mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
remove the code of the IMPET ("decoupled") models
there was no interest in using them and the maintainance burden grew pretty large as the Dumux and eWoms code-bases continued to diverge.
This commit is contained in:
@@ -5,4 +5,3 @@ set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/Modules")
|
||||
include(EwomsAddTest)
|
||||
|
||||
EwomsAddTest(tutorial_coupled)
|
||||
EwomsAddTest(tutorial_decoupled)
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*****************************************************************************
|
||||
* Copyright (C) 2010-2011 by Benjamin Faigle *
|
||||
* *
|
||||
* This program is free software: you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation, either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
||||
*****************************************************************************/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \brief tutorial for the sequential two-phase model
|
||||
*/
|
||||
#include "config.h" /*@\label{tutorial-decoupled:include-begin}@*/
|
||||
|
||||
#include <ewoms/common/start.hh> /*@\label{tutorial-decoupled:include-end}@*/
|
||||
#include "tutorialproblem_decoupled.hh" /*@\label{tutorial-decoupled:include-problem-header}@*/
|
||||
|
||||
////////////////////////
|
||||
// the main function
|
||||
////////////////////////
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
typedef TTAG(TutorialProblemDecoupled) TypeTag; /*@\label{tutorial-decoupled:set-type-tag}@*/
|
||||
return Ewoms::start<TypeTag>(argc, argv); /*@\label{tutorial-decoupled:call-start}@*/
|
||||
}
|
||||
@@ -1,296 +0,0 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*****************************************************************************
|
||||
* Copyright (C) 2008-2012 by Markus Wolff *
|
||||
* Copyright (C) 2008-2012 by Andreas Lauser *
|
||||
* Copyright (C) 2010-2012 by Benjamin Faigle *
|
||||
* Copyright (C) 2009-2012 by Bernd Flemisch *
|
||||
* *
|
||||
* This program is free software: you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation, either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
||||
*****************************************************************************/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Ewoms::TutorialProblemDecoupled
|
||||
*/
|
||||
#ifndef EWOMS_TUTORIALPROBLEM_DECOUPLED_HH // guardian macro /*@\label{tutorial-decoupled:guardian1}@*/
|
||||
#define EWOMS_TUTORIALPROBLEM_DECOUPLED_HH // guardian macro /*@\label{tutorial-decoupled:guardian2}@*/
|
||||
|
||||
// assign parameters dependent on space (e.g. spatial parameters)
|
||||
#include "tutorialspatialparams_decoupled.hh" /*@\label{tutorial-decoupled:spatialparameters}@*/
|
||||
|
||||
// eWoms includes
|
||||
#include <ewoms/decoupled/2p/diffusion/fv/fvpressureproperties2p.hh>
|
||||
#include <ewoms/decoupled/2p/transport/fv/fvtransportproperties2p.hh>
|
||||
#include <ewoms/decoupled/2p/impes/impesproblem2p.hh> /*@\label{tutorial-decoupled:parent-problem}@*/
|
||||
|
||||
// include cfl-criterion after coats: more suitable if the problem is not advection dominated
|
||||
#include<ewoms/decoupled/2p/transport/fv/evalcflfluxcoats.hh>
|
||||
|
||||
// the components that are used
|
||||
#include <ewoms/material/components/simpleh2o.hh>
|
||||
#include <ewoms/material/components/lnapl.hh>
|
||||
|
||||
// the grid includes
|
||||
#include <ewoms/io/cubegridcreator.hh>
|
||||
#include <dune/grid/yaspgrid.hh>
|
||||
|
||||
// provides Dune::FieldVector
|
||||
#include <dune/common/fvector.hh>
|
||||
|
||||
namespace Ewoms {
|
||||
|
||||
template<class TypeTag>
|
||||
class TutorialProblemDecoupled;
|
||||
|
||||
//////////
|
||||
// Specify the properties for the lens problem
|
||||
//////////
|
||||
namespace Properties {
|
||||
// create a new type tag for the problem
|
||||
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(FVPressureTwoP, FVTransportTwoP, IMPESTwoP, TutorialSpatialParamsDecoupled)); /*@\label{tutorial-decoupled:create-type-tag}@*/
|
||||
|
||||
// Set the problem property
|
||||
SET_TYPE_PROP(TutorialProblemDecoupled, /*@\label{tutorial-decoupled:set-problem}@*/
|
||||
Problem,
|
||||
Ewoms::TutorialProblemDecoupled<TypeTag>);
|
||||
|
||||
// Set the grid type
|
||||
SET_TYPE_PROP(TutorialProblemDecoupled, Grid, Dune::YaspGrid<2>); /*@\label{tutorial-decoupled:set-grid-type}@*/
|
||||
|
||||
//Set the grid creator
|
||||
SET_TYPE_PROP(TutorialProblemDecoupled, GridCreator, Ewoms::CubeGridCreator<TypeTag>); /*@\label{tutorial-decoupled:set-gridcreator}@*/
|
||||
|
||||
// Set the wetting phase
|
||||
SET_PROP(TutorialProblemDecoupled, WettingPhase) /*@\label{tutorial-decoupled:2p-system-start}@*/
|
||||
{
|
||||
private:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
public:
|
||||
typedef Ewoms::LiquidPhase<Scalar, Ewoms::SimpleH2O<Scalar> > type; /*@\label{tutorial-decoupled:wettingPhase}@*/
|
||||
};
|
||||
|
||||
// Set the non-wetting phase
|
||||
SET_PROP(TutorialProblemDecoupled, NonwettingPhase)
|
||||
{
|
||||
private:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
public:
|
||||
typedef Ewoms::LiquidPhase<Scalar, Ewoms::LNAPL<Scalar> > type; /*@\label{tutorial-decoupled:nonwettingPhase}@*/
|
||||
}; /*@\label{tutorial-decoupled:2p-system-end}@*/
|
||||
|
||||
SET_TYPE_PROP(TutorialProblemDecoupled, EvalCflFluxFunction, Ewoms::EvalCflFluxCoats<TypeTag>); /*@\label{tutorial-decoupled:cflflux}@*/
|
||||
SET_SCALAR_PROP(TutorialProblemDecoupled, ImpetCFLFactor, 0.95); /*@\label{tutorial-decoupled:cflfactor}@*/
|
||||
|
||||
// Disable gravity
|
||||
SET_BOOL_PROP(TutorialProblemDecoupled, EnableGravity, false); /*@\label{tutorial-decoupled:gravity}@*/
|
||||
|
||||
// define how long the simulation should run [s] /*@\label{tutorial-decoupled:domain-defaults-begin}@*/
|
||||
SET_SCALAR_PROP(TutorialProblemDecoupled, EndTime, 100e3);
|
||||
|
||||
// define the properties required by the cube grid creator
|
||||
SET_SCALAR_PROP(TutorialProblemDecoupled, DomainSizeX, 300.0);
|
||||
SET_SCALAR_PROP(TutorialProblemDecoupled, DomainSizeY, 60.0);
|
||||
SET_SCALAR_PROP(TutorialProblemDecoupled, DomainSizeZ, 0.0);
|
||||
|
||||
SET_INT_PROP(TutorialProblemDecoupled, CellsX, 100);
|
||||
SET_INT_PROP(TutorialProblemDecoupled, CellsY, 1);
|
||||
SET_INT_PROP(TutorialProblemDecoupled, CellsZ, 0); /*@\label{tutorial-decoupled:domain-defaults-end}@*/
|
||||
} /*@\label{tutorial-decoupled:propertysystem-end}@*/
|
||||
|
||||
/*! \ingroup DecoupledProblems
|
||||
* \brief Problem class for the decoupled tutorial
|
||||
*/
|
||||
template<class TypeTag>
|
||||
class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag> /*@\label{tutorial-decoupled:def-problem}@*/
|
||||
{
|
||||
typedef IMPESProblem2P<TypeTag> ParentType;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
||||
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
|
||||
typedef typename GET_PROP(TypeTag, SolutionTypes) SolutionTypes;
|
||||
typedef typename SolutionTypes::PrimaryVariables PrimaryVariables;
|
||||
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
|
||||
enum
|
||||
{
|
||||
nPhaseIdx = Indices::nPhaseIdx,
|
||||
pwIdx = Indices::pwIdx,
|
||||
swIdx = Indices::swIdx,
|
||||
pressEqIdx = Indices::pressEqIdx,
|
||||
satEqIdx = Indices::satEqIdx
|
||||
};
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
|
||||
typedef typename GridView::Traits::template Codim<0>::Entity Element;
|
||||
typedef typename GridView::Intersection Intersection;
|
||||
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
|
||||
|
||||
public:
|
||||
TutorialProblemDecoupled(TimeManager &timeManager)
|
||||
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView()), eps_(1e-6)/*@\label{tutorial-decoupled:constructor-problem}@*/
|
||||
{
|
||||
//write only every 10th time step to output file
|
||||
this->setOutputInterval(10);/*@\label{tutorial-decoupled:outputinterval}@*/
|
||||
}
|
||||
|
||||
//! The problem name.
|
||||
/*! This is used as a prefix for files generated by the simulation.
|
||||
*/
|
||||
const char *name() const /*@\label{tutorial-decoupled:name}@*/
|
||||
{
|
||||
return "tutorial_decoupled";
|
||||
}
|
||||
|
||||
//! Returns true if a restart file should be written.
|
||||
/* The default behaviour is to write no restart file.
|
||||
*/
|
||||
bool shouldWriteRestartFile() const /*@\label{tutorial-decoupled:restart}@*/
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
//! Returns the temperature within the domain at position globalPos.
|
||||
/*! This problem assumes a temperature of 10 degrees Celsius.
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function temperatureAtPos(const GlobalPosition& globalPos) could be
|
||||
* defined, where globalPos is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
Scalar temperature(const Element& element) const /*@\label{tutorial-decoupled:temperature}@*/
|
||||
{
|
||||
return 273.15 + 10; // -> 10°C
|
||||
}
|
||||
|
||||
//! Returns a constant pressure to enter material laws at position globalPos.
|
||||
/* For incrompressible simulations, a constant pressure is necessary
|
||||
* to enter the material laws to gain a constant density etc. In the compressible
|
||||
* case, the pressure is used for the initialization of material laws.
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function referencePressureAtPos(const GlobalPosition& globalPos) could be
|
||||
* defined, where globalPos is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
Scalar referencePressure(const Element& element) const /*@\label{tutorial-decoupled:refPressure}@*/
|
||||
{
|
||||
return 2e5;
|
||||
}
|
||||
|
||||
//! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$ of a finite volume.
|
||||
/*! Evaluate the source term for all phases within a given
|
||||
* volume.
|
||||
*
|
||||
* \param values Includes sources for the two phases
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* The method returns the mass generated (positive) or
|
||||
* annihilated (negative) per volume unit.
|
||||
*
|
||||
* Alternatively, the function sourceAtPos(PrimaryVariables &values, const GlobalPosition& globalPos)
|
||||
* could be defined, where globalPos is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
void source(PrimaryVariables &values, const Element& element) const /*@\label{tutorial-decoupled:source}@*/
|
||||
{
|
||||
values = 0;
|
||||
}
|
||||
|
||||
//! Type of boundary conditions at position globalPos.
|
||||
/*! Defines the type the boundary condition for the pressure equation,
|
||||
* either pressure (dirichlet) or flux (neumann),
|
||||
* and for the transport equation,
|
||||
* either saturation (dirichlet) or flux (neumann).
|
||||
*
|
||||
* \param bcTypes Includes the types of boundary conditions
|
||||
* \param globalPos The position of the center of the finite volume
|
||||
*
|
||||
* Alternatively, the function boundaryTypes(PrimaryVariables &values, const Intersection&
|
||||
* intersection) could be defined, where intersection is the boundary intersection.
|
||||
*/
|
||||
void boundaryTypesAtPos(BoundaryTypes &bcTypes, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:bctype}@*/
|
||||
{
|
||||
if (globalPos[0] < this->bBoxMin()[0] + eps_)
|
||||
{
|
||||
bcTypes.setDirichlet(pressEqIdx);
|
||||
bcTypes.setDirichlet(satEqIdx);
|
||||
// bcTypes.setAllDirichlet(); // alternative if the same BC is used for both types of equations
|
||||
}
|
||||
// all other boundaries
|
||||
else
|
||||
{
|
||||
bcTypes.setNeumann(pressEqIdx);
|
||||
bcTypes.setNeumann(satEqIdx);
|
||||
// bcTypes.setAllNeumann(); // alternative if the same BC is used for both types of equations
|
||||
}
|
||||
}
|
||||
//! Value for dirichlet boundary condition at position globalPos.
|
||||
/*! In case of a dirichlet BC for the pressure equation the pressure \f$ [Pa] \f$, and for
|
||||
* the transport equation the saturation [-] have to be defined on boundaries.
|
||||
*
|
||||
* \param values Values of primary variables at the boundary
|
||||
* \param intersection The boundary intersection
|
||||
*
|
||||
* Alternatively, the function dirichletAtPos(PrimaryVariables &values, const GlobalPosition& globalPos)
|
||||
* could be defined, where globalPos is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
void dirichlet(PrimaryVariables &values, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichlet}@*/
|
||||
{
|
||||
values[pwIdx] = 2e5;
|
||||
values[swIdx] = 1.0;
|
||||
}
|
||||
//! Value for neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$ at position globalPos.
|
||||
/*! In case of a neumann boundary condition, the flux of matter
|
||||
* is returned as a vector.
|
||||
*
|
||||
* \param values Boundary flux values for the different phases
|
||||
* \param globalPos The position of the center of the finite volume
|
||||
*
|
||||
* Alternatively, the function neumann(PrimaryVariables &values, const Intersection& intersection) could be defined,
|
||||
* where intersection is the boundary intersection.
|
||||
*/
|
||||
void neumannAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:neumann}@*/
|
||||
{
|
||||
values = 0;
|
||||
if (globalPos[0] > this->bBoxMax()[0] - eps_)
|
||||
{
|
||||
values[nPhaseIdx] = 3e-2;
|
||||
}
|
||||
}
|
||||
//! Initial condition at position globalPos.
|
||||
/*! Only initial values for saturation have to be given!
|
||||
*
|
||||
* \param values Values of primary variables
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function initialAtPos(PrimaryVariables &values, const GlobalPosition& globalPos)
|
||||
* could be defined, where globalPos is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
void initial(PrimaryVariables &values,
|
||||
const Element &element) const /*@\label{tutorial-decoupled:initial}@*/
|
||||
{
|
||||
values = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
const Scalar eps_;
|
||||
};
|
||||
} //end namespace
|
||||
|
||||
#endif
|
||||
@@ -1,150 +0,0 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*****************************************************************************
|
||||
* Copyright (C) 2010 by Bernd Flemisch *
|
||||
* Copyright (C) 2010-2012 by Markus Wolff *
|
||||
* Copyright (C) 2010-2012 by Andreas Lauser *
|
||||
* Copyright (C) 2010-2012 by Benjamin Faigle *
|
||||
* *
|
||||
* This program is free software: you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation, either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License for more details. *
|
||||
* *
|
||||
* You should have received a copy of the GNU General Public License *
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
||||
*****************************************************************************/
|
||||
/*!
|
||||
* \file
|
||||
* \copydoc Ewoms::TutorialSpatialParamsDecoupled
|
||||
*/
|
||||
#ifndef EWOMS_TUTORIAL_SPATIAL_PARAMETERS_DECOUPLED_HH
|
||||
#define EWOMS_TUTORIAL_SPATIAL_PARAMETERS_DECOUPLED_HH
|
||||
|
||||
#include <ewoms/parallel/mpihelper.hh>
|
||||
#include <ewoms/decoupled/spatialparams/fvspatialparams.hh>
|
||||
#include <ewoms/material/fluidmatrixinteractions/2p/linearmaterial.hh>
|
||||
#include <ewoms/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh>
|
||||
#include <ewoms/material/fluidmatrixinteractions/2p/efftoabslaw.hh>
|
||||
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
namespace Ewoms
|
||||
{
|
||||
|
||||
//forward declaration
|
||||
template<class TypeTag>
|
||||
class TutorialSpatialParamsDecoupled;
|
||||
|
||||
namespace Properties
|
||||
{
|
||||
// The spatial parameters TypeTag
|
||||
NEW_TYPE_TAG(TutorialSpatialParamsDecoupled);
|
||||
|
||||
// Set the spatial parameters
|
||||
SET_TYPE_PROP(TutorialSpatialParamsDecoupled, SpatialParams,
|
||||
Ewoms::TutorialSpatialParamsDecoupled<TypeTag>); /*@\label{tutorial-decoupled:set-spatialparameters}@*/
|
||||
|
||||
// Set the material law
|
||||
SET_PROP(TutorialSpatialParamsDecoupled, MaterialLaw)
|
||||
{
|
||||
private:
|
||||
// material law typedefs
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw;
|
||||
public:
|
||||
typedef EffToAbsLaw<RawMaterialLaw> type;
|
||||
};
|
||||
}
|
||||
|
||||
//! Definition of the spatial parameters for the decoupled tutorial
|
||||
|
||||
template<class TypeTag>
|
||||
class TutorialSpatialParamsDecoupled: public FVSpatialParams<TypeTag>
|
||||
{
|
||||
typedef FVSpatialParams<TypeTag> ParentType;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
|
||||
enum
|
||||
{dim=Grid::dimension, dimWorld=Grid::dimensionworld, numEq=1};
|
||||
typedef typename Grid::Traits::template Codim<0>::Entity Element;
|
||||
|
||||
typedef Dune::FieldMatrix<Scalar,dim,dim> FieldMatrix;
|
||||
|
||||
public:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
typedef typename MaterialLaw::Params MaterialLawParams;
|
||||
|
||||
//! Intrinsic permeability tensor K \f$[m^2]\f$ depending
|
||||
/*! on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be
|
||||
* defined, where globalPos is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
const FieldMatrix& intrinsicPermeability (const Element& element) const
|
||||
{
|
||||
return K_;
|
||||
}
|
||||
|
||||
//! Define the porosity \f$[-]\f$ of the porous medium depending
|
||||
/*! on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be
|
||||
* defined, where globalPos is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
double porosity(const Element& element) const
|
||||
{
|
||||
return 0.2;
|
||||
}
|
||||
|
||||
/*! Return the parameter object for the material law (i.e. Brooks-Corey)
|
||||
* depending on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos)
|
||||
* could be defined, where globalPos is the vector including the global coordinates of
|
||||
* the finite volume.
|
||||
*/
|
||||
const MaterialLawParams& materialLawParams(const Element &element) const
|
||||
{
|
||||
return materialLawParams_;
|
||||
}
|
||||
|
||||
//! Constructor
|
||||
TutorialSpatialParamsDecoupled(const GridView& gridView)
|
||||
: ParentType(gridView), K_(0)
|
||||
{
|
||||
for (int i = 0; i < dim; i++)
|
||||
K_[i][i] = 1e-7;
|
||||
|
||||
// residual saturations
|
||||
materialLawParams_.setSwr(0);
|
||||
materialLawParams_.setSnr(0);
|
||||
|
||||
// parameters for the Brooks-Corey Law
|
||||
// entry pressures
|
||||
materialLawParams_.setPe(500);
|
||||
|
||||
// Brooks-Corey shape parameters
|
||||
materialLawParams_.setLambda(2);
|
||||
}
|
||||
|
||||
private:
|
||||
MaterialLawParams materialLawParams_;
|
||||
FieldMatrix K_;
|
||||
};
|
||||
|
||||
} // end namespace
|
||||
#endif
|
||||
Reference in New Issue
Block a user