mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 23:21:56 -06:00
Changed computation of polymer production. Added functionalities for compressible case.
This commit is contained in:
parent
8e089dd80d
commit
7fb671ffbf
@ -339,11 +339,11 @@ namespace Opm
|
||||
&transport_src[0], stepsize, inflow_c,
|
||||
state.saturation(), state.surfacevol(),
|
||||
state.concentration(), state.maxconcentration());
|
||||
|
||||
// Computeinjectedproduced function does not take into account polymer.
|
||||
Opm::computeInjectedProduced(props_,
|
||||
Opm::computeInjectedProduced(props_, poly_props_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
transport_src, stepsize, injected, produced);
|
||||
state.concentration(), state.maxconcentration(),
|
||||
transport_src, stepsize, inflow_c, injected, produced,
|
||||
polyinj, polyprod);
|
||||
if (gravity_ != 0 && use_segregation_split_) {
|
||||
tsolver_.solveGravity(columns_, stepsize,
|
||||
state.saturation(), state.surfacevol(),
|
||||
|
@ -92,7 +92,7 @@ namespace Opm
|
||||
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injeced and produced polymer mass.
|
||||
/// and injected and produced polymer mass.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
@ -101,6 +101,7 @@ namespace Opm
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] c polymer concentration
|
||||
/// @param[in] cmax polymer maximum concentration
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[in] inj_c injected concentration
|
||||
@ -134,6 +135,7 @@ namespace Opm
|
||||
const double* visc = props.viscosity();
|
||||
std::vector<double> kr_cell(np);
|
||||
double mob[2];
|
||||
double mc;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
if (src[cell] > 0.0) {
|
||||
injected[0] += src[cell]*dt;
|
||||
@ -148,11 +150,89 @@ namespace Opm
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += (mob[p]/totmob)*flux;
|
||||
}
|
||||
polyprod += (mob[0]/totmob)*flux*c[cell]; // TODO check this term.
|
||||
polyprops.computeMc(c[cell], mc);
|
||||
polyprod += (mob[0]/totmob)*flux*mc;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injected and produced polymer mass - in the compressible case.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] press pressure (one value per cell)
|
||||
/// @param[in] z surface-volume values (for all P phases)
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] c polymer concentration
|
||||
/// @param[in] cmax polymer maximum concentration
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[in] inj_c injected concentration
|
||||
///
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
|
||||
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
||||
const Opm::PolymerProperties& polyprops,
|
||||
const std::vector<double>& press,
|
||||
const std::vector<double>& z,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& c,
|
||||
const std::vector<double>& cmax,
|
||||
const std::vector<double>& src,
|
||||
const double dt,
|
||||
const double inj_c,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod)
|
||||
{
|
||||
const int num_cells = src.size();
|
||||
const int np = s.size()/src.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and src vectors do not match.");
|
||||
}
|
||||
std::fill(injected, injected + np, 0.0);
|
||||
std::fill(produced, produced + np, 0.0);
|
||||
polyinj = 0.0;
|
||||
polyprod = 0.0;
|
||||
std::vector<double> visc(np);
|
||||
std::vector<double> kr_cell(np);
|
||||
std::vector<double> mob(np);
|
||||
double mc;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
if (src[cell] > 0.0) {
|
||||
injected[0] += src[cell]*dt;
|
||||
polyinj += src[cell]*dt*inj_c;
|
||||
} else if (src[cell] < 0.0) {
|
||||
const double flux = -src[cell]*dt;
|
||||
const double* sat = &s[np*cell];
|
||||
props.relperm(1, sat, &cell, &kr_cell[0], 0);
|
||||
props.viscosity(1, &press[cell], &z[np*cell], &cell, &visc[0], 0);
|
||||
polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0],
|
||||
&kr_cell[0], &mob[0]);
|
||||
double totmob = 0.0;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
totmob += mob[p];
|
||||
}
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += (mob[p]/totmob)*flux;
|
||||
}
|
||||
polyprops.computeMc(c[cell], mc);
|
||||
polyprod += (mob[0]/totmob)*flux*mc;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// @brief Computes total polymer mass over all grid cells.
|
||||
/// @param[in] pv the pore volume by cell.
|
||||
|
@ -97,6 +97,44 @@ namespace Opm
|
||||
double& polyinj,
|
||||
double& polyprod);
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injected and produced polymer mass - in the compressible case.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] press pressure (one value per cell)
|
||||
/// @param[in] z surface-volume values (for all P phases)
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] c polymer concentration
|
||||
/// @param[in] cmax polymer maximum concentration
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[in] inj_c injected concentration
|
||||
///
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
|
||||
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
||||
const Opm::PolymerProperties& polyprops,
|
||||
const std::vector<double>& press,
|
||||
const std::vector<double>& z,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& c,
|
||||
const std::vector<double>& cmax,
|
||||
const std::vector<double>& src,
|
||||
const double dt,
|
||||
const double inj_c,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod);
|
||||
|
||||
/// @brief Computes total (free) polymer mass over all grid cells.
|
||||
/// @param[in] pv the pore volume by cell.
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
|
Loading…
Reference in New Issue
Block a user