mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
changed: put calculation of energy connection rate in separate method
This commit is contained in:
@@ -443,6 +443,11 @@ namespace Opm
|
|||||||
const std::vector<EvalWell>& cq_s,
|
const std::vector<EvalWell>& cq_s,
|
||||||
const IntensiveQuantities& intQuants) const;
|
const IntensiveQuantities& intQuants) const;
|
||||||
|
|
||||||
|
Eval connectionRateEnergy(const double maxOilSaturation,
|
||||||
|
const std::vector<EvalWell>& cq_s,
|
||||||
|
const IntensiveQuantities& intQuants,
|
||||||
|
DeferredLogger& deferred_logger) const;
|
||||||
|
|
||||||
Eval connectionRateFoam(const std::vector<EvalWell>& cq_s,
|
Eval connectionRateFoam(const std::vector<EvalWell>& cq_s,
|
||||||
const IntensiveQuantities& intQuants,
|
const IntensiveQuantities& intQuants,
|
||||||
DeferredLogger& deferred_logger) const;
|
DeferredLogger& deferred_logger) const;
|
||||||
|
|||||||
@@ -621,76 +621,9 @@ namespace Opm
|
|||||||
}
|
}
|
||||||
|
|
||||||
if constexpr (has_energy) {
|
if constexpr (has_energy) {
|
||||||
connectionRates[perf][Indices::contiEnergyEqIdx] = 0.0;
|
connectionRates[perf][Indices::contiEnergyEqIdx] =
|
||||||
}
|
connectionRateEnergy(ebosSimulator.problem().maxOilSaturation(cell_idx),
|
||||||
|
cq_s, intQuants, deferred_logger);
|
||||||
if constexpr (has_energy) {
|
|
||||||
|
|
||||||
auto fs = intQuants.fluidState();
|
|
||||||
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
||||||
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// convert to reservoir conditions
|
|
||||||
EvalWell cq_r_thermal(this->primary_variables_.numWellEq() + Indices::numEq, 0.);
|
|
||||||
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
||||||
const bool both_oil_gas = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
|
|
||||||
if ( !both_oil_gas || FluidSystem::waterPhaseIdx == phaseIdx ) {
|
|
||||||
cq_r_thermal = cq_s[activeCompIdx] / this->extendEval(fs.invB(phaseIdx));
|
|
||||||
} else {
|
|
||||||
// remove dissolved gas and vapporized oil
|
|
||||||
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
||||||
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
||||||
// q_os = q_or * b_o + rv * q_gr * b_g
|
|
||||||
// q_gs = q_gr * g_g + rs * q_or * b_o
|
|
||||||
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
|
|
||||||
// d = 1.0 - rs * rv
|
|
||||||
const EvalWell d = this->extendEval(1.0 - fs.Rv() * fs.Rs());
|
|
||||||
if (d <= 0.0) {
|
|
||||||
std::ostringstream sstr;
|
|
||||||
sstr << "Problematic d value " << d << " obtained for well " << this->name()
|
|
||||||
<< " during calculateSinglePerf with rs " << fs.Rs()
|
|
||||||
<< ", rv " << fs.Rv()
|
|
||||||
<< " obtaining d " << d
|
|
||||||
<< " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) "
|
|
||||||
<< " for this connection.";
|
|
||||||
deferred_logger.debug(sstr.str());
|
|
||||||
cq_r_thermal = cq_s[activeCompIdx] / this->extendEval(fs.invB(phaseIdx));
|
|
||||||
} else {
|
|
||||||
if(FluidSystem::gasPhaseIdx == phaseIdx) {
|
|
||||||
cq_r_thermal = (cq_s[gasCompIdx] - this->extendEval(fs.Rs()) * cq_s[oilCompIdx]) / (d * this->extendEval(fs.invB(phaseIdx)) );
|
|
||||||
} else if(FluidSystem::oilPhaseIdx == phaseIdx) {
|
|
||||||
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
|
|
||||||
cq_r_thermal = (cq_s[oilCompIdx] - this->extendEval(fs.Rv()) * cq_s[gasCompIdx]) / (d * this->extendEval(fs.invB(phaseIdx)) );
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// change temperature for injecting fluids
|
|
||||||
if (this->isInjector() && cq_s[activeCompIdx] > 0.0){
|
|
||||||
// only handles single phase injection now
|
|
||||||
assert(this->well_ecl_.injectorType() != InjectorType::MULTI);
|
|
||||||
fs.setTemperature(this->well_ecl_.temperature());
|
|
||||||
typedef typename std::decay<decltype(fs)>::type::Scalar FsScalar;
|
|
||||||
typename FluidSystem::template ParameterCache<FsScalar> paramCache;
|
|
||||||
const unsigned pvtRegionIdx = intQuants.pvtRegionIndex();
|
|
||||||
paramCache.setRegionIndex(pvtRegionIdx);
|
|
||||||
paramCache.setMaxOilSat(ebosSimulator.problem().maxOilSaturation(cell_idx));
|
|
||||||
paramCache.updatePhase(fs, phaseIdx);
|
|
||||||
|
|
||||||
const auto& rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
||||||
fs.setDensity(phaseIdx, rho);
|
|
||||||
const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx);
|
|
||||||
fs.setEnthalpy(phaseIdx, h);
|
|
||||||
cq_r_thermal *= this->extendEval(fs.enthalpy(phaseIdx)) * this->extendEval(fs.density(phaseIdx));
|
|
||||||
connectionRates[perf][Indices::contiEnergyEqIdx] += getValue(cq_r_thermal);
|
|
||||||
} else {
|
|
||||||
// compute the thermal flux
|
|
||||||
cq_r_thermal *= this->extendEval(fs.enthalpy(phaseIdx)) * this->extendEval(fs.density(phaseIdx));
|
|
||||||
connectionRates[perf][Indices::contiEnergyEqIdx] += Base::restrictEval(cq_r_thermal);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if constexpr (has_polymer) {
|
if constexpr (has_polymer) {
|
||||||
@@ -2332,6 +2265,89 @@ namespace Opm
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <typename TypeTag>
|
||||||
|
typename StandardWell<TypeTag>::Eval
|
||||||
|
StandardWell<TypeTag>::
|
||||||
|
connectionRateEnergy(const double maxOilSaturation,
|
||||||
|
const std::vector<EvalWell>& cq_s,
|
||||||
|
const IntensiveQuantities& intQuants,
|
||||||
|
DeferredLogger& deferred_logger) const
|
||||||
|
{
|
||||||
|
auto fs = intQuants.fluidState();
|
||||||
|
Eval result = 0;
|
||||||
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
||||||
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// convert to reservoir conditions
|
||||||
|
EvalWell cq_r_thermal(this->primary_variables_.numWellEq() + Indices::numEq, 0.);
|
||||||
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
||||||
|
const bool both_oil_gas = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
|
||||||
|
if (!both_oil_gas || FluidSystem::waterPhaseIdx == phaseIdx) {
|
||||||
|
cq_r_thermal = cq_s[activeCompIdx] / this->extendEval(fs.invB(phaseIdx));
|
||||||
|
} else {
|
||||||
|
// remove dissolved gas and vapporized oil
|
||||||
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
||||||
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
||||||
|
// q_os = q_or * b_o + rv * q_gr * b_g
|
||||||
|
// q_gs = q_gr * g_g + rs * q_or * b_o
|
||||||
|
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
|
||||||
|
// d = 1.0 - rs * rv
|
||||||
|
const EvalWell d = this->extendEval(1.0 - fs.Rv() * fs.Rs());
|
||||||
|
if (d <= 0.0) {
|
||||||
|
std::ostringstream sstr;
|
||||||
|
sstr << "Problematic d value " << d << " obtained for well " << this->name()
|
||||||
|
<< " during calculateSinglePerf with rs " << fs.Rs()
|
||||||
|
<< ", rv " << fs.Rv()
|
||||||
|
<< " obtaining d " << d
|
||||||
|
<< " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) "
|
||||||
|
<< " for this connection.";
|
||||||
|
deferred_logger.debug(sstr.str());
|
||||||
|
cq_r_thermal = cq_s[activeCompIdx] / this->extendEval(fs.invB(phaseIdx));
|
||||||
|
} else {
|
||||||
|
if (FluidSystem::gasPhaseIdx == phaseIdx) {
|
||||||
|
cq_r_thermal = (cq_s[gasCompIdx] -
|
||||||
|
this->extendEval(fs.Rs()) * cq_s[oilCompIdx]) /
|
||||||
|
(d * this->extendEval(fs.invB(phaseIdx)) );
|
||||||
|
} else if (FluidSystem::oilPhaseIdx == phaseIdx) {
|
||||||
|
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
|
||||||
|
cq_r_thermal = (cq_s[oilCompIdx] - this->extendEval(fs.Rv()) *
|
||||||
|
cq_s[gasCompIdx]) /
|
||||||
|
(d * this->extendEval(fs.invB(phaseIdx)) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// change temperature for injecting fluids
|
||||||
|
if (this->isInjector() && cq_s[activeCompIdx] > 0.0){
|
||||||
|
// only handles single phase injection now
|
||||||
|
assert(this->well_ecl_.injectorType() != InjectorType::MULTI);
|
||||||
|
fs.setTemperature(this->well_ecl_.temperature());
|
||||||
|
typedef typename std::decay<decltype(fs)>::type::Scalar FsScalar;
|
||||||
|
typename FluidSystem::template ParameterCache<FsScalar> paramCache;
|
||||||
|
const unsigned pvtRegionIdx = intQuants.pvtRegionIndex();
|
||||||
|
paramCache.setRegionIndex(pvtRegionIdx);
|
||||||
|
paramCache.setMaxOilSat(maxOilSaturation);
|
||||||
|
paramCache.updatePhase(fs, phaseIdx);
|
||||||
|
|
||||||
|
const auto& rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
||||||
|
fs.setDensity(phaseIdx, rho);
|
||||||
|
const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx);
|
||||||
|
fs.setEnthalpy(phaseIdx, h);
|
||||||
|
cq_r_thermal *= this->extendEval(fs.enthalpy(phaseIdx)) * this->extendEval(fs.density(phaseIdx));
|
||||||
|
result += getValue(cq_r_thermal);
|
||||||
|
} else {
|
||||||
|
// compute the thermal flux
|
||||||
|
cq_r_thermal *= this->extendEval(fs.enthalpy(phaseIdx)) * this->extendEval(fs.density(phaseIdx));
|
||||||
|
result += Base::restrictEval(cq_r_thermal);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
template <typename TypeTag>
|
template <typename TypeTag>
|
||||||
typename StandardWell<TypeTag>::Eval
|
typename StandardWell<TypeTag>::Eval
|
||||||
StandardWell<TypeTag>::
|
StandardWell<TypeTag>::
|
||||||
|
|||||||
Reference in New Issue
Block a user