mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge remote-tracking branch 'upstream/master'
This commit is contained in:
commit
914844055b
@ -25,6 +25,7 @@
|
||||
#include <opm/core/fluid/RockBasic.hpp>
|
||||
#include <opm/core/fluid/PvtPropertiesBasic.hpp>
|
||||
#include <opm/core/fluid/SaturationPropsBasic.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
@ -42,12 +42,15 @@ namespace Opm
|
||||
// to pressure in first perforation cell.
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const WellControls* ctrl = wells->ctrls[w];
|
||||
if (ctrl->type[ctrl->current] == BHP) {
|
||||
bhp_[w] = ctrl->target[ctrl->current];
|
||||
} else {
|
||||
|
||||
if ((ctrl->current < 0) || // SHUT
|
||||
(ctrl->type[ctrl->current] != BHP)) {
|
||||
const int cell = wells->well_cells[wells->well_connpos[w]];
|
||||
bhp_[w] = state.pressure()[cell];
|
||||
}
|
||||
else {
|
||||
bhp_[w] = ctrl->target[ctrl->current];
|
||||
}
|
||||
}
|
||||
perfrates_.resize(wells->well_connpos[nw], 0.0);
|
||||
perfpress_.resize(wells->well_connpos[nw], -1e100);
|
||||
|
@ -25,12 +25,30 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
// ---------------- Methods for class DGBasisInterface ----------------
|
||||
|
||||
|
||||
/// Virtual destructor.
|
||||
DGBasisInterface::~DGBasisInterface()
|
||||
{
|
||||
}
|
||||
|
||||
/// Evaluate function f = sum_i c_i b_i at the point x.
|
||||
/// Note that this function is not virtual, but implemented in
|
||||
/// terms of the virtual functions of the class.
|
||||
/// \param[in] cell Cell index
|
||||
/// \param[in] coefficients Coefficients {c_i} for a single cell.
|
||||
/// \param[in] x Point at which to compute f(x).
|
||||
double DGBasisInterface::evalFunc(const int cell,
|
||||
const double* coefficients,
|
||||
const double* x) const
|
||||
{
|
||||
bvals_.resize(numBasisFunc());
|
||||
eval(cell, x, &bvals_[0]);
|
||||
return std::inner_product(bvals_.begin(), bvals_.end(), coefficients, 0.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// ---------------- Methods for class DGBasisBoundedTotalDegree ----------------
|
||||
|
||||
@ -154,6 +172,12 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute the average of the function f = sum_i c_i b_i.
|
||||
/// \param[in] coefficients Coefficients {c_i} for a single cell.
|
||||
double DGBasisBoundedTotalDegree::functionAverage(const double* coefficients) const
|
||||
{
|
||||
return coefficients[0];
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -300,11 +324,18 @@ namespace Opm
|
||||
double* coefficients) const
|
||||
{
|
||||
const int nb = numBasisFunc();
|
||||
const double average = std::accumulate(coefficients, coefficients + nb, 0.0)/double(nb);
|
||||
const double aver = functionAverage(coefficients);
|
||||
for (int ix = 0; ix < nb; ++ix) {
|
||||
coefficients[ix] = factor*(coefficients[ix] - average) + average;
|
||||
coefficients[ix] = factor*(coefficients[ix] - aver) + aver;
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute the average of the function f = sum_i c_i b_i.
|
||||
/// \param[in] coefficients Coefficients {c_i} for a single cell.
|
||||
double DGBasisMultilin::functionAverage(const double* coefficients) const
|
||||
{
|
||||
const int nb = numBasisFunc();
|
||||
return std::accumulate(coefficients, coefficients + nb, 0.0)/double(nb);
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -20,6 +20,8 @@
|
||||
#ifndef OPM_DGBASIS_HEADER_INCLUDED
|
||||
#define OPM_DGBASIS_HEADER_INCLUDED
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
@ -75,6 +77,23 @@ namespace Opm
|
||||
/// \param[out] coefficients Coefficients {c_i} for a single cell.
|
||||
virtual void multiplyGradient(const double factor,
|
||||
double* coefficients) const = 0;
|
||||
|
||||
/// Evaluate function f = sum_i c_i b_i at the point x.
|
||||
/// Note that this function is not virtual, but implemented in
|
||||
/// terms of the virtual functions of the class.
|
||||
/// \param[in] cell Cell index
|
||||
/// \param[in] coefficients Coefficients {c_i} for a single cell.
|
||||
/// \param[in] x Point at which to compute f(x).
|
||||
double evalFunc(const int cell,
|
||||
const double* coefficients,
|
||||
const double* x) const;
|
||||
|
||||
/// Compute the average of the function f = sum_i c_i b_i.
|
||||
/// \param[in] coefficients Coefficients {c_i} for a single cell.
|
||||
virtual double functionAverage(const double* coefficients) const = 0;
|
||||
|
||||
private:
|
||||
mutable std::vector<double> bvals_; // For evalFunc().
|
||||
};
|
||||
|
||||
|
||||
@ -144,6 +163,10 @@ namespace Opm
|
||||
virtual void multiplyGradient(const double factor,
|
||||
double* coefficients) const;
|
||||
|
||||
/// Compute the average of the function f = sum_i c_i b_i.
|
||||
/// \param[in] coefficients Coefficients {c_i} for a single cell.
|
||||
virtual double functionAverage(const double* coefficients) const;
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const int degree_;
|
||||
@ -217,6 +240,10 @@ namespace Opm
|
||||
virtual void multiplyGradient(const double factor,
|
||||
double* coefficients) const;
|
||||
|
||||
/// Compute the average of the function f = sum_i c_i b_i.
|
||||
/// \param[in] coefficients Coefficients {c_i} for a single cell.
|
||||
virtual double functionAverage(const double* coefficients) const;
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const int degree_;
|
||||
|
@ -411,10 +411,10 @@ namespace Opm
|
||||
{
|
||||
switch (limiter_method_) {
|
||||
case MinUpwindFace:
|
||||
applyMinUpwindFaceLimiter(cell, tof);
|
||||
applyMinUpwindLimiter(cell, true, tof);
|
||||
break;
|
||||
case MinUpwindAverage:
|
||||
applyMinUpwindAverageLimiter(cell, tof);
|
||||
applyMinUpwindLimiter(cell, false, tof);
|
||||
break;
|
||||
default:
|
||||
THROW("Limiter type not implemented: " << limiter_method_);
|
||||
@ -424,48 +424,32 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::applyMinUpwindFaceLimiter(const int cell, double* tof)
|
||||
void TransportModelTracerTofDiscGal::applyMinUpwindLimiter(const int cell, const bool face_min, double* tof)
|
||||
{
|
||||
if (basis_func_->degree() != 1) {
|
||||
THROW("This limiter only makes sense for our DG1 implementation.");
|
||||
}
|
||||
|
||||
// Limiter principles:
|
||||
// 1. Let M be the minimum TOF value on the upstream faces,
|
||||
// evaluated in the upstream cells. Then the value at all
|
||||
// points in this cell shall be at least M.
|
||||
// Upstream faces whose flux does not exceed the relative
|
||||
// flux threshold are not considered for this minimum.
|
||||
// 1. Let M be either:
|
||||
// - the minimum TOF value of all upstream faces,
|
||||
// evaluated in the upstream cells
|
||||
// (chosen if face_min is true).
|
||||
// or:
|
||||
// - the minimum average TOF value of all upstream cells
|
||||
// (chosen if face_min is false).
|
||||
// Then the value at all points in this cell shall be at
|
||||
// least M. Upstream faces whose flux does not exceed the
|
||||
// relative flux threshold are not considered for this
|
||||
// minimum.
|
||||
// 2. The TOF shall not be below zero in any point.
|
||||
|
||||
// Find total upstream/downstream fluxes.
|
||||
double upstream_flux = 0.0;
|
||||
double downstream_flux = 0.0;
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
}
|
||||
if (flux < 0.0) {
|
||||
upstream_flux += flux;
|
||||
} else {
|
||||
downstream_flux += flux;
|
||||
}
|
||||
}
|
||||
// In the presence of sources, significant fluxes may be missing from the computed fluxes,
|
||||
// setting the total flux to the (positive) maximum avoids this: since source is either
|
||||
// inflow or outflow, not both, either upstream_flux or downstream_flux must be correct.
|
||||
const double total_flux = std::max(-upstream_flux, downstream_flux);
|
||||
|
||||
// Find minimum tof on upstream faces and for this cell.
|
||||
const int dim = grid_.dimensions;
|
||||
// Find minimum tof on upstream faces/cells and for this cell.
|
||||
const int num_basis = basis_func_->numBasisFunc();
|
||||
double min_upstream_tof = 1e100;
|
||||
double min_here_tof = 1e100;
|
||||
int num_upstream_faces = 0;
|
||||
const double total_flux = totalFlux(cell);
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
@ -478,30 +462,22 @@ namespace Opm
|
||||
upstream_cell = grid_.face_cells[2*face];
|
||||
}
|
||||
const bool upstream = (flux < -total_flux*limiter_relative_flux_threshold_);
|
||||
const bool interior = (upstream_cell >= 0);
|
||||
|
||||
// Find minimum tof in this cell and upstream.
|
||||
// The meaning of minimum upstream tof depends on method.
|
||||
min_here_tof = std::min(min_here_tof, minCornerVal(cell, face));
|
||||
if (upstream) {
|
||||
++num_upstream_faces;
|
||||
}
|
||||
bool interior = (upstream_cell >= 0);
|
||||
|
||||
// Evaluate the solution in all corners.
|
||||
for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) {
|
||||
const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode];
|
||||
basis_func_->eval(cell, nc, &basis_[0]);
|
||||
const double tof_here = std::inner_product(basis_.begin(), basis_.end(),
|
||||
tof_coeff_ + num_basis*cell, 0.0);
|
||||
min_here_tof = std::min(min_here_tof, tof_here);
|
||||
if (upstream) {
|
||||
if (interior) {
|
||||
basis_func_->eval(upstream_cell, nc, &basis_nb_[0]);
|
||||
const double tof_upstream
|
||||
= std::inner_product(basis_nb_.begin(), basis_nb_.end(),
|
||||
tof_coeff_ + num_basis*upstream_cell, 0.0);
|
||||
min_upstream_tof = std::min(min_upstream_tof, tof_upstream);
|
||||
double upstream_tof = 0.0;
|
||||
if (interior) {
|
||||
if (face_min) {
|
||||
upstream_tof = minCornerVal(upstream_cell, face);
|
||||
} else {
|
||||
// Allow tof down to 0 on inflow boundaries.
|
||||
min_upstream_tof = std::min(min_upstream_tof, 0.0);
|
||||
upstream_tof = basis_func_->functionAverage(tof_coeff_ + num_basis*upstream_cell);
|
||||
}
|
||||
}
|
||||
min_upstream_tof = std::min(min_upstream_tof, upstream_tof);
|
||||
}
|
||||
}
|
||||
|
||||
@ -513,7 +489,7 @@ namespace Opm
|
||||
if (min_upstream_tof < 0.0) {
|
||||
min_upstream_tof = 0.0;
|
||||
}
|
||||
const double tof_c = tof_coeff_[num_basis*cell];
|
||||
const double tof_c = basis_func_->functionAverage(tof_coeff_ + num_basis*cell);
|
||||
double limiter = (tof_c - min_upstream_tof)/(tof_c - min_here_tof);
|
||||
if (tof_c < min_upstream_tof) {
|
||||
// Handle by setting a flat solution.
|
||||
@ -535,110 +511,6 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::applyMinUpwindAverageLimiter(const int cell, double* tof)
|
||||
{
|
||||
if (basis_func_->degree() != 1) {
|
||||
THROW("This limiter only makes sense for our DG1 implementation.");
|
||||
}
|
||||
|
||||
// Limiter principles:
|
||||
// 1. Let M be the average TOF value of the upstream cells.
|
||||
/// Then the value at all points in this cell shall be at least M.
|
||||
// Upstream faces whose flux does not exceed the relative
|
||||
// flux threshold are not considered for this minimum.
|
||||
// 2. The TOF shall not be below zero in any point.
|
||||
|
||||
// Find total upstream/downstream fluxes.
|
||||
double upstream_flux = 0.0;
|
||||
double downstream_flux = 0.0;
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
}
|
||||
if (flux < 0.0) {
|
||||
upstream_flux += flux;
|
||||
} else {
|
||||
downstream_flux += flux;
|
||||
}
|
||||
}
|
||||
// In the presence of sources, significant fluxes may be missing from the computed fluxes,
|
||||
// setting the total flux to the (positive) maximum avoids this: since source is either
|
||||
// inflow or outflow, not both, either upstream_flux or downstream_flux must be correct.
|
||||
const double total_flux = std::max(-upstream_flux, downstream_flux);
|
||||
|
||||
// Find minimum tof on upstream faces and for this cell.
|
||||
const int dim = grid_.dimensions;
|
||||
const int num_basis = basis_func_->numBasisFunc();
|
||||
double min_upstream_tof = 1e100;
|
||||
double min_here_tof = 1e100;
|
||||
int num_upstream_faces = 0;
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
int upstream_cell = -1;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
upstream_cell = grid_.face_cells[2*face+1];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
upstream_cell = grid_.face_cells[2*face];
|
||||
}
|
||||
const bool upstream = (flux < -total_flux*limiter_relative_flux_threshold_);
|
||||
if (upstream) {
|
||||
++num_upstream_faces;
|
||||
}
|
||||
bool interior = (upstream_cell >= 0);
|
||||
|
||||
// Evaluate the solution in all corners.
|
||||
for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) {
|
||||
const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode];
|
||||
basis_func_->eval(cell, nc, &basis_[0]);
|
||||
const double tof_here = std::inner_product(basis_.begin(), basis_.end(),
|
||||
tof_coeff_ + num_basis*cell, 0.0);
|
||||
min_here_tof = std::min(min_here_tof, tof_here);
|
||||
if (upstream) {
|
||||
if (interior) {
|
||||
min_upstream_tof = std::min(min_upstream_tof, tof_coeff_[num_basis*upstream_cell]);
|
||||
} else {
|
||||
// Allow tof down to 0 on inflow boundaries.
|
||||
min_upstream_tof = std::min(min_upstream_tof, 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute slope multiplier (limiter).
|
||||
if (num_upstream_faces == 0) {
|
||||
min_upstream_tof = 0.0;
|
||||
min_here_tof = 0.0;
|
||||
}
|
||||
if (min_upstream_tof < 0.0) {
|
||||
min_upstream_tof = 0.0;
|
||||
}
|
||||
const double tof_c = tof_coeff_[num_basis*cell];
|
||||
double limiter = (tof_c - min_upstream_tof)/(tof_c - min_here_tof);
|
||||
if (tof_c < min_upstream_tof) {
|
||||
// Handle by setting a flat solution.
|
||||
std::cout << "Trouble in cell " << cell << std::endl;
|
||||
limiter = 0.0;
|
||||
basis_func_->addConstant(min_upstream_tof - tof_c, tof + num_basis*cell);
|
||||
}
|
||||
ASSERT(limiter >= 0.0);
|
||||
|
||||
// Actually do the limiting (if applicable).
|
||||
if (limiter < 1.0) {
|
||||
// std::cout << "Applying limiter in cell " << cell << ", limiter = " << limiter << std::endl;
|
||||
basis_func_->multiplyGradient(limiter, tof + num_basis*cell);
|
||||
} else {
|
||||
// std::cout << "Not applying limiter in cell " << cell << "!" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::applyLimiterAsPostProcess()
|
||||
@ -675,4 +547,51 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
double TransportModelTracerTofDiscGal::totalFlux(const int cell) const
|
||||
{
|
||||
// Find total upstream/downstream fluxes.
|
||||
double upstream_flux = 0.0;
|
||||
double downstream_flux = 0.0;
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
}
|
||||
if (flux < 0.0) {
|
||||
upstream_flux += flux;
|
||||
} else {
|
||||
downstream_flux += flux;
|
||||
}
|
||||
}
|
||||
// In the presence of sources, significant fluxes may be missing from the computed fluxes,
|
||||
// setting the total flux to the (positive) maximum avoids this: since source is either
|
||||
// inflow or outflow, not both, either upstream_flux or downstream_flux must be correct.
|
||||
return std::max(-upstream_flux, downstream_flux);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
double TransportModelTracerTofDiscGal::minCornerVal(const int cell, const int face) const
|
||||
{
|
||||
// Evaluate the solution in all corners.
|
||||
const int dim = grid_.dimensions;
|
||||
const int num_basis = basis_func_->numBasisFunc();
|
||||
double min_cornerval = 1e100;
|
||||
for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) {
|
||||
const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode];
|
||||
basis_func_->eval(cell, nc, &basis_[0]);
|
||||
const double tof_corner = std::inner_product(basis_.begin(), basis_.end(),
|
||||
tof_coeff_ + num_basis*cell, 0.0);
|
||||
min_cornerval = std::min(min_cornerval, tof_corner);
|
||||
}
|
||||
return min_cornerval;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -119,8 +119,8 @@ namespace Opm
|
||||
std::vector<double> orig_jac_; // single-cell jacobian (copy)
|
||||
// Below: storage for quantities needed by solveSingleCell().
|
||||
std::vector<double> coord_;
|
||||
std::vector<double> basis_;
|
||||
std::vector<double> basis_nb_;
|
||||
mutable std::vector<double> basis_;
|
||||
mutable std::vector<double> basis_nb_;
|
||||
std::vector<double> grad_basis_;
|
||||
std::vector<double> velocity_;
|
||||
|
||||
@ -130,10 +130,11 @@ namespace Opm
|
||||
// (will read data from tof_coeff_, it is ok to call
|
||||
// with tof_coeff as tof argument.
|
||||
void applyLimiter(const int cell, double* tof);
|
||||
void applyMinUpwindFaceLimiter(const int cell, double* tof);
|
||||
void applyMinUpwindAverageLimiter(const int cell, double* tof);
|
||||
void applyMinUpwindLimiter(const int cell, const bool face_min, double* tof);
|
||||
void applyLimiterAsPostProcess();
|
||||
void applyLimiterAsSimultaneousPostProcess();
|
||||
double totalFlux(const int cell) const;
|
||||
double minCornerVal(const int cell, const int face) const;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -20,8 +20,8 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#ifdef MATLAB_MEX_FILE
|
||||
#include "tarjan.h"
|
||||
@ -30,7 +30,13 @@ SOFTWARE.
|
||||
#endif
|
||||
|
||||
|
||||
static void
|
||||
clear_vector(size_t n, int *v)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < n; i++) { v[i] = 0; }
|
||||
}
|
||||
|
||||
static int min(int a, int b){ return a < b? a : b;}
|
||||
|
||||
@ -73,19 +79,21 @@ tarjan (int nv, const int *ia, const int *ja, int *vert, int *comp,
|
||||
int *stack = comp + nv;
|
||||
int *bottom = stack;
|
||||
int *cstack = vert + nv-1;
|
||||
|
||||
#if !defined(NDEBUG)
|
||||
int *cbottom = cstack;
|
||||
#endif
|
||||
|
||||
int t = 0;
|
||||
int pos = 0;
|
||||
|
||||
int *time = work;
|
||||
int *link = (int *) time + nv;
|
||||
int *status = (int *) link + nv; /* dual usage... */
|
||||
int *link = time + nv;
|
||||
int *status = link + nv; /* dual usage... */
|
||||
|
||||
(void) cbottom;
|
||||
|
||||
memset(work, 0, 3*nv * sizeof *work);
|
||||
memset(vert, 0, nv * sizeof *vert );
|
||||
memset(comp, 0, (nv+1) * sizeof *comp );
|
||||
clear_vector(3 * ((size_t) nv), work);
|
||||
clear_vector(1 * ((size_t) nv), vert);
|
||||
clear_vector(1 + ((size_t) nv), comp);
|
||||
|
||||
/* Init status all vertices */
|
||||
for (i=0; i<nv; ++i)
|
||||
@ -188,7 +196,7 @@ tarjan (int nv, const int *ia, const int *ja, int *vert, int *comp,
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(status[child] = DONE);
|
||||
assert(status[child] == DONE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,22 +1,21 @@
|
||||
/*
|
||||
Copyright 2011 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2011 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
This file is part of The Open Reservoir Simulator Project (OpenRS).
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenRS is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
OpenRS is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenRS. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/core/wells/WellCollection.hpp>
|
||||
|
||||
|
@ -1,22 +1,22 @@
|
||||
/*
|
||||
Copyright 2011 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2011 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
This file is part of The Open Reservoir Simulator Project (OpenRS).
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenRS is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
OpenRS is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenRS. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef OPM_WELLCOLLECTION_HPP
|
||||
|
160
tests/test_dgbasis.cpp
Normal file
160
tests/test_dgbasis.cpp
Normal file
@ -0,0 +1,160 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#if HAVE_DYNAMIC_BOOST_TEST
|
||||
#define BOOST_TEST_DYN_LINK
|
||||
#endif
|
||||
#define NVERBOSE // to suppress our messages when throwing
|
||||
|
||||
#define BOOST_TEST_MODULE DGBasisTest
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
#include <opm/core/transport/reorder/DGBasis.hpp>
|
||||
#include <opm/core/GridManager.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <cmath>
|
||||
|
||||
using namespace Opm;
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
|
||||
bool aequal(double a, double b)
|
||||
{
|
||||
const double eps = 1e-15;
|
||||
return std::fabs(a - b) < eps;
|
||||
}
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
namespace cart2d
|
||||
{
|
||||
|
||||
static void test()
|
||||
{
|
||||
// Set up 2d 1-cell cartesian case.
|
||||
GridManager g(1, 1);
|
||||
const UnstructuredGrid& grid = *g.c_grid();
|
||||
|
||||
// Test DGBasisBoundedTotalDegree, degree 0.
|
||||
{
|
||||
DGBasisBoundedTotalDegree b(grid, 0);
|
||||
BOOST_CHECK_EQUAL(b.numBasisFunc(), 1);
|
||||
std::vector<double> bx(b.numBasisFunc(), 0.0);
|
||||
b.eval(0, grid.cell_centroids, &bx[0]);
|
||||
BOOST_CHECK(aequal(bx[0], 1.0));
|
||||
double x[2] = { 0.123, 0.456 };
|
||||
b.eval(0, x, &bx[0]);
|
||||
BOOST_CHECK(aequal(bx[0], 1.0));
|
||||
std::vector<double> c(b.numBasisFunc(), 0.0);
|
||||
b.addConstant(0.789, &c[0]);
|
||||
BOOST_CHECK(aequal(c[0], 0.789));
|
||||
b.multiplyGradient(1.234, &c[0]);
|
||||
BOOST_CHECK(aequal(c[0], 0.789));
|
||||
}
|
||||
// Test DGBasisBoundedTotalDegree, degree 1.
|
||||
{
|
||||
DGBasisBoundedTotalDegree b(grid, 1);
|
||||
BOOST_CHECK_EQUAL(b.numBasisFunc(), 3);
|
||||
std::vector<double> bx(b.numBasisFunc(), 0.0);
|
||||
b.eval(0, grid.cell_centroids, &bx[0]);
|
||||
BOOST_CHECK(aequal(bx[0], 1.0));
|
||||
BOOST_CHECK(aequal(bx[1], 0.0));
|
||||
BOOST_CHECK(aequal(bx[2], 0.0));
|
||||
double x[2] = { 0.123, 0.456 };
|
||||
b.eval(0, x, &bx[0]);
|
||||
BOOST_CHECK(aequal(bx[0], 1.0));
|
||||
BOOST_CHECK(aequal(bx[1], 0.123 - 0.5));
|
||||
BOOST_CHECK(aequal(bx[2], 0.456 - 0.5));
|
||||
std::vector<double> c(b.numBasisFunc(), 0.0);
|
||||
c[0] = 1.0; c[1] = 2.0; c[2] = 3.0;
|
||||
b.addConstant(0.789, &c[0]);
|
||||
BOOST_CHECK(aequal(c[0], 1.789));
|
||||
BOOST_CHECK(aequal(c[1], 2.0));
|
||||
BOOST_CHECK(aequal(c[2], 3.0));
|
||||
const double fx = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2];
|
||||
b.multiplyGradient(1.234, &c[0]);
|
||||
BOOST_CHECK(aequal(c[0], 1.789));
|
||||
BOOST_CHECK(aequal(c[1], 2.0*1.234));
|
||||
BOOST_CHECK(aequal(c[2], 3.0*1.234));
|
||||
const double fx2 = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2];
|
||||
BOOST_CHECK(aequal(fx2 - c[0], 1.234*(fx - c[0])));
|
||||
}
|
||||
// Test DGBasisMultilin, degree 0.
|
||||
{
|
||||
DGBasisMultilin b(grid, 0);
|
||||
BOOST_CHECK_EQUAL(b.numBasisFunc(), 1);
|
||||
std::vector<double> bx(b.numBasisFunc(), 0.0);
|
||||
b.eval(0, grid.cell_centroids, &bx[0]);
|
||||
BOOST_CHECK(aequal(bx[0], 1.0));
|
||||
double x[2] = { 0.123, 0.456 };
|
||||
b.eval(0, x, &bx[0]);
|
||||
BOOST_CHECK(aequal(bx[0], 1.0));
|
||||
std::vector<double> c(b.numBasisFunc(), 0.0);
|
||||
b.addConstant(0.789, &c[0]);
|
||||
BOOST_CHECK(aequal(c[0], 0.789));
|
||||
b.multiplyGradient(1.234, &c[0]);
|
||||
BOOST_CHECK(aequal(c[0], 0.789));
|
||||
}
|
||||
// Test DGBasisMultilin, degree 1.
|
||||
{
|
||||
DGBasisMultilin b(grid, 1);
|
||||
BOOST_CHECK_EQUAL(b.numBasisFunc(), 4);
|
||||
std::vector<double> bx(b.numBasisFunc(), 0.0);
|
||||
b.eval(0, grid.cell_centroids, &bx[0]);
|
||||
BOOST_CHECK(aequal(bx[0], 0.25));
|
||||
BOOST_CHECK(aequal(bx[1], 0.25));
|
||||
BOOST_CHECK(aequal(bx[2], 0.25));
|
||||
BOOST_CHECK(aequal(bx[3], 0.25));
|
||||
double x[2] = { 0.123, 0.456 };
|
||||
b.eval(0, x, &bx[0]);
|
||||
const double xm[2] = { 1.0 - x[0], x[0] };
|
||||
const double ym[2] = { 1.0 - x[1], x[1] };
|
||||
BOOST_CHECK(aequal(bx[0], xm[0]*ym[0]));
|
||||
BOOST_CHECK(aequal(bx[1], xm[0]*ym[1]));
|
||||
BOOST_CHECK(aequal(bx[2], xm[1]*ym[0]));
|
||||
BOOST_CHECK(aequal(bx[3], xm[1]*ym[1]));
|
||||
std::vector<double> c(b.numBasisFunc(), 0.0);
|
||||
c[0] = -1.567; c[1] = 1.42; c[2] = 0.59; c[3] = 3.225;
|
||||
std::vector<double> corig = c;
|
||||
b.addConstant(0.789, &c[0]);
|
||||
BOOST_CHECK(aequal(c[0], corig[0] + 0.25*0.789));
|
||||
BOOST_CHECK(aequal(c[1], corig[1] + 0.25*0.789));
|
||||
BOOST_CHECK(aequal(c[2], corig[2] + 0.25*0.789));
|
||||
BOOST_CHECK(aequal(c[3], corig[3] + 0.25*0.789));
|
||||
const double fx = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2] + c[3]*bx[3];
|
||||
const double fc = 0.25*(c[0] + c[1] + c[2] + c[3]);
|
||||
b.multiplyGradient(1.234, &c[0]);
|
||||
const double fx2 = c[0]*bx[0] + c[1]*bx[1] + c[2]*bx[2] + c[3]*bx[3];
|
||||
BOOST_CHECK(aequal(fx2 - fc, 1.234*(fx - fc)));
|
||||
}
|
||||
|
||||
}
|
||||
} // namespace cart2d
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(test_dgbasis)
|
||||
{
|
||||
cart2d::test();
|
||||
}
|
Loading…
Reference in New Issue
Block a user