moving addWellControlEq to MultisegmentWells

This commit is contained in:
Kai Bao 2016-04-27 14:36:51 +02:00
parent 5ba53a7a39
commit 868efa97a0
4 changed files with 180 additions and 172 deletions

View File

@ -205,11 +205,6 @@ namespace Opm {
const SolutionState& state, const SolutionState& state,
WellState& xw) const; WellState& xw) const;
void
addWellControlEq(const SolutionState& state,
const WellState& xw,
const V& aliveWells);
int numWellVars() const; int numWellVars() const;
void void

View File

@ -512,7 +512,8 @@ namespace Opm {
asImpl().updatePerfPhaseRatesAndPressures(cq_s, state, well_state); asImpl().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
msWells().addWellFluxEq(cq_s, state, np, residual_); msWells().addWellFluxEq(cq_s, state, np, residual_);
asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state); asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state);
asImpl().addWellControlEq(state, well_state, aliveWells); // asImpl().addWellControlEq(state, well_state, aliveWells);
msWells().addWellControlEq(state, well_state, aliveWells, np, active_, residual_);
} }
@ -701,171 +702,6 @@ namespace Opm {
template <class Grid>
void BlackoilMultiSegmentModel<Grid>::addWellControlEq(const SolutionState& state,
const WellState& xw,
const V& aliveWells)
{
// the name of the function is a a little misleading.
// Basically it is the function for the pressure equation.
// And also, it work as the control equation when it is the segment
if( wellsMultiSegment().empty() ) return;
const int np = numPhases();
const int nw = wellsMultiSegment().size();
const int nseg_total = xw.numSegments();
ADB aqua = ADB::constant(ADB::V::Zero(nseg_total));
ADB liquid = ADB::constant(ADB::V::Zero(nseg_total));
ADB vapour = ADB::constant(ADB::V::Zero(nseg_total));
if (active_[Water]) {
aqua += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Aqua * nseg_total));
}
if (active_[Oil]) {
liquid += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Liquid * nseg_total));
}
if (active_[Gas]) {
vapour += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Vapour * nseg_total));
}
// THP control is not implemented for the moment.
// Hydrostatic correction variables
ADB::V rho_v = ADB::V::Zero(nw);
ADB::V vfp_ref_depth_v = ADB::V::Zero(nw);
// Target vars
ADB::V bhp_targets = ADB::V::Zero(nw);
ADB::V rate_targets = ADB::V::Zero(nw);
Eigen::SparseMatrix<double> rate_distr(nw, np*nw);
// Selection variables
// well selectors
std::vector<int> bhp_well_elems;
std::vector<int> rate_well_elems;
// segment selectors
std::vector<int> bhp_top_elems;
std::vector<int> rate_top_elems;
std::vector<int> rate_top_phase_elems;
std::vector<int> others_elems;
//Run through all wells to calculate BHP/RATE targets
//and gather info about current control
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
const struct WellControls* wc = wellsMultiSegment()[w]->wellControls();
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = xw.currentControls()[w];
const int nseg = wellsMultiSegment()[w]->numberOfSegments();
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
bhp_well_elems.push_back(w);
bhp_top_elems.push_back(start_segment);
bhp_targets(w) = well_controls_iget_target(wc, current);
rate_targets(w) = -1e100;
for (int p = 0; p < np; ++p) {
rate_top_phase_elems.push_back(np * start_segment + p);
}
}
break;
case THP:
{
OPM_THROW(std::runtime_error, "THP control is not implemented for multi-sgement wells yet!!");
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
rate_well_elems.push_back(w);
rate_top_elems.push_back(start_segment);
for (int p = 0; p < np; ++p) {
rate_top_phase_elems.push_back(np * start_segment + p);
}
// RESERVOIR and SURFACE rates look the same, from a
// high-level point of view, in the system of
// simultaneous linear equations.
const double* const distr =
well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
rate_distr.insert(w, p*nw + w) = distr[p];
}
bhp_targets(w) = -1.0e100;
rate_targets(w) = well_controls_iget_target(wc, current);
}
break;
}
for (int i = 1; i < nseg; ++i) {
others_elems.push_back(i + start_segment);
}
start_segment += nseg;
}
// for each segment: 1, if the segment is the top segment, then control equation
// 2, if the segment is not the top segment, then the pressure equation
const ADB bhp_residual = subset(state.segp, bhp_top_elems) - subset(bhp_targets, bhp_well_elems);
const ADB rate_residual = subset(rate_distr * subset(state.segqs, rate_top_phase_elems) - rate_targets, rate_well_elems);
ADB others_residual = ADB::constant(V::Zero(nseg_total));
if ( msWellOps().has_multisegment_wells ) {
// Special handling for when we are called from solveWellEq().
// TODO: restructure to eliminate need for special treatmemt.
ADB wspd = (state.segp.numBlocks() == 2)
? wellhelpers::onlyWellDerivs(msWells().wellSegmentPressureDelta())
: msWells().wellSegmentPressureDelta();
others_residual = msWellOps().eliminate_topseg * (state.segp - msWellOps().s2s_outlet * state.segp + wspd);
} else {
others_residual = msWellOps().eliminate_topseg * (state.segp - msWellOps().s2s_outlet * state.segp);
}
// all the control equations
// TODO: can be optimized better
ADB well_eq_topsegment = subset(superset(bhp_residual, bhp_top_elems, nseg_total) +
superset(rate_residual, rate_top_elems, nseg_total), xw.topSegmentLoc());
// For wells that are dead (not flowing), and therefore not communicating
// with the reservoir, we set the equation to be equal to the well's total
// flow. This will be a solution only if the target rate is also zero.
Eigen::SparseMatrix<double> rate_summer(nw, np*nw);
for (int w = 0; w < nw; ++w) {
for (int phase = 0; phase < np; ++phase) {
rate_summer.insert(w, phase*nw + w) = 1.0;
}
}
Selector<double> alive_selector(aliveWells, Selector<double>::NotEqualZero);
// TODO: Here only handles the wells, or the top segments
// should we also handle some non-alive non-top segments?
// should we introduce the cocept of non-alive segments?
// At the moment, we only handle the control equations
well_eq_topsegment = alive_selector.select(well_eq_topsegment, rate_summer * subset(state.segqs, rate_top_phase_elems));
/* residual_.well_eq = superset(bhp_residual, bhp_top_elems, nseg_total) +
superset(rate_residual, rate_top_elems, nseg_total) +
superset(others_residual, others_elems, nseg_total); */
residual_.well_eq = superset(well_eq_topsegment, xw.topSegmentLoc(), nseg_total) +
others_residual;
}
template <class Grid> template <class Grid>
void void
BlackoilMultiSegmentModel<Grid>::updateWellState(const V& dwells, BlackoilMultiSegmentModel<Grid>::updateWellState(const V& dwells,
@ -926,7 +762,8 @@ namespace Opm {
updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state); updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
msWells().addWellFluxEq(cq_s, wellSolutionState, np, residual_); msWells().addWellFluxEq(cq_s, wellSolutionState, np, residual_);
addWellControlEq(wellSolutionState, well_state, aliveWells); // addWellControlEq(wellSolutionState, well_state, aliveWells);
msWells().addWellControlEq(wellSolutionState, well_state, aliveWells, np, active_, residual_);
converged = Base::getWellConvergence(it); converged = Base::getWellConvergence(it);
if (converged) { if (converged) {

View File

@ -168,6 +168,14 @@ namespace Opm {
const int np, const int np,
LinearisedBlackoilResidual& residual); LinearisedBlackoilResidual& residual);
template <class SolutionState, class WellState>
void
addWellControlEq(const SolutionState& state,
const WellState& xw,
const Vector& aliveWells,
const int np,
const std::vector<bool>& active,
LinearisedBlackoilResidual& residual);
protected: protected:
// TODO: probably a wells_active_ will be required here. // TODO: probably a wells_active_ will be required here.

View File

@ -570,5 +570,173 @@ namespace Opm
residual.well_flux_eq = segqs; residual.well_flux_eq = segqs;
} }
template <class SolutionState, class WellState>
void
MultisegmentWells::
addWellControlEq(const SolutionState& state,
const WellState& xw,
const Vector& aliveWells,
const int np,
const std::vector<bool>& active,
LinearisedBlackoilResidual& residual)
{
// the name of the function is a a little misleading.
// Basically it is the function for the pressure equation.
// And also, it work as the control equation when it is the segment
if( wells().empty() ) return;
const int nw = wells().size();
const int nseg_total = nseg_total_;
ADB aqua = ADB::constant(Vector::Zero(nseg_total));
ADB liquid = ADB::constant(Vector::Zero(nseg_total));
ADB vapour = ADB::constant(Vector::Zero(nseg_total));
if (active[Water]) {
aqua += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Aqua * nseg_total));
}
if (active[Oil]) {
liquid += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Liquid * nseg_total));
}
if (active[Gas]) {
vapour += subset(state.segqs, Span(nseg_total, 1, BlackoilPhases::Vapour * nseg_total));
}
// THP control is not implemented for the moment.
// Hydrostatic correction variables
Vector rho_v = Vector::Zero(nw);
Vector vfp_ref_depth_v = Vector::Zero(nw);
// Target vars
Vector bhp_targets = Vector::Zero(nw);
Vector rate_targets = Vector::Zero(nw);
Eigen::SparseMatrix<double> rate_distr(nw, np*nw);
// Selection variables
// well selectors
std::vector<int> bhp_well_elems;
std::vector<int> rate_well_elems;
// segment selectors
std::vector<int> bhp_top_elems;
std::vector<int> rate_top_elems;
std::vector<int> rate_top_phase_elems;
std::vector<int> others_elems;
//Run through all wells to calculate BHP/RATE targets
//and gather info about current control
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
const struct WellControls* wc = wells()[w]->wellControls();
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = xw.currentControls()[w];
const int nseg = wells()[w]->numberOfSegments();
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
bhp_well_elems.push_back(w);
bhp_top_elems.push_back(start_segment);
bhp_targets(w) = well_controls_iget_target(wc, current);
rate_targets(w) = -1e100;
for (int p = 0; p < np; ++p) {
rate_top_phase_elems.push_back(np * start_segment + p);
}
}
break;
case THP:
{
OPM_THROW(std::runtime_error, "THP control is not implemented for multi-sgement wells yet!!");
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
rate_well_elems.push_back(w);
rate_top_elems.push_back(start_segment);
for (int p = 0; p < np; ++p) {
rate_top_phase_elems.push_back(np * start_segment + p);
}
// RESERVOIR and SURFACE rates look the same, from a
// high-level point of view, in the system of
// simultaneous linear equations.
const double* const distr =
well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
rate_distr.insert(w, p*nw + w) = distr[p];
}
bhp_targets(w) = -1.0e100;
rate_targets(w) = well_controls_iget_target(wc, current);
}
break;
}
for (int i = 1; i < nseg; ++i) {
others_elems.push_back(i + start_segment);
}
start_segment += nseg;
}
// for each segment: 1, if the segment is the top segment, then control equation
// 2, if the segment is not the top segment, then the pressure equation
const ADB bhp_residual = subset(state.segp, bhp_top_elems) - subset(bhp_targets, bhp_well_elems);
const ADB rate_residual = subset(rate_distr * subset(state.segqs, rate_top_phase_elems) - rate_targets, rate_well_elems);
ADB others_residual = ADB::constant(Vector::Zero(nseg_total));
if ( wellOps().has_multisegment_wells ) {
// Special handling for when we are called from solveWellEq().
// TODO: restructure to eliminate need for special treatmemt.
ADB wspd = (state.segp.numBlocks() == 2)
? wellhelpers::onlyWellDerivs(wellSegmentPressureDelta())
: wellSegmentPressureDelta();
others_residual = wellOps().eliminate_topseg * (state.segp - wellOps().s2s_outlet * state.segp + wspd);
} else {
others_residual = wellOps().eliminate_topseg * (state.segp - wellOps().s2s_outlet * state.segp);
}
// all the control equations
// TODO: can be optimized better
ADB well_eq_topsegment = subset(superset(bhp_residual, bhp_top_elems, nseg_total) +
superset(rate_residual, rate_top_elems, nseg_total), top_well_segments_);
// For wells that are dead (not flowing), and therefore not communicating
// with the reservoir, we set the equation to be equal to the well's total
// flow. This will be a solution only if the target rate is also zero.
Eigen::SparseMatrix<double> rate_summer(nw, np*nw);
for (int w = 0; w < nw; ++w) {
for (int phase = 0; phase < np; ++phase) {
rate_summer.insert(w, phase*nw + w) = 1.0;
}
}
Selector<double> alive_selector(aliveWells, Selector<double>::NotEqualZero);
// TODO: Here only handles the wells, or the top segments
// should we also handle some non-alive non-top segments?
// should we introduce the cocept of non-alive segments?
// At the moment, we only handle the control equations
well_eq_topsegment = alive_selector.select(well_eq_topsegment, rate_summer * subset(state.segqs, rate_top_phase_elems));
/* residual_.well_eq = superset(bhp_residual, bhp_top_elems, nseg_total) +
superset(rate_residual, rate_top_elems, nseg_total) +
superset(others_residual, others_elems, nseg_total); */
residual.well_eq = superset(well_eq_topsegment, top_well_segments_, nseg_total) +
others_residual;
}
} }
#endif // OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED #endif // OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED