIdx, // input
Vin, Vin,
Vex, Vex,
globalIndexIn, globalIndexIn,
@ -382,7 +367,7 @@ public:
(Toolbox::value(up.mobility(phaseIdx, facedir)) * Toolbox::value(transMult) * (-trans / faceArea)); (Toolbox::value(up.mobility(phaseIdx, facedir)) * Toolbox::value(transMult) * (-trans / faceArea));
} }
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
darcy[conti0EqIdx + activeCompIdx] = darcyFlux.value() * faceArea; // For the FLORES fluxes darcy[conti0EqIdx + activeCompIdx] = darcyFlux.value() * faceArea; // NB! For the FLORES fluxes without derivatives
unsigned pvtRegionIdx = up.pvtRegionIndex(); unsigned pvtRegionIdx = up.pvtRegionIndex();
// if (upIdx == globalFocusDofIdx){ // if (upIdx == globalFocusDofIdx){
@ -392,12 +377,22 @@ public:
const auto& surfaceVolumeFlux = invB * darcyFlux; const auto& surfaceVolumeFlux = invB * darcyFlux;
evalPhaseFluxes_<Evaluation, Evaluation, FluidState>( evalPhaseFluxes_<Evaluation, Evaluation, FluidState>(
flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState()); flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
if constexpr (enableEnergy) {
EnergyModule::template addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>(
flux, phaseIdx, darcyFlux, up.fluidState());
}
} else { } else {
const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx); const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
const auto& surfaceVolumeFlux = invB * darcyFlux; const auto& surfaceVolumeFlux = invB * darcyFlux;
evalPhaseFluxes_<Scalar, Evaluation, FluidState>( evalPhaseFluxes_<Scalar, Evaluation, FluidState>(
flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState()); flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
if constexpr (enableEnergy) {
EnergyModule::template
addPhaseEnthalpyFluxes_<Scalar, Evaluation, FluidState>
(flux,phaseIdx,darcyFlux, up.fluidState());
}
} }
} }
// deal with solvents (if present) // deal with solvents (if present)
@ -413,7 +408,27 @@ public:
// PolymerModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx); // PolymerModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with energy (if present) // deal with energy (if present)
static_assert(!enableEnergy, "Relevant computeFlux() method must be implemented for this module before enabling."); if constexpr(enableEnergy){
Evaluation heatFlux;
{
short interiorDofIdx = 0; // NB
short exteriorDofIdx = 1; // NB
EnergyModule::ExtensiveQuantities::template updateEnergy(heatFlux,
interiorDofIdx, // focusDofIndex,
interiorDofIdx,
exteriorDofIdx,
intQuantsIn,
intQuantsEx,
intQuantsIn.fluidState(),
intQuantsEx.fluidState(),
inAlpha,
outAlpha,
faceArea);
}
EnergyModule::addHeatFlux(flux, heatFlux);
}
// NB need to be tha last energy call since it does scaling
// EnergyModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx); // EnergyModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with foam (if present) // deal with foam (if present)
@ -494,37 +509,63 @@ public:
const unsigned pvtRegionIdx = insideIntQuants.pvtRegionIndex(); const unsigned pvtRegionIdx = insideIntQuants.pvtRegionIndex();
RateVector tmp; RateVector tmp;
const auto& darcyFlux = volumeFlux[phaseIdx];
// mass conservation // mass conservation
if (pBoundary < pInside) { if (pBoundary < pInside) {
// outflux // outflux
const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(insideIntQuants.fluidState(), phaseIdx, pvtRegionIdx); const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(insideIntQuants.fluidState(), phaseIdx, pvtRegionIdx);
Evaluation surfaceVolumeFlux = invB * volumeFlux[phaseIdx]; Evaluation surfaceVolumeFlux = invB * darcyFlux;
evalPhaseFluxes_<Evaluation>(tmp, evalPhaseFluxes_<Evaluation>(tmp,
phaseIdx, phaseIdx,
insideIntQuants.pvtRegionIndex(), insideIntQuants.pvtRegionIndex(),
surfaceVolumeFlux, surfaceVolumeFlux,
insideIntQuants.fluidState()); insideIntQuants.fluidState());
if constexpr (enableEnergy) {
EnergyModule::template
addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>
(tmp, phaseIdx, darcyFlux, insideIntQuants.fluidState());
}
} else if (pBoundary > pInside) { } else if (pBoundary > pInside) {
// influx // influx
using ScalarFluidState = decltype(bdyInfo.exFluidState); using ScalarFluidState = decltype(bdyInfo.exFluidState);
const auto& invB = getInvB_<FluidSystem, ScalarFluidState, Scalar>(bdyInfo.exFluidState, phaseIdx, pvtRegionIdx); const auto& invB = getInvB_<FluidSystem, ScalarFluidState, Scalar>(bdyInfo.exFluidState, phaseIdx, pvtRegionIdx);
Evaluation surfaceVolumeFlux = invB * volumeFlux[phaseIdx]; Evaluation surfaceVolumeFlux = invB * darcyFlux;
evalPhaseFluxes_<Scalar>(tmp, evalPhaseFluxes_<Scalar>(tmp,
phaseIdx, phaseIdx,
insideIntQuants.pvtRegionIndex(), insideIntQuants.pvtRegionIndex(),
surfaceVolumeFlux, surfaceVolumeFlux,
bdyInfo.exFluidState); bdyInfo.exFluidState);
if constexpr (enableEnergy) {
EnergyModule::template
addPhaseEnthalpyFluxes_<Scalar, Evaluation, ScalarFluidState>
(tmp,
phaseIdx,
darcyFlux,
bdyInfo.exFluidState);
}
} }
for (unsigned i = 0; i < tmp.size(); ++i) { for (unsigned i = 0; i < tmp.size(); ++i) {
bdyFlux[i] += tmp[i]; bdyFlux[i] += tmp[i];
} }
static_assert(!enableEnergy, "Relevant treatment of boundary conditions must be implemented before enabling.");
// Add energy flux treatment per phase here.
} }
// conductive heat flux from boundary
Evaluation heatFlux;
if constexpr(enableEnergy){
// avoid overload of functions with same numeber of elements in eclproblem
Scalar alpha = problem.eclTransmissibilities().thermalHalfTransBoundary(globalSpaceIdx, bdyInfo.boundaryFaceIndex);
unsigned inIdx = 0;//dummy
// always calculated with derivatives of this cell
EnergyModule::ExtensiveQuantities::template updateEnergyBoundary(heatFlux,
insideIntQuants,
/*focusDofIndex*/ inIdx,
inIdx,
alpha,
bdyInfo.exFluidState);
}
EnergyModule::addHeatFlux(bdyFlux, heatFlux);
static_assert(!enableSolvent, "Relevant treatment of boundary conditions must be implemented before enabling."); static_assert(!enableSolvent, "Relevant treatment of boundary conditions must be implemented before enabling.");
static_assert(!enablePolymer, "Relevant treatment of boundary conditions must be implemented before enabling."); static_assert(!enablePolymer, "Relevant treatment of boundary conditions must be implemented before enabling.");
static_assert(!enableMICP, "Relevant treatment of boundary conditions must be implemented before enabling."); static_assert(!enableMICP, "Relevant treatment of boundary conditions must be implemented before enabling.");
@ -532,9 +573,6 @@ public:
// make sure that the right mass conservation quantities are used // make sure that the right mass conservation quantities are used
adaptMassConservationQuantities_(bdyFlux, insideIntQuants.pvtRegionIndex()); adaptMassConservationQuantities_(bdyFlux, insideIntQuants.pvtRegionIndex());
// heat conduction
static_assert(!enableEnergy, "Relevant treatment of boundary conditions must be implemented before enabling.");
#ifndef NDEBUG #ifndef NDEBUG
for (unsigned i = 0; i < numEq; ++i) { for (unsigned i = 0; i < numEq; ++i) {
Valgrind::CheckDefined(bdyFlux[i]); Valgrind::CheckDefined(bdyFlux[i]);
@ -596,8 +634,8 @@ public:
MICPModule::addSource(source, elemCtx, dofIdx, timeIdx); MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
// scale the source term of the energy equation // scale the source term of the energy equation
if (enableEnergy) if constexpr(enableEnergy)
source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>(); source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
} }
template <class UpEval, class FluidState> template <class UpEval, class FluidState>

View File

@ -139,11 +139,9 @@ struct Indices<TypeTag, TTag::BlackOilModel>
template<class TypeTag> template<class TypeTag>
struct FluidSystem<TypeTag, TTag::BlackOilModel> struct FluidSystem<TypeTag, TTag::BlackOilModel>
{ {
private: public:
using Scalar = GetPropType<TypeTag, Properties::Scalar>; using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>; using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
public:
using type = BlackOilFluidSystem<Scalar>; using type = BlackOilFluidSystem<Scalar>;
}; };

View File

@ -111,7 +111,7 @@ class TpfaLinearizer
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>; using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>(); static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
static const bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
// copying the linearizer is not a good idea // copying the linearizer is not a good idea
TpfaLinearizer(const TpfaLinearizer&); TpfaLinearizer(const TpfaLinearizer&);
//! \endcond //! \endcond
@ -316,7 +316,7 @@ public:
const auto& getFlowsInfo() const{ const auto& getFlowsInfo() const{
return flowsInfo_; return flowsInfo_;
} }
/*! /*!
* \brief Return constant reference to the floresInfo. * \brief Return constant reference to the floresInfo.
@ -419,7 +419,7 @@ private:
// freedom of each primary degree of freedom // freedom of each primary degree of freedom
using NeighborSet = std::set< unsigned >; using NeighborSet = std::set< unsigned >;
std::vector<NeighborSet> sparsityPattern(model.numTotalDof()); std::vector<NeighborSet> sparsityPattern(model.numTotalDof());
const Scalar gravity = problem_().gravity()[dimWorld - 1];
unsigned numCells = model.numTotalDof(); unsigned numCells = model.numTotalDof();
neighborInfo_.reserve(numCells, 6 * numCells); neighborInfo_.reserve(numCells, 6 * numCells);
std::vector<NeighborInfo> loc_nbinfo; std::vector<NeighborInfo> loc_nbinfo;
@ -436,15 +436,27 @@ private:
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx); unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
sparsityPattern[myIdx].insert(neighborIdx); sparsityPattern[myIdx].insert(neighborIdx);
if (dofIdx > 0) { if (dofIdx > 0) {
const double trans = problem_().transmissibility(myIdx, neighborIdx); const Scalar trans = problem_().transmissibility(myIdx, neighborIdx);
const auto scvfIdx = dofIdx - 1; const auto scvfIdx = dofIdx - 1;
const auto& scvf = stencil.interiorFace(scvfIdx); const auto& scvf = stencil.interiorFace(scvfIdx);
const double area = scvf.area(); const Scalar area = scvf.area();
const Scalar Vin = problem_().model().dofTotalVolume(myIdx);
const Scalar Vex = problem_().model().dofTotalVolume(neighborIdx);
const Scalar zIn = problem_().dofCenterDepth(myIdx);
const Scalar zEx = problem_().dofCenterDepth(neighborIdx);
const Scalar dZg = (zIn - zEx)*gravity;
const Scalar thpres = problem_().thresholdPressure(myIdx, neighborIdx);
Scalar inAlpha {0.};
Scalar outAlpha {0.};
FaceDirection dirId = FaceDirection::Unknown; FaceDirection dirId = FaceDirection::Unknown;
if constexpr(enableEnergy){
inAlpha = problem_().thermalHalfTransmissibility(myIdx, neighborIdx);
outAlpha = problem_().thermalHalfTransmissibility(neighborIdx, myIdx);
}
if (materialLawManager->hasDirectionalRelperms()) { if (materialLawManager->hasDirectionalRelperms()) {
dirId = scvf.faceDirFromDirId(); dirId = scvf.faceDirFromDirId();
} }
loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, trans, area, dirId, nullptr}; loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, dirId, Vin, Vex, inAlpha, outAlpha}, nullptr};
} }
} }
neighborInfo_.appendRow(loc_nbinfo.begin(), loc_nbinfo.end()); neighborInfo_.appendRow(loc_nbinfo.begin(), loc_nbinfo.end());
@ -551,7 +563,7 @@ private:
const int cartMyIdx = simulator_().vanguard().cartesianIndex(myIdx); const int cartMyIdx = simulator_().vanguard().cartesianIndex(myIdx);
const int cartNeighborIdx = simulator_().vanguard().cartesianIndex(neighborIdx); const int cartNeighborIdx = simulator_().vanguard().cartesianIndex(neighborIdx);
const auto& range = nncIndices.equal_range(cartMyIdx); const auto& range = nncIndices.equal_range(cartMyIdx);
for (auto it = range.first; it != range.second; ++it) { for (auto it = range.first; it != range.second; ++it) {
if (it->second.first == cartNeighborIdx){ if (it->second.first == cartNeighborIdx){
// -1 gives problem since is used for the nncInput from the deck // -1 gives problem since is used for the nncInput from the deck
faceId = -2; faceId = -2;
@ -628,7 +640,7 @@ private:
// Flux term. // Flux term.
{ {
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachCell); OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachCell);
short loc = 0; short loc = 0;
for (const auto& nbInfo : nbInfos) { for (const auto& nbInfo : nbInfos) {
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachFace); OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachFace);
@ -639,10 +651,8 @@ private:
adres = 0.0; adres = 0.0;
darcyFlux = 0.0; darcyFlux = 0.0;
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0); const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux( LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
adres, darcyFlux, problem_(), globI, globJ, intQuantsIn, intQuantsEx, adres *= nbInfo.res_nbinfo.faceArea;
nbInfo.trans, nbInfo.faceArea, nbInfo.faceDirection);
adres *= nbInfo.faceArea;
if (enableFlows) { if (enableFlows) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) { for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
flowsInfo_[globI][loc].flow[phaseIdx] = adres[phaseIdx].value(); flowsInfo_[globI][loc].flow[phaseIdx] = adres[phaseIdx].value();
@ -773,7 +783,7 @@ private:
auto nbInfos = neighborInfo_[globI]; // nbInfos will be a SparseTable<...>::mutable_iterator_range. auto nbInfos = neighborInfo_[globI]; // nbInfos will be a SparseTable<...>::mutable_iterator_range.
for (auto& nbInfo : nbInfos) { for (auto& nbInfo : nbInfos) {
unsigned globJ = nbInfo.neighbor; unsigned globJ = nbInfo.neighbor;
nbInfo.trans = problem_().transmissibility(globI, globJ); nbInfo.res_nbinfo.trans = problem_().transmissibility(globI, globJ);
} }
} }
} }
@ -789,12 +799,11 @@ private:
LinearizationType linearizationType_; LinearizationType linearizationType_;
using ResidualNBInfo = typename LocalResidual::ResidualNBInfo;
struct NeighborInfo struct NeighborInfo
{ {
unsigned int neighbor; unsigned int neighbor;
double trans; ResidualNBInfo res_nbinfo;
double faceArea;
FaceDir::DirEnum faceDirection;
MatrixBlock* matBlockAddress; MatrixBlock* matBlockAddress;
}; };
SparseTable<NeighborInfo> neighborInfo_; SparseTable<NeighborInfo> neighborInfo_;