WIP for addWellControlEq

P_n - P_n-1  = 0;
This is not making sense. remains to be corrected later.

It can run with NaN or too large solutions.
This commit is contained in:
Kai Bao 2015-09-30 13:59:44 +02:00
parent d8634e41e5
commit 9526b5a9b1

View File

@ -1039,11 +1039,18 @@ namespace Opm {
Eigen::SparseMatrix<double> rate_distr(nw, np*nw);
// Selection variables
std::vector<int> bhp_elems;
std::vector<int> rate_elems;
// well selectors
std::vector<int> bhp_well_elems;
std::vector<int> rate_well_elems;
// segment selectors
std::vector<int> bhp_top_elems;
std::vector<int> rate_top_elems;
std::vector<int> rate_top_phase_elems;
std::vector<int> others_elems;
//Run through all wells to calculate BHP/RATE targets
//and gather info about current control
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
const struct WellControls* wc = wellsMultiSegment()[w]->wellControls();
@ -1052,10 +1059,13 @@ namespace Opm {
// is instead treated as a default.
const int current = xw.currentControls()[w];
const int nseg = wellsMultiSegment()[w]->numberOfSegments();
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
// bhp_elems.push_back(w);
bhp_well_elems.push_back(w);
bhp_top_elems.push_back(start_segment);
bhp_targets(w) = well_controls_iget_target(wc, current);
rate_targets(w) = -1e100;
}
@ -1070,7 +1080,11 @@ namespace Opm {
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
// rate_elems.push_back(w);
rate_well_elems.push_back(w);
rate_top_elems.push_back(start_segment);
for (int p = 0; p < np; ++p) {
rate_top_phase_elems.push_back(start_segment + p * nseg_total);
}
// RESERVOIR and SURFACE rates look the same, from a
// high-level point of view, in the system of
// simultaneous linear equations.
@ -1088,20 +1102,41 @@ namespace Opm {
break;
}
for (int i = 1; i < nseg; ++i) {
others_elems.push_back(i + start_segment);
}
start_segment += nseg;
}
// for each segment: 1, if the segment is the top segment, then control equation
// 2, if the segment is not the top segment, then the pressure equation
const ADB bhp_residual = subset(state.segp, bhp_top_elems) - subset(bhp_targets, bhp_well_elems);
const ADB rate_residual = rate_distr * subset(state.segqs, rate_top_phase_elems) - subset(rate_targets, rate_well_elems);
ADB others_residual = ADB::constant(V::Zero(nseg_total));
start_segment = 0;
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wellsMultiSegment()[w];
const int nseg = well->numberOfSegments();
ADB segp = subset(state.segqs, Span(nseg, 1, start_segment));
ADB well_residual = segp - well->wellOps().s2s_outlet * segp;
ADB others_well_residual = subset(well_residual, Span(nseg - 1, 1, 1));
others_residual = others_residual + superset(others_well_residual, Span(nseg - 1, 1, start_segment + 1), nseg_total);
start_segment += nseg;
}
residual_.well_eq = superset(bhp_residual, bhp_top_elems, nseg_total) +
superset(rate_residual, rate_top_elems, nseg_total) +
others_residual;
// Calculate residuals
for (int w = 0; w < nw; ++w) {
const int nseg = wellsMultiSegment()[w]->numberOfSegments();
for (int s = 0; s < nseg; ++s) {
// for (int w = 0; w < nw; ++w) {
// const int nseg = wellsMultiSegment()[w]->numberOfSegments();
// for (int s = 0; s < nseg; ++s) {
// assuming the top segment always be the first one.
if (s==0) {
}
// Three types of the pressure loss calculation
// hydrostatic term depends of th density of the fluid mixture withn the segment,
// TODO: as the first version, wo do not consider the rs rv in the mass flow rate and
@ -1111,8 +1146,8 @@ namespace Opm {
// surface unit
// frictional pressure drop
// acceleration pressure drop
}
}
// }
// }
// const ADB thp_inj_residual = state.bhp - bhp_from_thp_inj + dp_inj;
// const ADB thp_prod_residual = state.bhp - bhp_from_thp_prod + dp_prod;