mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
clang format
This commit is contained in:
parent
2b9c81fe09
commit
82ff782d5f
@ -25,9 +25,9 @@
|
||||
#include <opm/simulators/linalg/cuistl/CuDILU.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/CuSparseMatrix.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/detail/cusparse_matrix_operations.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/detail/safe_conversion.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp>
|
||||
#include <opm/simulators/linalg/matrixblock.hh>
|
||||
#include <vector>
|
||||
|
||||
@ -65,7 +65,9 @@ createNaturalToReordered(Opm::SparseTable<size_t> levelSets)
|
||||
|
||||
template <class M, class field_type, class GPUM>
|
||||
void
|
||||
createReorderedMatrix(const M& naturalMatrix, std::vector<int> reorderedToNatural, std::unique_ptr<GPUM>& reorderedGpuMat)
|
||||
createReorderedMatrix(const M& naturalMatrix,
|
||||
std::vector<int> reorderedToNatural,
|
||||
std::unique_ptr<GPUM>& reorderedGpuMat)
|
||||
{
|
||||
M reorderedMatrix(naturalMatrix.N(), naturalMatrix.N(), naturalMatrix.nonzeroes(), M::row_wise);
|
||||
for (auto dstRowIt = reorderedMatrix.createbegin(); dstRowIt != reorderedMatrix.createend(); ++dstRowIt) {
|
||||
@ -81,22 +83,26 @@ createReorderedMatrix(const M& naturalMatrix, std::vector<int> reorderedToNatura
|
||||
|
||||
template <class M, class field_type, class GPUM>
|
||||
void
|
||||
extractLowerAndUpperMatrices(const M& naturalMatrix, std::vector<int> reorderedToNatural, std::unique_ptr<GPUM>& lower, std::unique_ptr<GPUM>& upper)
|
||||
extractLowerAndUpperMatrices(const M& naturalMatrix,
|
||||
std::vector<int> reorderedToNatural,
|
||||
std::unique_ptr<GPUM>& lower,
|
||||
std::unique_ptr<GPUM>& upper)
|
||||
{
|
||||
const size_t new_nnz = (naturalMatrix.nonzeroes() - naturalMatrix.N()) / 2;
|
||||
|
||||
M reorderedLower(naturalMatrix.N(), naturalMatrix.N(), new_nnz, M::row_wise);
|
||||
M reorderedUpper(naturalMatrix.N(), naturalMatrix.N(), new_nnz, M::row_wise);
|
||||
|
||||
for (auto lowerIt = reorderedLower.createbegin(), upperIt = reorderedUpper.createbegin(); lowerIt != reorderedLower.createend(); ++lowerIt, ++upperIt) {
|
||||
for (auto lowerIt = reorderedLower.createbegin(), upperIt = reorderedUpper.createbegin();
|
||||
lowerIt != reorderedLower.createend();
|
||||
++lowerIt, ++upperIt) {
|
||||
|
||||
auto srcRow = naturalMatrix.begin() + reorderedToNatural[lowerIt.index()];
|
||||
|
||||
for (auto elem = srcRow->begin(); elem != srcRow->end(); ++elem) {
|
||||
if (elem.index() < srcRow.index()) { // add index to lower matrix if under the diagonal
|
||||
lowerIt.insert(elem.index());
|
||||
}
|
||||
else if (elem.index() > srcRow.index()){ // add element to upper matrix if above the diagonal
|
||||
} else if (elem.index() > srcRow.index()) { // add element to upper matrix if above the diagonal
|
||||
upperIt.insert(elem.index());
|
||||
}
|
||||
}
|
||||
@ -146,10 +152,11 @@ CuDILU<M, X, Y, l>::CuDILU(const M& A, bool split_matrix)
|
||||
A.nonzeroes()));
|
||||
if (m_split_matrix) {
|
||||
m_gpuMatrixReorderedDiag.emplace(CuVector<field_type>(blocksize_ * blocksize_ * m_cpuMatrix.N()));
|
||||
extractLowerAndUpperMatrices<M, field_type, CuSparseMatrix<field_type>>(m_cpuMatrix, m_reorderedToNatural, m_gpuMatrixReorderedLower, m_gpuMatrixReorderedUpper);
|
||||
}
|
||||
else{
|
||||
createReorderedMatrix<M, field_type, CuSparseMatrix<field_type>>(m_cpuMatrix, m_reorderedToNatural, m_gpuMatrixReordered);
|
||||
extractLowerAndUpperMatrices<M, field_type, CuSparseMatrix<field_type>>(
|
||||
m_cpuMatrix, m_reorderedToNatural, m_gpuMatrixReorderedLower, m_gpuMatrixReorderedUpper);
|
||||
} else {
|
||||
createReorderedMatrix<M, field_type, CuSparseMatrix<field_type>>(
|
||||
m_cpuMatrix, m_reorderedToNatural, m_gpuMatrixReordered);
|
||||
}
|
||||
computeDiagAndMoveReorderedData();
|
||||
}
|
||||
@ -171,7 +178,8 @@ CuDILU<M, X, Y, l>::apply(X& v, const Y& d)
|
||||
for (int level = 0; level < m_levelSets.size(); ++level) {
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
if (m_split_matrix) {
|
||||
detail::computeLowerSolveLevelSetSplit<field_type, blocksize_>(m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
detail::computeLowerSolveLevelSetSplit<field_type, blocksize_>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
@ -180,9 +188,9 @@ CuDILU<M, X, Y, l>::apply(X& v, const Y& d)
|
||||
m_gpuDInv.data(),
|
||||
d.data(),
|
||||
v.data());
|
||||
}
|
||||
else{
|
||||
detail::computeLowerSolveLevelSet<field_type, blocksize_>(m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
} else {
|
||||
detail::computeLowerSolveLevelSet<field_type, blocksize_>(
|
||||
m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
m_gpuMatrixReordered->getRowIndices().data(),
|
||||
m_gpuMatrixReordered->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
@ -201,7 +209,8 @@ CuDILU<M, X, Y, l>::apply(X& v, const Y& d)
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
levelStartIdx -= numOfRowsInLevel;
|
||||
if (m_split_matrix) {
|
||||
detail::computeUpperSolveLevelSetSplit<field_type, blocksize_>(m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
detail::computeUpperSolveLevelSetSplit<field_type, blocksize_>(
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
@ -209,9 +218,9 @@ CuDILU<M, X, Y, l>::apply(X& v, const Y& d)
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
v.data());
|
||||
}
|
||||
else{
|
||||
detail::computeUpperSolveLevelSet<field_type, blocksize_>(m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
} else {
|
||||
detail::computeUpperSolveLevelSet<field_type, blocksize_>(
|
||||
m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
m_gpuMatrixReordered->getRowIndices().data(),
|
||||
m_gpuMatrixReordered->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
@ -255,7 +264,8 @@ CuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData()
|
||||
OPM_TIMEBLOCK(prec_update);
|
||||
{
|
||||
if (m_split_matrix) {
|
||||
detail::copyMatDataToReorderedSplit<field_type, blocksize_>(m_gpuMatrix.getNonZeroValues().data(),
|
||||
detail::copyMatDataToReorderedSplit<field_type, blocksize_>(
|
||||
m_gpuMatrix.getNonZeroValues().data(),
|
||||
m_gpuMatrix.getRowIndices().data(),
|
||||
m_gpuMatrix.getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
@ -265,8 +275,7 @@ CuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData()
|
||||
m_gpuMatrixReorderedDiag.value().data(),
|
||||
m_gpuNaturalToReorder.data(),
|
||||
m_gpuMatrixReorderedLower->N());
|
||||
}
|
||||
else{
|
||||
} else {
|
||||
detail::copyMatDataToReordered<field_type, blocksize_>(m_gpuMatrix.getNonZeroValues().data(),
|
||||
m_gpuMatrix.getRowIndices().data(),
|
||||
m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
@ -279,7 +288,8 @@ CuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData()
|
||||
for (int level = 0; level < m_levelSets.size(); ++level) {
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
if (m_split_matrix) {
|
||||
detail::computeDiluDiagonalSplit<field_type, blocksize_>(m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
detail::computeDiluDiagonalSplit<field_type, blocksize_>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
@ -291,8 +301,7 @@ CuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData()
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data());
|
||||
}
|
||||
else{
|
||||
} else {
|
||||
detail::computeDiluDiagonal<field_type, blocksize_>(m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
m_gpuMatrixReordered->getRowIndices().data(),
|
||||
m_gpuMatrixReordered->getColumnIndices().data(),
|
||||
|
@ -457,8 +457,16 @@ namespace
|
||||
}
|
||||
|
||||
template <class T, int blocksize>
|
||||
__global__ void cuMoveDataToReorderedSplit(
|
||||
T* srcMatrix, int* srcRowIndices, int* srcColumnIndices, T* dstLowerMatrix, int* dstLowerRowIndices, T* dstUpperMatrix, int* dstUpperRowIndices, T* dstDiag, int* naturalToReordered, size_t numberOfRows)
|
||||
__global__ void cuMoveDataToReorderedSplit(T* srcMatrix,
|
||||
int* srcRowIndices,
|
||||
int* srcColumnIndices,
|
||||
T* dstLowerMatrix,
|
||||
int* dstLowerRowIndices,
|
||||
T* dstUpperMatrix,
|
||||
int* dstUpperRowIndices,
|
||||
T* dstDiag,
|
||||
int* naturalToReordered,
|
||||
size_t numberOfRows)
|
||||
{
|
||||
const auto srcRow = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (srcRow < numberOfRows) {
|
||||
@ -478,13 +486,12 @@ namespace
|
||||
dstBlock = lowerBlock;
|
||||
++lowerBlock;
|
||||
dstBuffer = dstLowerMatrix;
|
||||
}
|
||||
else if (srcColumnIndices[srcBlock] > srcRow){ // we are writing a value to the upper triangular matrix
|
||||
} else if (srcColumnIndices[srcBlock]
|
||||
> srcRow) { // we are writing a value to the upper triangular matrix
|
||||
dstBlock = upperBlock;
|
||||
++upperBlock;
|
||||
dstBuffer = dstUpperMatrix;
|
||||
}
|
||||
else{ // we are writing a value to the diagonal
|
||||
} else { // we are writing a value to the diagonal
|
||||
dstBlock = dstRow;
|
||||
dstBuffer = dstDiag;
|
||||
}
|
||||
@ -511,14 +518,16 @@ namespace
|
||||
|
||||
// Kernel here is the function object of the cuda kernel
|
||||
template <class Kernel>
|
||||
inline int getCudaRecomendedThreadBlockSize(Kernel k){
|
||||
inline int getCudaRecomendedThreadBlockSize(Kernel k)
|
||||
{
|
||||
int blockSize;
|
||||
int tmpGridSize;
|
||||
cudaOccupancyMaxPotentialBlockSize(&tmpGridSize, &blockSize, k, 0, 0);
|
||||
return blockSize;
|
||||
}
|
||||
|
||||
inline int getNumberOfBlocks(int wantedThreads, int threadBlockSize){
|
||||
inline int getNumberOfBlocks(int wantedThreads, int threadBlockSize)
|
||||
{
|
||||
return (wantedThreads + threadBlockSize - 1) / threadBlockSize;
|
||||
}
|
||||
|
||||
@ -648,8 +657,7 @@ computeDiluDiagonalSplit(T* reorderedLowerMat,
|
||||
if (blocksize <= 3) {
|
||||
int threadBlockSize = getCudaRecomendedThreadBlockSize(cuComputeLowerSolveLevelSetSplit<T, blocksize>);
|
||||
int nThreadBlocks = getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuComputeDiluDiagonalSplit<T, blocksize>
|
||||
<<<nThreadBlocks, threadBlockSize>>>(reorderedLowerMat,
|
||||
cuComputeDiluDiagonalSplit<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(reorderedLowerMat,
|
||||
lowerRowIndices,
|
||||
lowerColIndices,
|
||||
reorderedUpperMat,
|
||||
@ -677,13 +685,29 @@ copyMatDataToReordered(
|
||||
|
||||
template <class T, int blocksize>
|
||||
void
|
||||
copyMatDataToReorderedSplit(
|
||||
T* srcMatrix, int* srcRowIndices, int* srcColumnIndices, T* dstLowerMatrix, int* dstLowerRowIndices, T* dstUpperMatrix, int* dstUpperRowIndices, T* dstDiag, int* naturalToReordered, size_t numberOfRows)
|
||||
copyMatDataToReorderedSplit(T* srcMatrix,
|
||||
int* srcRowIndices,
|
||||
int* srcColumnIndices,
|
||||
T* dstLowerMatrix,
|
||||
int* dstLowerRowIndices,
|
||||
T* dstUpperMatrix,
|
||||
int* dstUpperRowIndices,
|
||||
T* dstDiag,
|
||||
int* naturalToReordered,
|
||||
size_t numberOfRows)
|
||||
{
|
||||
int threadBlockSize = getCudaRecomendedThreadBlockSize(cuComputeLowerSolveLevelSetSplit<T, blocksize>);
|
||||
int nThreadBlocks = getNumberOfBlocks(numberOfRows, threadBlockSize);
|
||||
cuMoveDataToReorderedSplit<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(
|
||||
srcMatrix, srcRowIndices, srcColumnIndices, dstLowerMatrix, dstLowerRowIndices, dstUpperMatrix, dstUpperRowIndices, dstDiag, naturalToReordered, numberOfRows);
|
||||
cuMoveDataToReorderedSplit<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(srcMatrix,
|
||||
srcRowIndices,
|
||||
srcColumnIndices,
|
||||
dstLowerMatrix,
|
||||
dstLowerRowIndices,
|
||||
dstUpperMatrix,
|
||||
dstUpperRowIndices,
|
||||
dstDiag,
|
||||
naturalToReordered,
|
||||
numberOfRows);
|
||||
}
|
||||
|
||||
#define INSTANTIATE_KERNEL_WRAPPERS(T, blocksize) \
|
||||
@ -691,7 +715,8 @@ copyMatDataToReorderedSplit(
|
||||
template void copyMatDataToReordered<T, blocksize>(T*, int*, T*, int*, int*, size_t); \
|
||||
template void copyMatDataToReorderedSplit<T, blocksize>(T*, int*, int*, T*, int*, T*, int*, T*, int*, size_t); \
|
||||
template void computeDiluDiagonal<T, blocksize>(T*, int*, int*, int*, int*, const int, int, T*); \
|
||||
template void computeDiluDiagonalSplit<T, blocksize>(T*, int*, int*, T*, int*, int*, T*, int*, int*, const int, int, T*);\
|
||||
template void computeDiluDiagonalSplit<T, blocksize>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, int*, int*, const int, int, T*); \
|
||||
template void computeUpperSolveLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*); \
|
||||
template void computeLowerSolveLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, const T*, T*); \
|
||||
template void computeUpperSolveLevelSetSplit<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*); \
|
||||
|
@ -24,12 +24,12 @@
|
||||
#include <dune/common/fmatrix.hh>
|
||||
#include <dune/istl/bcrsmatrix.hh>
|
||||
#include <memory>
|
||||
#include <opm/simulators/linalg/DILU.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/CuDILU.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/CuSparseMatrix.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp>
|
||||
#include <opm/simulators/linalg/cuistl/detail/cusparse_matrix_operations.hpp>
|
||||
#include <opm/simulators/linalg/DILU.hpp>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
@ -47,7 +47,9 @@ using CuFloatingPointVec = Opm::cuistl::CuVector<T>;
|
||||
using CuDilu1x1 = Opm::cuistl::CuDILU<Sp1x1BlockMatrix, CuFloatingPointVec, CuFloatingPointVec>;
|
||||
using CuDilu2x2 = Opm::cuistl::CuDILU<Sp2x2BlockMatrix, CuFloatingPointVec, CuFloatingPointVec>;
|
||||
|
||||
Sp1x1BlockMatrix get1x1BlockTestMatrix(){
|
||||
Sp1x1BlockMatrix
|
||||
get1x1BlockTestMatrix()
|
||||
{
|
||||
/*
|
||||
matA:
|
||||
1 2 0 3 0 0
|
||||
@ -132,7 +134,9 @@ Sp1x1BlockMatrix get1x1BlockTestMatrix(){
|
||||
return matA;
|
||||
}
|
||||
|
||||
Sp2x2BlockMatrix get2x2BlockTestMatrix(){
|
||||
Sp2x2BlockMatrix
|
||||
get2x2BlockTestMatrix()
|
||||
{
|
||||
/*
|
||||
matA:
|
||||
1 2 0 3 0 0
|
||||
|
Loading…
Reference in New Issue
Block a user