Major restructuring to improve support for groups, multiple controls etc. Work in progress.

This commit is contained in:
Atgeirr Flø Rasmussen 2012-05-02 09:39:05 +02:00
parent d7512bdeb6
commit 9416042f5a
2 changed files with 658 additions and 260 deletions

View File

@ -1,36 +1,64 @@
/*
* File: WellsGroup.cpp
* Author: kjetilo
*
* Created on March 27, 2012, 9:27 AM
*/
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/WellsGroup.hpp>
#include <cmath>
#include <opm/core/newwells.h>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
namespace Opm
{
// ========== WellPhasesSummed methods ===========
WellPhasesSummed::WellPhasesSummed()
: bhp_sum(0.0), rate_sum(0.0)
{
for (int i = 0; i < 3; ++i) {
res_inj_rates[i] = 0.0;
res_prod_rates[i] = 0.0;
surf_inj_rates[i] = 0.0;
surf_prod_rates[i] = 0.0;
}
}
void WellPhasesSummed::operator+=(const WellPhasesSummed& other)
{
rate_sum += other.rate_sum;
bhp_sum += other.bhp_sum;
for (int i = 0; i < 3; ++i) {
res_inj_rates[i] += other.res_inj_rates[i];
res_prod_rates[i] += other.res_prod_rates[i];
surf_inj_rates[i] += other.surf_inj_rates[i];
surf_prod_rates[i] += other.surf_prod_rates[i];
}
}
// ========== WellsGroupInterface methods ===========
WellsGroupInterface::WellsGroupInterface(const std::string& myname,
ProductionSpecification prod_spec,
InjectionSpecification inje_spec)
: parent_(NULL),
name_(myname),
production_specification_(prod_spec),
injection_specification_(inje_spec)
const ProductionSpecification& prod_spec,
const InjectionSpecification& inje_spec,
const PhaseUsage& phase_usage)
: parent_(NULL),
name_(myname),
production_specification_(prod_spec),
injection_specification_(inje_spec),
phase_usage_(phase_usage)
{
}
@ -47,13 +75,6 @@ namespace Opm
return name_;
}
WellsGroup::WellsGroup(const std::string& myname,
ProductionSpecification prod_spec,
InjectionSpecification inj_spec)
: WellsGroupInterface(myname, prod_spec, inj_spec)
{
}
bool WellsGroupInterface::isLeafNode() const
{
return false;
@ -90,6 +111,62 @@ namespace Opm
return injection_specification_;
}
/// Calculates the correct rate for the given ProductionSpecification::ControlMode
double WellsGroupInterface::rateByMode(const double* res_rates,
const double* surf_rates,
const ProductionSpecification::ControlMode mode)
{
switch (mode) {
case ProductionSpecification::ORAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Liquid]];
case ProductionSpecification::WRAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Aqua]];
case ProductionSpecification::GRAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Vapour]];
case ProductionSpecification::LRAT:
return surf_rates[phaseUsage().phase_pos[BlackoilPhases::Liquid]]
+ surf_rates[phaseUsage().phase_pos[BlackoilPhases::Aqua]];
case ProductionSpecification::RESV:
{
double tot_rate = 0.0;
for (int phase = 0; phase < phaseUsage().num_phases; ++phase) {
tot_rate += res_rates[phase];
}
return tot_rate;
}
default:
THROW("No rate associated with production control mode" << mode);
}
}
/// Calculates the correct rate for the given InjectionSpecification::ControlMode
double WellsGroupInterface::rateByMode(const double* res_rates,
const double* surf_rates,
const InjectionSpecification::ControlMode mode)
{
const double* rates = 0;
switch (mode) {
case InjectionSpecification::RATE:
rates = surf_rates;
break;
case InjectionSpecification::RESV:
rates = res_rates;
break;
default:
THROW("No rate associated with injection control mode" << mode);
}
double tot_rate = 0.0;
for (int phase = 0; phase < phaseUsage().num_phases; ++phase) {
tot_rate += rates[phase];
}
return tot_rate;
}
// ============== WellsGroup members =============
WellsGroupInterface* WellsGroup::findGroup(const std::string& name_of_node)
{
if (name() == name_of_node) {
@ -107,89 +184,233 @@ namespace Opm
}
}
void WellsGroup::calculateGuideRates()
WellsGroup::WellsGroup(const std::string& myname,
const ProductionSpecification& prod_spec,
const InjectionSpecification& inj_spec,
const PhaseUsage& phase_usage)
: WellsGroupInterface(myname, prod_spec, inj_spec, phase_usage)
{
double guide_rate_sum = 0.0;
for(size_t i = 0; i < children_.size(); i++) {
if(children_[i]->isLeafNode()) {
guide_rate_sum += children_[i]->prodSpec().guide_rate_;
}
else
{
children_[i]->calculateGuideRates();
}
}
if(guide_rate_sum != 0.0) {
for(size_t i = 0; i < children_.size(); i++) {
children_[i]->prodSpec().guide_rate_ /= guide_rate_sum;
}
}
}
void WellsGroup::applyControl(const WellControlType type)
{
for (size_t i = 0; i < children_.size(); ++i) {
children_[i]->applyControl(type);
}
}
bool WellsGroup::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_rate,
WellPhasesSummed& summed_phases,
const double epsilon)
void WellsGroup::calculateGuideRates()
{
double inj_guide_rate_sum = 0.0;
double prod_guide_rate_sum = 0.0;
for (size_t i = 0; i < children_.size(); i++) {
children_[i]->calculateGuideRates();
inj_guide_rate_sum += children_[i]->injSpec().guide_rate_;
prod_guide_rate_sum += children_[i]->prodSpec().guide_rate_;
}
injSpec().guide_rate_ = inj_guide_rate_sum;
prodSpec().guide_rate_ = prod_guide_rate_sum;
}
/// Sets the current active control to the provided one for all injectors within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
void WellsGroup::applyInjGroupControl(const InjectionSpecification::ControlMode control_mode,
const double target)
{
for (size_t i = 0; i < children_.size(); ++i) {
const double child_target = target * children_[i]->injSpec().guide_rate_/injSpec().guide_rate_;
children_[i]->applyInjGroupControl(control_mode, child_target);
}
injSpec().control_mode_ = InjectionSpecification::FLD;
}
/// Sets the current active control to the provided one for all producers within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
void WellsGroup::applyProdGroupControl(const ProductionSpecification::ControlMode control_mode,
const double target)
{
for (size_t i = 0; i < children_.size(); ++i) {
const double child_target = target * children_[i]->prodSpec().guide_rate_/prodSpec().guide_rate_;
children_[i]->applyProdGroupControl(control_mode, child_target);
}
prodSpec().control_mode_ = ProductionSpecification::FLD;
}
bool WellsGroup::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
WellPhasesSummed& summed_phases)
{
// Check children's constraints recursively.
WellPhasesSummed child_phases_summed;
for(size_t i = 0; i < children_.size(); ++i) {
for (size_t i = 0; i < children_.size(); ++i) {
WellPhasesSummed current_child_phases_summed;
if(!children_[i]->conditionsMet(well_bhp, well_rate,
current_child_phases_summed, epsilon)) {
if (!children_[i]->conditionsMet(well_bhp,
well_reservoirrates_phase,
well_surfacerates_phase,
current_child_phases_summed)) {
return false;
}
child_phases_summed += current_child_phases_summed;
}
double bhp_target = std::min(std::abs(injSpec().BHP_limit_), prodSpec().BHP_limit_);
const int np = phaseUsage().num_phases;
// Injection constraints.
// RATE
if (injSpec().control_mode_ != InjectionSpecification::RATE) {
const double target_rate = injSpec().surface_flow_max_rate_;
if (target_rate >= 0.0) {
double my_rate = 0.0;
for (int phase = 0; phase < np; ++phase) {
my_rate += child_phases_summed.surf_inj_rates[phase];
}
if (my_rate > target_rate) {
std::cout << "Group RATE target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyInjGroupControl(InjectionSpecification::RATE, target_rate);
injSpec().control_mode_ = InjectionSpecification::RATE;
return false;
}
}
}
// RESV
if (injSpec().control_mode_ != InjectionSpecification::RESV) {
const double target_rate = injSpec().reservoir_flow_max_rate_;
if (target_rate >= 0.0) {
double my_rate = 0.0;
for (int phase = 0; phase < np; ++phase) {
my_rate += child_phases_summed.res_inj_rates[phase];
}
if (my_rate > target_rate) {
std::cout << "Group RESV target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyInjGroupControl(InjectionSpecification::RESV, target_rate);
injSpec().control_mode_ = InjectionSpecification::RESV;
return false;
}
}
}
// REIN
// \TODO: Add support for REIN controls.
// Production constraints.
bool prod_restrictions_violated = false;
ProductionSpecification::ControlMode violated_prod_mode = ProductionSpecification::NONE;
rateByMode(child_phases_summed.res_prod_rates,
child_phases_summed.surf_prod_rates,
mode);
// ORAT
if (prodSpec().control_mode_ != ProductionSpecification::ORAT) {
const double target_rate = prodSpec().oil_max_rate_;
if (target_rate >= 0.0) {
const double my_rate
= child_phases_summed.surf_prod_rates[phaseUsage().phase_pos[BlackoilPhases::Liquid]];
if (std::fabs(my_rate) > target_rate) {
std::cout << "Group ORAT target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyProdGroupControl(ProductionSpecification::ORAT, target_rate);
prodSpec().control_mode_ = ProductionSpecification::ORAT;
return false;
}
}
}
// WRAT
if (prodSpec().control_mode_ != ProductionSpecification::WRAT) {
const double target_rate = prodSpec().water_max_rate_;
if (target_rate >= 0.0) {
const double my_rate
= child_phases_summed.surf_prod_rates[phaseUsage().phase_pos[BlackoilPhases::Aqua]];
if (std::fabs(my_rate) > target_rate) {
std::cout << "Group WRAT target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyProdGroupControl(ProductionSpecification::WRAT, target_rate);
prodSpec().control_mode_ = ProductionSpecification::WRAT;
return false;
}
}
}
// GRAT
if (prodSpec().control_mode_ != ProductionSpecification::GRAT) {
const double target_rate = prodSpec().gas_max_rate_;
if (target_rate >= 0.0) {
const double my_rate
= child_phases_summed.surf_prod_rates[phaseUsage().phase_pos[BlackoilPhases::Vapour]];
if (std::fabs(my_rate) > target_rate) {
std::cout << "Group GRAT target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyProdGroupControl(ProductionSpecification::GRAT, target_rate);
prodSpec().control_mode_ = ProductionSpecification::GRAT;
return false;
}
}
}
// LRAT
if (prodSpec().control_mode_ != ProductionSpecification::LRAT) {
const double target_rate = prodSpec().liquid_max_rate_;
if (target_rate >= 0.0) {
const double my_rate =
= child_phases_summed.surf_prod_rates[phaseUsage().phase_pos[BlackoilPhases::Aqua]]
+ child_phases_summed.surf_prod_rates[phaseUsage().phase_pos[BlackoilPhases::Liquid]];
if (std::fabs(my_rate) > target_rate) {
std::cout << "Group LRAT target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyProdGroupControl(ProductionSpecification::LRAT, target_rate);
prodSpec().control_mode_ = ProductionSpecification::LRAT;
return false;
}
}
}
// RESV
if (prodSpec().control_mode_ != ProductionSpecification::RESV) {
const double target_rate = prodSpec().reservoir_flow_max_rate_;
if (target_rate >= 0.0) {
double my_rate = 0.0;
for (int phase = 0; phase < np; ++phase) {
my_rate += child_phases_summed.res_prod_rates[phase];
}
if (std::fabs(my_rate) > target_rate) {
std::cout << "Group RESV target not met for group " << name() << std::endl;
std::cout << "target = " << target_rate << '\n'
<< "rate = " << my_rate << std::endl;
applyProdGroupControl(ProductionSpecification::RESV, target_rate);
prodSpec().control_mode_ = ProductionSpecification::RESV;
return false;
}
}
}
double rate_target = std::min(std::abs(injSpec().fluid_volume_max_rate_),
prodSpec().fluid_volume_max_rate_);
double bhp_sum = child_phases_summed.bhp_sum;
double rate_sum = child_phases_summed.rate_sum;
if (std::abs(bhp_sum) - std::abs(bhp_target) > epsilon) {
std::cout << "BHP not met" << std::endl;
std::cout << "BHP limit was " << bhp_target << std::endl;
std::cout << "Actual bhp was " << bhp_sum << std::endl;
switch(prodSpec().procedure_) {
case ProductionSpecification::WELL:
getWorstOffending(well_bhp).first->shutWell();
return false;
break;
case ProductionSpecification::RATE:
applyControl(BHP);
return false;
break;
default:
// Nothing do to;
break;
}
}
if(std::abs(rate_sum) - std::abs(rate_target) > epsilon) {
if (std::abs(rate_sum) - std::abs(rate_target) > epsilon) {
std::cout << "well_rate not met" << std::endl;
std::cout << "target = " << rate_target
<< ", well_rate[index_of_well] = "
<< rate_sum << std::endl;
std::cout << "Group name = " << name() << std::endl;
switch(prodSpec().procedure_) {
switch (prodSpec().procedure_) {
case ProductionSpecification::WELL:
getWorstOffending(well_rate).first->shutWell();
return false;
break;
case ProductionSpecification::RATE:
applyControl(RATE);
applyControl(SURFACE_RATE);
return false;
break;
default:
@ -231,60 +452,98 @@ namespace Opm
}
return max;
}
// ============== WellNode members ============
WellNode::WellNode(const std::string& myname,
ProductionSpecification prod_spec,
InjectionSpecification inj_spec)
: WellsGroupInterface(myname, prod_spec, inj_spec)
const ProductionSpecification& prod_spec,
const InjectionSpecification& inj_spec,
const PhaseUsage& phase_usage)
: WellsGroupInterface(myname, prod_spec, inj_spec, phase_usage),
wells_(0),
self_index_(-1),
group_control_index_(-1)
{
}
bool WellNode::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_rate,
WellPhasesSummed& summed_phases,
const double epsilon)
bool WellNode::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
WellPhasesSummed& summed_phases)
{
// Check for self:
if (wells_->type[self_index_] == PRODUCER) {
double bhp_diff = well_bhp[self_index_] - prodSpec().BHP_limit_;
double rate_diff = well_rate[self_index_] - prodSpec().fluid_volume_max_rate_;
if (bhp_diff > epsilon) {
std::cout << "BHP exceeded, bhp_diff = " << bhp_diff << std::endl;
std::cout << "BHP_limit = " << prodSpec().BHP_limit_ << std::endl;
std::cout << "BHP = " << well_bhp[self_index_] << std::endl;
shutWell();
return false;
// Report on our rates.
const int np = phaseUsage().num_phases;
for (int phase = 0; phase < np; ++phase) {
if (wells_->type[self_index_] == INJECTOR) {
summed_phases.res_inj_rates[phase] = well_reservoirrates_phase[np*self_index_ + phase];
summed_phases.surf_inj_rates[phase] = well_surfacerates_phase[np*self_index_ + phase];
} else {
summed_phases.res_prod_rates[phase] = well_reservoirrates_phase[np*self_index_ + phase];
summed_phases.surf_prod_rates[phase] = well_surfacerates_phase[np*self_index_ + phase];
}
}
// Check constraints.
bool is_producer = (wells_->type[self_index_] == PRODUCER);
const WellControls& ctrls = *wells_->ctrls[self_index_];
for (int ctrl_index = 0; ctrl_index < ctrls.num; ++ctrl_index) {
if (ctrl_index == ctrls.current || ctrl_index == group_control_index_) {
// We do not check constraints that either were used
// as the active control, or that come from group control.
continue;
}
bool ctrl_violated = false;
switch (ctrls.type[ctrl_index]) {
case BHP: {
const double my_well_bhp = well_bhp[self_index_];
const double my_target_bhp = ctrls.target[ctrl_index];
ctrl_violated = is_producer ? (my_target_bhp > my_well_bhp)
: (my_target_bhp < my_well_bhp);
if (ctrl_violated) {
std::cout << "BHP limit violated for well " << name() << ":\n";
std::cout << "BHP limit = " << my_target_bhp << std::endl;
std::cout << "BHP = " << my_well_bhp << std::endl;
}
break;
}
case RESERVOIR_RATE: {
double my_rate = 0.0;
for (int phase = 0; phase < np; ++phase) {
my_rate += ctrls.distr[np*ctrl_index + phase]*well_reservoirrates_phase[np*self_index_ + phase];
}
const double my_rate_target = ctrls.target[ctrl_index];
ctrl_violated = std::fabs(my_rate) > std::fabs(my_rate_target);
if (ctrl_violated) {
std::cout << "RESERVOIR_RATE limit violated for well " << name() << ":\n";
std::cout << "rate limit = " << my_rate_target;
std::cout << "rate = " << my_rate;
}
break;
}
case SURFACE_RATE: {
double my_rate = 0.0;
for (int phase = 0; phase < np; ++phase) {
my_rate += ctrls.distr[np*ctrl_index + phase]*well_surfacerates_phase[np*self_index_ + phase];
}
const double my_rate_target = ctrls.target[ctrl_index];
ctrl_violated = std::fabs(my_rate) > std::fabs(my_rate_target);
if (ctrl_violated) {
std::cout << "SURFACE_RATE limit violated for well " << name() << ":\n";
std::cout << "rate limit = " << my_rate_target;
std::cout << "rate = " << my_rate;
}
break;
}
} // end of switch()
if (ctrl_violated) {
set_current_control(self_index_, ctrl_index, wells_);
return false;
}
if (rate_diff > epsilon) {
std::cout << "Rate exceeded, rate_diff = " << rate_diff << std::endl;
shutWell();
return false;
}
} else {
double bhp_diff = std::abs(well_bhp[self_index_]) - std::abs(injSpec().BHP_limit_);
double rate_diff = std::abs(well_rate[self_index_]) - std::abs(injSpec().fluid_volume_max_rate_);
if (bhp_diff > epsilon) {
std::cout << "BHP exceeded, bhp_diff = " << bhp_diff<<std::endl;
shutWell();
return false;
}
if (rate_diff > epsilon) {
std::cout << "Flow diff exceeded, flow_diff = " << rate_diff << std::endl;
shutWell();
return false;
}
}
summed_phases.bhp_sum = well_bhp[self_index_];
summed_phases.rate_sum = well_rate[self_index_];
return true;
}
@ -307,8 +566,14 @@ namespace Opm
{
wells_ = wells;
self_index_ = self_index;
bool already_has_group_control =
((wells_->type[self_index_] == INJECTOR) && (injSpec().control_mode_ == InjectionSpecification::GRUP))
|| ((wells_->type[self_index_] == PRODUCER) && (prodSpec().control_mode_ == ProductionSpecification::GRUP));
if (already_has_group_control) {
group_control_index_ = wells_->ctrls[self_index_]->num - 1;
}
}
void WellNode::calculateGuideRates()
{
// Empty
@ -328,116 +593,171 @@ namespace Opm
return std::make_pair<WellNode*, double>(this, values[self_index_]);
}
void WellNode::applyControl(const WellControlType type)
void WellNode::applyInjGroupControl(const InjectionSpecification::ControlMode control_mode,
const double target)
{
wells_->ctrls[self_index_]->type[0] = type;
double target = 0.0;
switch(type) {
case BHP:
if(wells_->type[self_index_] == INJECTOR) {
target = injSpec().BHP_limit_;
}
else {
target = prodSpec().BHP_limit_;
}
break;
case RATE:
if(wells_->type[self_index_] == INJECTOR) {
target = injSpec().fluid_volume_max_rate_;
}
else {
target = prodSpec().fluid_volume_max_rate_;
}
break;
if (!wells_->type[self_index_] == INJECTOR) {
ASSERT(target == 0.0);
return;
}
wells_->ctrls[self_index_]->target[0] = target;
const double distr[3] = { 1.0, 1.0, 1.0 };
WellControlType wct;
switch (control_mode) {
case InjectionSpecification::RATE:
wct = SURFACE_RATE;
break;
case InjectionSpecification::RESV:
wct = RESERVOIR_RATE;
break;
default:
THROW("Group injection control mode not handled: " << control_mode);
}
if (group_control_index_ < 0) {
// The well only had its own controls, no group controls.
append_well_controls(wct, target, distr, self_index_, wells_);
group_control_index_ = wells_->ctrls[self_index_]->num - 1;
} else {
// We will now modify the last control, that
// "belongs to" the group control.
const int np = wells_->number_of_phases;
wells_->ctrls[self_index_]->type[group_control_index_] = wct;
wells_->ctrls[self_index_]->target[group_control_index_] = target;
std::copy(distr, distr + np, wells_->ctrls[self_index_]->distr + np*group_control_index_);
}
set_current_control(self_index_, group_control_index_, wells_);
}
void WellNode::applyProdGroupControl(const ProductionSpecification::ControlMode control_mode,
const double target)
{
if (!wells_->type[self_index_] == PRODUCER) {
ASSERT(target == 0.0);
return;
}
double distr[3] = { 0.0, 0.0, 0.0 };
const int* phase_pos = phaseUsage().phase_pos;
const int* phase_used = phaseUsage().phase_used;
WellControlType wct;
switch (control_mode) {
case ProductionSpecification::ORAT:
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Liquid]) {
THROW("Oil phase not active and ORAT control specified.");
}
distr[phase_pos[BlackoilPhases::Liquid]] = 1.0;
break;
case ProductionSpecification::WRAT:
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Aqua]) {
THROW("Water phase not active and WRAT control specified.");
}
distr[phase_pos[BlackoilPhases::Aqua]] = 1.0;
break;
case ProductionSpecification::GRAT:
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Vapour]) {
THROW("Gas phase not active and GRAT control specified.");
}
distr[phase_pos[BlackoilPhases::Vapour]] = 1.0;
break;
case ProductionSpecification::LRAT:
wct = SURFACE_RATE;
if (!phase_used[BlackoilPhases::Liquid]) {
THROW("Oil phase not active and LRAT control specified.");
}
if (!phase_used[BlackoilPhases::Aqua]) {
THROW("Water phase not active and LRAT control specified.");
}
distr[phase_pos[BlackoilPhases::Liquid]] = 1.0;
distr[phase_pos[BlackoilPhases::Aqua]] = 1.0;
break;
case ProductionSpecification::RESV:
distr[0] = distr[1] = distr[2] = 1.0;
wct = RESERVOIR_RATE;
break;
default:
THROW("Group injection control mode not handled: " << control_mode);
}
if (group_control_index_ < 0) {
// The well only had its own controls, no group controls.
append_well_controls(wct, target, distr, self_index_, wells_);
group_control_index_ = wells_->ctrls[self_index_]->num - 1;
} else {
// We will now modify the last control, that
// "belongs to" the group control.
const int np = wells_->number_of_phases;
wells_->ctrls[self_index_]->type[group_control_index_] = wct;
wells_->ctrls[self_index_]->target[group_control_index_] = target;
std::copy(distr, distr + np, wells_->ctrls[self_index_]->distr + np*group_control_index_);
}
set_current_control(self_index_, group_control_index_, wells_);
}
namespace
{
SurfaceComponent toSurfaceComponent(std::string type)
InjectionSpecification::InjectorType toInjectorType(std::string type)
{
if (type == "OIL") {
return OIL;
return InjectionSpecification::OIL;
}
if (type == "WATER") {
return WATER;
return InjectionSpecification::WATER;
}
if (type == "GAS") {
return GAS;
return InjectionSpecification::GAS;
}
THROW("Unknown type " << type << ", could not convert to SurfaceComponent");
}
#define HANDLE_ICM(x) \
if (type == #x) { \
return InjectionSpecification::x; \
}
InjectionSpecification::ControlMode toInjectionControlMode(std::string type)
{
if (type == "NONE") {
return InjectionSpecification::NONE;
}
HANDLE_ICM(NONE);
HANDLE_ICM(RATE);
HANDLE_ICM(RESV);
HANDLE_ICM(BHP);
HANDLE_ICM(THP);
HANDLE_ICM(REIN);
HANDLE_ICM(VREP);
HANDLE_ICM(GRUP);
HANDLE_ICM(FLD);
THROW("Unknown type " << type << ", could not convert to InjectionSpecification::ControlMode.");
}
#undef HANDLE_ICM
if (type == "ORAT") {
return InjectionSpecification::ORAT;
}
if (type == "REIN") {
return InjectionSpecification::REIN;
}
if (type == "RESV") {
return InjectionSpecification::RESV;
}
if (type == "VREP") {
return InjectionSpecification::VREP;
}
if (type == "WGRA") {
return InjectionSpecification::WGRA;
}
if (type == "FLD") {
return InjectionSpecification::FLD;
}
if (type == "GRUP") {
return InjectionSpecification::GRUP;
}
THROW("Unknown type " << type << ", could not convert to ControlMode.");
#define HANDLE_PCM(x) \
if (type == #x) { \
return ProductionSpecification::x; \
}
ProductionSpecification::ControlMode toProductionControlMode(std::string type)
{
if (type == "NONE") {
return ProductionSpecification::NONE_CM;
}
if (type == "ORAT") {
return ProductionSpecification::ORAT;
}
if (type == "LRAT") {
return ProductionSpecification::LRAT;
}
if (type == "REIN") {
return ProductionSpecification::REIN;
}
if (type == "RESV") {
return ProductionSpecification::RESV;
}
if (type == "VREP") {
return ProductionSpecification::VREP;
}
if (type == "WGRA") {
return ProductionSpecification::WGRA;
}
if (type == "FLD") {
return ProductionSpecification::FLD;
}
if (type == "GRUP") {
return ProductionSpecification::GRUP;
}
if (type == "BHP") {
return ProductionSpecification::BHP;
}
THROW("Unknown type " << type << ", could not convert to ControlMode.");
HANDLE_PCM(NONE);
HANDLE_PCM(ORAT);
HANDLE_PCM(WRAT);
HANDLE_PCM(GRAT);
HANDLE_PCM(LRAT);
HANDLE_PCM(CRAT);
HANDLE_PCM(RESV);
HANDLE_PCM(PRBL);
HANDLE_PCM(BHP);
HANDLE_PCM(THP);
HANDLE_PCM(GRUP);
HANDLE_PCM(FLD);
THROW("Unknown type " << type << ", could not convert to ProductionSpecification::ControlMode.");
}
#undef HANDLE_PCM
ProductionSpecification::Procedure toProductionProcedure(std::string type)
{
@ -456,8 +776,10 @@ namespace Opm
}
} // anonymous namespace
std::tr1::shared_ptr<WellsGroupInterface> createWellsGroup(const std::string& name, const EclipseGridParser& deck)
std::tr1::shared_ptr<WellsGroupInterface> createWellsGroup(const std::string& name,
const EclipseGridParser& deck)
{
PhaseUsage phase_usage = phaseUsageFromDeck(deck);
std::tr1::shared_ptr<WellsGroupInterface> return_value;
// First we need to determine whether it's a group or just a well:
@ -482,12 +804,14 @@ namespace Opm
if (wconinje.wconinje[i].well_ == name) {
WconinjeLine line = wconinje.wconinje[i];
injection_specification.BHP_limit_ = line.BHP_limit_;
injection_specification.injector_type_ = toSurfaceComponent(line.injector_type_);
injection_specification.injector_type_ = toInjectorType(line.injector_type_);
injection_specification.control_mode_ = toInjectionControlMode(line.control_mode_);
injection_specification.surface_flow_max_rate_ = line.surface_flow_max_rate_;
injection_specification.fluid_volume_max_rate_ = line.fluid_volume_max_rate_;
injection_specification.reservoir_flow_max_rate_ = line.reservoir_flow_max_rate_;
}
}
} else {
injection_specification.guide_rate_ = 0.0;
}
ProductionSpecification production_specification;
@ -498,14 +822,16 @@ namespace Opm
if (wconprod.wconprod[i].well_ == name) {
WconprodLine line = wconprod.wconprod[i];
production_specification.BHP_limit_ = line.BHP_limit_;
production_specification.fluid_volume_max_rate_ = line.fluid_volume_max_rate_;
production_specification.reservoir_flow_max_rate_ = line.reservoir_flow_max_rate_;
production_specification.oil_max_rate_ = line.oil_max_rate_;
production_specification.control_mode_ = toProductionControlMode(line.control_mode_);
production_specification.water_production_target_ = line.water_max_rate_;
production_specification.water_max_rate_ = line.water_max_rate_;
}
}
} else {
production_specification.guide_rate_ = 0.0;
}
return_value.reset(new WellNode(name, production_specification, injection_specification));
return_value.reset(new WellNode(name, production_specification, injection_specification, phase_usage));
} else {
InjectionSpecification injection_specification;
if (deck.hasField("GCONINJE")) {
@ -513,10 +839,10 @@ namespace Opm
for (size_t i = 0; i < gconinje.gconinje.size(); i++) {
if (gconinje.gconinje[i].group_ == name) {
GconinjeLine line = gconinje.gconinje[i];
injection_specification.injector_type_ = toSurfaceComponent(line.injector_type_);
injection_specification.injector_type_ = toInjectorType(line.injector_type_);
injection_specification.control_mode_ = toInjectionControlMode(line.control_mode_);
injection_specification.surface_flow_max_rate_ = line.surface_flow_max_rate_;
injection_specification.fluid_volume_max_rate_ = line.resv_flow_max_rate_;
injection_specification.reservoir_flow_max_rate_ = line.resv_flow_max_rate_;
}
}
}
@ -532,7 +858,7 @@ namespace Opm
production_specification.oil_max_rate_ = line.oil_max_rate_;
std::cout << "control_mode = " << line.control_mode_ << std::endl;
production_specification.control_mode_ = toProductionControlMode(line.control_mode_);
production_specification.water_production_target_ = line.water_max_rate_;
production_specification.water_max_rate_ = line.water_max_rate_;
production_specification.gas_max_rate_ = line.gas_max_rate_;
production_specification.liquid_max_rate_ = line.liquid_max_rate_;
production_specification.procedure_ = toProductionProcedure(line.procedure_);
@ -540,7 +866,7 @@ namespace Opm
}
}
return_value.reset(new WellsGroup(name, production_specification, injection_specification));
return_value.reset(new WellsGroup(name, production_specification, injection_specification, phase_usage));
}
return return_value;

View File

@ -1,3 +1,22 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSGROUP_HPP
#define OPM_WELLSGROUP_HPP
@ -5,6 +24,7 @@
#include <opm/core/ProductionSpecification.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/grid.h>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <string>
@ -16,11 +36,14 @@ namespace Opm
/// Basic information needed for group control (each group should typically
/// not exceed the sum of its leaf nodes)
struct WellPhasesSummed {
struct WellPhasesSummed
{
WellPhasesSummed();
double bhp_sum;
double rate_sum;
double res_inj_rates[3];
double res_prod_rates[3];
double surf_inj_rates[3];
double surf_prod_rates[3];
/// Sums each component
void operator+=(const WellPhasesSummed& other);
};
@ -29,8 +52,9 @@ namespace Opm
{
public:
WellsGroupInterface(const std::string& name,
ProductionSpecification prod_spec,
InjectionSpecification inj_spec);
const ProductionSpecification& prod_spec,
const InjectionSpecification& inj_spec,
const PhaseUsage& phase_usage);
virtual ~WellsGroupInterface();
/// The unique identifier for the well or well group.
@ -47,7 +71,9 @@ namespace Opm
/// Injection specifications for the well or well group.
InjectionSpecification& injSpec();
/// Phase usage information.
const PhaseUsage& phaseUsage() const;
/// \returns true if the object is a leaf node (WellNode), false otherwise.
virtual bool isLeafNode() const;
@ -76,7 +102,7 @@ namespace Opm
/// down wells). Only one change is applied per invocation. Typical use will be
/// \code
/// solve_pressure();
/// while(!group.conditionsMet(well_bhp, well_rate, summed_phases)) {
/// while(!group.conditionsMet(...)) {
/// solve_pressure();
/// }
/// \endcode
@ -84,23 +110,33 @@ namespace Opm
/// \note It's highly recommended to use the conditionsMet found in WellsManager.
/// \param[in] well_bhp A vector containing the bhp for each well. Is assumed
/// to be ordered the same way as the related Wells-struct.
/// \param[in] well_rate A vector containing the rate for each well. Is assumed
/// to be ordered the same way as the related Wells-struct.
/// \param[out] summed_phases Will at end of invocation contain the summed phases
/// (bhp, rate ,etc.) for the group.
/// \param[in] epsilon The error tolerated for each inequality. Formally, it will accept
/// (a - b <= epsilon) as (a <= b).
/// \param[in] well_reservoirrates_phase
/// A vector containing reservoir rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[in] well_surfacerates_phase
/// A vector containing surface rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[out] summed_phases Will at end of invocation contain the summed phase rates
/// (rate ,etc.) for the group.
/// \return true if no violations were found, false otherwise (false also implies a change).
virtual bool conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_rate,
WellPhasesSummed& summed_phases,
const double epsilon = 1e-8) = 0;
/// Sets the current active control to the provided one for all wells within the group
/// \note Also changes the target based on type.
/// \param[in] type the type to change to which the control is changed.
virtual void applyControl(const WellControlType type) = 0;
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
WellPhasesSummed& summed_phases);
/// Sets the current active control to the provided one for all injectors within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
virtual void applyInjGroupControl(const InjectionSpecification::ControlMode control_mode,
const double target) = 0;
/// Sets the current active control to the provided one for all producers within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
virtual void applyProdGroupControl(const ProductionSpecification::ControlMode control_mode,
const double target) = 0;
/// Gets the worst offending well based on the input
/// \param values A vector of a values for each well. This is assumed to be ordered the same way as the
/// relevant Wells struct.
@ -108,12 +144,23 @@ namespace Opm
virtual std::pair<WellNode*, double> getWorstOffending(const std::vector<double>& values) = 0;
protected:
WellsGroupInterface* parent_;
/// Calculates the correct rate for the given ProductionSpecification::ControlMode
double rateByMode(const double* res_rates,
const double* surf_rates,
const ProductionSpecification::ControlMode mode);
/// Calculates the correct rate for the given InjectionSpecification::ControlMode
double rateByMode(const double* res_rates,
const double* surf_rates,
const InjectionSpecification::ControlMode mode);
WellsGroupInterface* parent_;
private:
std::string name_;
ProductionSpecification production_specification_;
InjectionSpecification injection_specification_;
PhaseUsage phase_usage_;
};
@ -122,24 +169,36 @@ namespace Opm
{
public:
WellsGroup(const std::string& name,
ProductionSpecification prod_spec,
InjectionSpecification inj_spec);
const ProductionSpecification& prod_spec,
const InjectionSpecification& inj_spec,
const PhaseUsage& phase_usage);
virtual WellsGroupInterface* findGroup(const std::string& name_of_node);
void addChild(std::tr1::shared_ptr<WellsGroupInterface> child);
virtual bool conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_rate,
WellPhasesSummed& summed_phases,
const double epsilon = 1e-8);
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
WellPhasesSummed& summed_phases);
virtual void calculateGuideRates();
virtual int numberOfLeafNodes();
virtual std::pair<WellNode*, double> getWorstOffending(const std::vector<double>& values);
virtual void applyControl(const WellControlType type);
/// Sets the current active control to the provided one for all injectors within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
virtual void applyInjGroupControl(const InjectionSpecification::ControlMode control_mode,
const double target);
/// Sets the current active control to the provided one for all producers within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
virtual void applyProdGroupControl(const ProductionSpecification::ControlMode control_mode,
const double target);
private:
std::vector<std::tr1::shared_ptr<WellsGroupInterface> > children_;
@ -151,14 +210,15 @@ namespace Opm
{
public:
WellNode(const std::string& name,
ProductionSpecification prod_spec,
InjectionSpecification inj_spec);
const ProductionSpecification& prod_spec,
const InjectionSpecification& inj_spec,
const PhaseUsage& phase_usage);
virtual WellsGroupInterface* findGroup(const std::string& name_of_node);
virtual bool conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_rate,
WellPhasesSummed& summed_phases,
const double epsilon = 1e-8);
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase,
WellPhasesSummed& summed_phases);
virtual bool isLeafNode() const;
@ -171,11 +231,23 @@ namespace Opm
void shutWell();
virtual std::pair<WellNode*, double> getWorstOffending(const std::vector<double>& values);
virtual void applyControl(const WellControlType type);
/// Sets the current active control to the provided one for all injectors within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
virtual void applyInjGroupControl(const InjectionSpecification::ControlMode control_mode,
const double target);
/// Sets the current active control to the provided one for all producers within the group.
/// After this call, the combined rate (which rate depending on control_mode) of the group
/// shall be equal to target.
virtual void applyProdGroupControl(const ProductionSpecification::ControlMode control_mode,
const double target);
private:
Wells* wells_;
int self_index_;
int group_control_index_;
};
/// Creates the WellsGroupInterface for the given name