ECL simulator: add a well model based on the Peaceman approach

not yet implemented: group controls, changing well control modes after
a time step. (The latter should be relatively straight-forward.)
This commit is contained in:
Andreas Lauser 2014-05-07 15:07:39 +02:00
parent 9e9a8639ec
commit 8b6a68f8fd
3 changed files with 1591 additions and 33 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,473 @@
/*
Copyright (C) 2014 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* \file
*
* \copydoc Ewoms::EclWellManager
*/
#ifndef EWOMS_ECL_WELL_MANAGER_HH
#define EWOMS_ECL_WELL_MANAGER_HH
#include <ewoms/wells/eclpeacemanwell.hh>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/CompletionSet.hpp>
#include <map>
#include <string>
#include <vector>
namespace Ewoms {
/*!
* \brief A class which handles well controls as specified by an
* Eclipse deck
*/
template <class TypeTag>
class EclWellManager
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef Ewoms::EclPeacemanWell<TypeTag> Well;
public:
EclWellManager(const Simulator &simulator)
: simulator_(simulator)
{ }
/*!
* \brief This sets up the basic properties of all wells.
*
* I.e., well positions, names etc...
*/
void init(Opm::EclipseStateConstPtr eclState)
{
const auto &deckSchedule = eclState->getSchedule();
const Grid &grid = simulator_.gridManager().grid();
const GridView gridView = simulator_.gridManager().gridView();
// create the wells
for (size_t deckWellIdx = 0; deckWellIdx < deckSchedule->numWells(); ++deckWellIdx) {
Opm::WellConstPtr deckWell = deckSchedule->getWells()[deckWellIdx];
const std::string &wellName = deckWell->name();
std::shared_ptr<Well> well(new Well(simulator_));
wellNameToIndex_[wellName] = wells_.size();
wells_.push_back(well);
// specify the DOFs directly affected by the
// well. Probably this could be done quite a bit more
// efficiently, but for now it should be Fast Enough (TM).
well->beginSpec();
well->setName(wellName);
ElementContext elemCtx(simulator_);
auto elemIt = gridView.template begin</*codim=*/0>();
const auto elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
elemCtx.updateStencil(elemIt);
for (int dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx) {
int globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
std::array<int,3> ijk;
// if the compiler complains here, you're not
// using Dune::CpGrid. Other grids are not
// supported by the EclWellsManager, sorry.
grid.getIJK(globalDofIdx, ijk);
// TODO: time dependent wells (i.e. move this code into the
// beginEpisode() method!?)
Opm::CompletionSetConstPtr completionSet =
deckWell->getCompletions(/*timeStepIdx=*/0);
for (size_t complIdx = 0; complIdx < completionSet->size(); complIdx ++) {
Opm::CompletionConstPtr completion =
completionSet->get(complIdx);
if (ijk[0] == completion->getI()
&& ijk[1] == completion->getJ()
&& ijk[2] == completion->getK())
{
well->addDof(elemCtx, dofIdx);
well->setRadius(elemCtx, dofIdx, 0.5*completion->getDiameter());
}
}
}
}
well->endSpec();
}
}
/*!
* \brief This should be called the problem before each simulation
* episode to adapt the well controls.
*/
void beginEpisode(Opm::EclipseStateConstPtr eclState)
{
int episodeIdx = simulator_.episodeIndex();
const auto &deckSchedule = eclState->getSchedule();
// set the injection data for the respective wells.
for (size_t deckWellIdx = 0; deckWellIdx < deckSchedule->numWells(); ++deckWellIdx) {
Opm::WellConstPtr deckWell = deckSchedule->getWells()[deckWellIdx];
if (!hasWell(deckWell->name()))
continue;
auto well = this->well(deckWell->name());
Opm::WellCommon::StatusEnum deckWellStatus = deckWell->getStatus(episodeIdx);
switch (deckWellStatus) {
case Opm::WellCommon::AUTO:
// TODO: for now, auto means open...
case Opm::WellCommon::OPEN:
well->setOpen(true);
break;
case Opm::WellCommon::STOP:
// TODO: cross flow
case Opm::WellCommon::SHUT:
well->setOpen(false);
break;
};
// make sure that the well is either an injector or a
// producer for the current episode. (it is not allowed to
// be neither or to be both...)
assert( (deckWell->isInjector(episodeIdx)?1:0) +
(deckWell->isProducer(episodeIdx)?1:0) == 1);
if (deckWell->isInjector(episodeIdx)) {
well->setWellType(Well::Injector);
const Opm::WellInjectionProperties &injectProperties =
deckWell->getInjectionProperties(episodeIdx);
switch (injectProperties.injectorType) {
case Opm::WellInjector::WATER:
well->setInjectedPhaseIndex(FluidSystem::waterPhaseIdx);
break;
case Opm::WellInjector::GAS:
well->setInjectedPhaseIndex(FluidSystem::gasPhaseIdx);
break;
case Opm::WellInjector::OIL:
well->setInjectedPhaseIndex(FluidSystem::oilPhaseIdx);
break;
case Opm::WellInjector::MULTI:
OPM_THROW(std::runtime_error,
"Not implemented: Multi-phase injector wells");
}
switch (injectProperties.controlMode) {
case Opm::WellInjector::RATE:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
break;
case Opm::WellInjector::RESV:
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
break;
case Opm::WellInjector::BHP:
well->setControlMode(Well::ControlMode::BottomHolePressure);
break;
case Opm::WellInjector::THP:
well->setControlMode(Well::ControlMode::TopHolePressure);
break;
case Opm::WellInjector::GRUP:
OPM_THROW(std::runtime_error,
"Not implemented: Well groups");
}
switch (injectProperties.injectorType) {
case Opm::WellInjector::WATER:
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
break;
case Opm::WellInjector::OIL:
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
break;
case Opm::WellInjector::GAS:
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
break;
case Opm::WellInjector::MULTI:
OPM_THROW(std::runtime_error,
"Not implemented: Multi-phase injection wells");
}
well->setMaximumSurfaceRate(injectProperties.surfaceInjectionRate);
well->setMaximumReservoirRate(injectProperties.reservoirInjectionRate);
well->setBottomHolePressure(injectProperties.BHPLimit);
well->setTopHolePressure(injectProperties.THPLimit);
}
if (deckWell->isProducer(episodeIdx)) {
well->setWellType(Well::Producer);
const Opm::WellProductionProperties &producerProperties =
deckWell->getProductionProperties(episodeIdx);
switch (producerProperties.controlMode) {
case Opm::WellProducer::ORAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
well->setMaximumSurfaceRate(producerProperties.OilRate);
break;
case Opm::WellProducer::GRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
well->setMaximumSurfaceRate(producerProperties.GasRate);
break;
case Opm::WellProducer::WRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
well->setMaximumSurfaceRate(producerProperties.WaterRate);
break;
case Opm::WellProducer::LRAT:
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/1.0);
well->setMaximumSurfaceRate(producerProperties.LiquidRate);
break;
case Opm::WellProducer::CRAT:
OPM_THROW(std::runtime_error,
"Not implemented: Linearly combined rates");
case Opm::WellProducer::RESV:
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/1.0, /*water=*/1.0);
well->setMaximumSurfaceRate(producerProperties.ResVRate);
break;
case Opm::WellProducer::BHP:
well->setControlMode(Well::ControlMode::BottomHolePressure);
break;
case Opm::WellProducer::THP:
well->setControlMode(Well::ControlMode::TopHolePressure);
break;
case Opm::WellProducer::GRUP:
OPM_THROW(std::runtime_error,
"Not implemented: Well groups");
}
well->setBottomHolePressure(producerProperties.BHPLimit);
well->setTopHolePressure(producerProperties.THPLimit);
}
}
}
/*!
* \brief Return the number of wells considered by the EclWellManager.
*/
int numWells() const
{ return wells_.size(); }
/*!
* \brief Return if a given well name is known to the wells manager
*/
bool hasWell(const std::string &wellName) const
{ return wellNameToIndex_.count(wellName) > 0; }
/*!
* \brief Given a well name, return the corresponding index.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
int wellIndex(const std::string &wellName) const
{
const auto &it = wellNameToIndex_.find(wellName);
if (it == wellNameToIndex_.end())
OPM_THROW(std::runtime_error,
"No well called '" << wellName << "'found");
return it->second;
}
/*!
* \brief Given a well name, return the corresponding well.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
std::shared_ptr<const Well> well(const std::string &wellName) const
{ return wells_[wellIndex(wellName)]; }
/*!
* \brief Given a well name, return the corresponding well.
*
* A std::runtime_error will be thrown if the well name is unknown.
*/
std::shared_ptr<Well> well(const std::string &wellName)
{ return wells_[wellIndex(wellName)]; }
/*!
* \brief Given a well index, return the corresponding well.
*/
std::shared_ptr<const Well> well(size_t wellIdx) const
{ return wells_[wellIdx]; }
/*!
* \brief Given a well index, return the corresponding well.
*/
std::shared_ptr<Well> well(size_t wellIdx)
{ return wells_[wellIdx]; }
/*!
* \brief Informs the well manager that a time step has just begun.
*/
void beginTimeStep()
{
// iterate over all wells and notify them individually
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->beginTimeStep();
// TODO: adapt well controls
}
/*!
* \brief Informs the well that an iteration has just begun.
*
* In this method, the well calculates the bottom and top hole
* pressures, the actual unconstraint production and injection
* rates, etc.
*/
void beginIteration()
{
// call the preprocessing routines
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->beginIterationPreProcess();
// call the accumulation routines
ElementContext elemCtx(simulator_);
auto elemIt = simulator_.gridManager().gridView().template begin</*codim=*/0>();
const auto &elemEndIt = simulator_.gridManager().gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
elemCtx.updateStencil(*elemIt);
elemCtx.updateIntensiveQuantities(/*timeIdx=*/0);
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->beginIterationAccumulate(elemCtx, /*timeIdx=*/0);
}
// call the postprocessing routines
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->beginIterationPostProcess();
}
/*!
* \brief Informs the well manager that an iteration has just been finished.
*/
void endIteration()
{
// iterate over all wells and notify them individually
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->endIteration();
}
/*!
* \brief Informs the well manager that a time step has just been finished.
*/
void endTimeStep()
{
// iterate over all wells and notify them individually
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->endTimeStep();
}
/*!
* \brief Informs the well manager that a simulation episode has just been finished.
*/
void endEpisode()
{ }
/*!
* \brief Computes the source term due to wells for a degree of
* freedom.
*/
template <class Context>
void computeTotalRatesForDof(RateVector &q,
const Context &context,
int dofIdx,
int timeIdx) const
{
q = 0.0;
RateVector wellRate;
// iterate over all wells and add up their individual rates
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx) {
wellRate = 0.0;
wells_[wellIdx]->computeTotalRatesForDof(wellRate, context, dofIdx, timeIdx);
q += wellRate;
}
}
/*!
* \brief This method writes the complete state of all wells
* to the hard disk.
*/
template <class Restarter>
void serialize(Restarter &res)
{
// iterate over all wells and serialize them individually
for (int wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
wells_[wellIdx]->serialize(res);
}
/*!
* \brief This method restores the complete state of the all wells
* from disk.
*
* It is the inverse of the serialize() method.
*/
template <class Restarter>
void deserialize(Restarter &res)
{
// iterate over all wells and deserialize them individually
for (int wellIdx = 0; wellIdx < wells_.size(); ++wellIdx) {
std::shared_ptr<Well> well(new Well(simulator_));
well->deserialize(res);
wells_.push_back(well);
wellNameToIndex_[well->name()] = wells_.size() - 1;
}
}
protected:
const Simulator &simulator_;
std::vector<std::shared_ptr<Well> > wells_;
std::map<std::string, int> wellNameToIndex_;
};
} // namespace Ewoms
#endif

View File

@ -28,6 +28,7 @@
#include <ewoms/models/blackoil/blackoilmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <ewoms/wells/eclwellmanager.hh>
#include <opm/material/fluidmatrixinteractions/PiecewiseLinearTwoPhaseMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EclDefaultMaterial.hpp>
@ -62,7 +63,6 @@ class EclProblem;
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclGridManager));
// The temperature inside the reservoir
@ -202,7 +202,8 @@ public:
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
"The temperature [K] in the reservoir");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the report steps");
"Write all solutions to disk instead of only the ones for the "
"report steps");
}
/*!
@ -210,12 +211,15 @@ public:
*/
EclProblem(Simulator &simulator)
: ParentType(simulator)
, wellManager_(simulator)
{}
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
// invert the direction of the gravity vector for ECL problems
@ -226,8 +230,9 @@ public:
readMaterialParameters_();
readInitialCondition_();
wellManager_.init(simulator.gridManager().eclipseState());
// Start the first episode. For this, ask the Eclipse schedule.
auto& simulator = this->simulator();
Opm::TimeMapConstPtr timeMap = simulator.gridManager().schedule()->getTimeMap();
tm curTime = boost::posix_time::to_tm(timeMap->getStartTime(/*timeStepIdx=*/0));
@ -252,32 +257,36 @@ public:
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode()
{ }
{ wellManager_.beginEpisode(this->simulator().gridManager().eclipseState()); }
/*!
* \brief Called by the simulator before each time integration.
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
void beginTimeStep()
{ wellManager_.beginTimeStep(); }
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{ }
{ wellManager_.beginIteration(); }
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{ wellManager_.endIteration(); }
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
wellManager_.endTimeStep();
#ifndef NDEBUG
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
#endif // NDEBUG
}
/*!
* \brief Called by the simulator after the end of an episode.
@ -451,11 +460,18 @@ public:
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, int spaceIdx,
void source(RateVector &rate,
const Context &context,
int spaceIdx,
int timeIdx) const
{
#warning "TODO: wells"
rate = Scalar(0.0);
rate = 0;
wellManager_.computeTotalRatesForDof(rate, context, spaceIdx, timeIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
rate /= this->model().dofTotalVolume(globalDofIdx);
}
//! \}
@ -606,7 +622,8 @@ private:
// set the index of the table to be used
if (eclipseState->hasIntGridProperty("SATNUM")) {
const std::vector<int> &satnumData = eclipseState->getIntGridProperty("SATNUM")->getData();
const std::vector<int> &satnumData =
eclipseState->getIntGridProperty("SATNUM")->getData();
materialParamTableIdx_.resize(numDof);
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
@ -673,14 +690,16 @@ private:
"keyword");
if (!deck->hasKeyword("DISGAS"))
OPM_THROW(std::runtime_error,
"The deck must exhibit gas dissolved in the oil phase (DISGAS keyword is missing)");
"The deck must exhibit gas dissolved in the oil phase"
" (DISGAS keyword is missing)");
if (!deck->hasKeyword("RS"))
OPM_THROW(std::runtime_error,
"The Eclipse input file requires the presence of the RS keyword");
if (deck->hasKeyword("VAPOIL"))
OPM_THROW(std::runtime_error,
"The deck must _not_ exhibit vaporized oil (The VAPOIL keyword is unsupported)");
"The deck must _not_ exhibit vaporized oil"
" (The VAPOIL keyword is unsupported)");
if (deck->hasKeyword("RV"))
OPM_THROW(std::runtime_error,
"The Eclipse input file requires the RV keyword to be non-present");
@ -758,10 +777,11 @@ private:
std::array<int, 3> ijk;
grid.getIJK(dofIdx, ijk);
std::cerr << "Warning: The specified amount gas (R_s = " << RsReal << ") is more"
<< " than the maximium\n"
<< " amount which can be dissolved in oil (R_s,max=" << RsSat << ")"
<< " for cell (" << ijk[0] << ", " << ijk[1] << ", " << ijk[2] << ")."
<< " Ignoring.\n";
<< " than the maximium\n"
<< " amount which can be dissolved in oil"
<< " (R_s,max=" << RsSat << ")"
<< " for cell (" << ijk[0] << ", " << ijk[1] << ", " << ijk[2] << ")."
<< " Ignoring.\n";
RsReal = RsSat;
}
@ -894,8 +914,8 @@ private:
// the intrinsic permeabilities for interior faces. since grids may be
// non-conforming, and there does not seem to be a mapper for interfaces in DUNE,
// these transmissibilities are accessed via the (elementIndex1,
// elementIndex2) pairs of the interfaces where
// these transmissibilities are accessed via the (elementIndex1, elementIndex2) pairs
// of the interfaces where
//
// elementIndex1 = min(interiorElementIndex, exteriorElementIndex)
//
@ -916,6 +936,8 @@ private:
std::vector<BlackOilFluidState> initialFluidStates_;
Scalar temperature_;
EclWellManager<TypeTag> wellManager_;
};
} // namespace Ewoms