mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 16:31:55 -06:00
ebos: add support for initialization using the EQUIL keyword
so far, it uses the machinery of opm-core for this.
This commit is contained in:
parent
5ce716f1a8
commit
95c482521a
196
applications/ebos/eclequilinitializer.hh
Normal file
196
applications/ebos/eclequilinitializer.hh
Normal file
@ -0,0 +1,196 @@
|
||||
/*
|
||||
Copyright (C) 2014 by Andreas Lauser
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/**
|
||||
* \file
|
||||
*
|
||||
* \copydoc Ewoms::EclEquilInitializer
|
||||
*/
|
||||
#ifndef EWOMS_ECL_EQUIL_INITIALIZER_HH
|
||||
#define EWOMS_ECL_EQUIL_INITIALIZER_HH
|
||||
|
||||
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
||||
|
||||
// the ordering of these includes matters. do not touch it if you're not prepared to deal
|
||||
// with some trouble!
|
||||
#include <dune/grid/cpgrid/GridHelpers.hpp>
|
||||
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
|
||||
#include <opm/core/simulator/initStateEquil.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace Ewoms {
|
||||
/*!
|
||||
* \ingroup EclBlackOilSimulator
|
||||
*
|
||||
* \brief Computes the initial condition based on the EQUIL keyword from ECL.
|
||||
*
|
||||
* So far, it uses the "initStateEquil()" function from opm-core. Since this method is
|
||||
* very much glued into the opm-core data structures, it should be reimplemented in the
|
||||
* medium to long term for some significant memory savings and less significant
|
||||
* performance improvements.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class EclEquilInitializer
|
||||
{
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
|
||||
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> ScalarFluidState;
|
||||
|
||||
enum { numPhases = FluidSystem::numPhases };
|
||||
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
||||
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
||||
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
||||
|
||||
enum { numComponents = FluidSystem::numComponents };
|
||||
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
||||
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
||||
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
||||
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
|
||||
public:
|
||||
template <class MaterialLawManager>
|
||||
EclEquilInitializer(const Simulator& simulator,
|
||||
std::shared_ptr<MaterialLawManager> materialLawManager)
|
||||
: simulator_(simulator)
|
||||
{
|
||||
const auto& gridManager = simulator.gridManager();
|
||||
const auto& grid = gridManager.grid();
|
||||
|
||||
// create the data structures which are used by initStateEquil()
|
||||
Opm::parameter::ParameterGroup tmpParam;
|
||||
Opm::BlackoilPropertiesFromDeck opmBlackoilProps(
|
||||
gridManager.deck(),
|
||||
gridManager.eclState(),
|
||||
materialLawManager,
|
||||
Opm::UgGridHelpers::numCells(grid),
|
||||
Opm::UgGridHelpers::globalCell(grid),
|
||||
Opm::UgGridHelpers::cartDims(grid),
|
||||
Opm::UgGridHelpers::beginCellCentroids(grid),
|
||||
Opm::UgGridHelpers::dimensions(grid),
|
||||
tmpParam);
|
||||
|
||||
// initialize the boiler plate of opm-core the state structure.
|
||||
Opm::BlackoilState opmBlackoilState;
|
||||
opmBlackoilState.init(grid.size(/*codim=*/0),
|
||||
/*numFaces=*/0, // we don't care here
|
||||
numPhases);
|
||||
|
||||
// do the actual computation.
|
||||
Opm::initStateEquil(gridManager.grid(),
|
||||
opmBlackoilProps,
|
||||
gridManager.deck(),
|
||||
gridManager.eclState(),
|
||||
simulator.problem().gravity()[dimWorld - 1],
|
||||
opmBlackoilState);
|
||||
|
||||
const Scalar rhooRef = FluidSystem::referenceDensity(oilPhaseIdx, /*regionIdx=*/0);
|
||||
const Scalar rhogRef = FluidSystem::referenceDensity(gasPhaseIdx, /*regionIdx=*/0);
|
||||
const Scalar MG = FluidSystem::molarMass(gasCompIdx);
|
||||
const Scalar MO = FluidSystem::molarMass(oilCompIdx);
|
||||
|
||||
// copy the result into the array of initial fluid states
|
||||
int numElems = gridManager.gridView().size(/*codim=*/0);
|
||||
initialFluidStates_.resize(numElems);
|
||||
for (int elemIdx = 0; elemIdx < numElems; ++elemIdx) {
|
||||
auto &fluidState = initialFluidStates_[elemIdx];
|
||||
|
||||
// set the phase saturations
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
Scalar S = opmBlackoilState.saturation()[elemIdx*numPhases + phaseIdx];
|
||||
fluidState.setSaturation(phaseIdx, S);
|
||||
}
|
||||
|
||||
// set the temperature
|
||||
const auto& temperatureVector = opmBlackoilState.temperature();
|
||||
Scalar T = FluidSystem::surfaceTemperature;
|
||||
if (!temperatureVector.empty())
|
||||
T = temperatureVector[elemIdx];
|
||||
fluidState.setTemperature(T);
|
||||
|
||||
// set the phase pressures. the Opm::BlackoilState only provides the oil
|
||||
// phase pressure, so we need to calculate the other phases' pressures
|
||||
// ourselfs.
|
||||
Scalar pC[numPhases];
|
||||
const auto& matParams = simulator.problem().materialLawParams(elemIdx);
|
||||
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
|
||||
Scalar po = opmBlackoilState.pressure()[elemIdx];
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
||||
fluidState.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
|
||||
|
||||
// reset the phase compositions
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
||||
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
|
||||
fluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
|
||||
|
||||
// the composition of the water phase is simple: it only consists of the
|
||||
// water component.
|
||||
fluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
||||
|
||||
if (gridManager.deck()->hasKeyword("DISGAS")) {
|
||||
// for gas and oil we have to translate surface volumes to mole fractions
|
||||
// before we can set the composition in the fluid state
|
||||
Scalar Rs = opmBlackoilState.gasoilratio()[elemIdx];
|
||||
|
||||
// dissolved gas surface volume to mass fraction
|
||||
Scalar XoG = Rs/(rhooRef/rhogRef + Rs);
|
||||
// mass fraction to mole fraction
|
||||
Scalar xoG = XoG*MO / (MG*(1 - XoG) + XoG*MO);
|
||||
|
||||
fluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, 1 - xoG);
|
||||
fluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
|
||||
}
|
||||
|
||||
// retrieve the surface volume of vaporized gas
|
||||
if (gridManager.deck()->hasKeyword("VAPOIL")) {
|
||||
Scalar Rv = opmBlackoilState.rv()[elemIdx];
|
||||
|
||||
// vaporized oil surface volume to mass fraction
|
||||
Scalar XgO = Rv/(rhogRef/rhooRef + Rv);
|
||||
// mass fraction to mole fraction
|
||||
Scalar xgO = XgO*MG / (MO*(1 - XgO) + XgO*MG);
|
||||
|
||||
fluidState.setMoleFraction(gasPhaseIdx, oilCompIdx, xgO);
|
||||
fluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1 - xgO);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return the initial thermodynamic state which should be used as the initial
|
||||
* condition.
|
||||
*
|
||||
* This is supposed to correspond to hydrostatic conditions.
|
||||
*/
|
||||
const ScalarFluidState& initialFluidState(int elemIdx) const
|
||||
{ return initialFluidStates_[elemIdx]; }
|
||||
|
||||
protected:
|
||||
const Simulator& simulator_;
|
||||
|
||||
std::vector<ScalarFluidState> initialFluidStates_;
|
||||
};
|
||||
} // namespace Ewoms
|
||||
|
||||
#endif
|
@ -30,6 +30,7 @@
|
||||
|
||||
#include "eclgridmanager.hh"
|
||||
#include "eclwellmanager.hh"
|
||||
#include "eclequilinitializer.hh"
|
||||
#include "eclwriter.hh"
|
||||
#include "eclsummarywriter.hh"
|
||||
#include "ecloutputblackoilmodule.hh"
|
||||
@ -555,9 +556,12 @@ public:
|
||||
int spaceIdx, int timeIdx) const
|
||||
{
|
||||
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
return materialLawParams_(globalSpaceIdx);
|
||||
return materialLawParams(globalSpaceIdx);
|
||||
}
|
||||
|
||||
const MaterialLawParams& materialLawParams(int globalDofIdx) const
|
||||
{ return materialLawManager_->materialLawParams(globalDofIdx); }
|
||||
|
||||
/*!
|
||||
* \brief Returns the index of the relevant region for thermodynmic properties
|
||||
*/
|
||||
@ -622,8 +626,12 @@ public:
|
||||
|
||||
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
|
||||
|
||||
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
||||
values.assignMassConservative(initialFluidStates_[globalDofIdx], matParams);
|
||||
if (useMassConservativeInitialCondition_) {
|
||||
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
||||
values.assignMassConservative(initialFluidStates_[globalDofIdx], matParams);
|
||||
}
|
||||
else
|
||||
values.assignNaive(initialFluidStates_[globalDofIdx]);
|
||||
}
|
||||
|
||||
void initialSolutionApplied()
|
||||
@ -796,7 +804,8 @@ private:
|
||||
for (unsigned elemIdx = 0; elemIdx < numDof; ++elemIdx)
|
||||
compressedToCartesianElemIdx[elemIdx] = gridManager.cartesianCellId(elemIdx);
|
||||
|
||||
materialLawManager_.initFromDeck(deck, eclState, compressedToCartesianElemIdx);
|
||||
materialLawManager_ = std::make_shared<EclMaterialLawManager>();
|
||||
materialLawManager_->initFromDeck(deck, eclState, compressedToCartesianElemIdx);
|
||||
}
|
||||
|
||||
void initFluidSystem_()
|
||||
@ -931,30 +940,67 @@ private:
|
||||
}
|
||||
|
||||
void readInitialCondition_()
|
||||
{
|
||||
const auto &gridManager = this->simulator().gridManager();
|
||||
const auto deck = gridManager.deck();
|
||||
|
||||
if (!deck->hasKeyword("EQUIL"))
|
||||
readExplicitInitialCondition_();
|
||||
else
|
||||
readEquilInitialCondition_();
|
||||
}
|
||||
|
||||
void readEquilInitialCondition_()
|
||||
{
|
||||
// The EQUIL initializer also modifies the material law manager according to
|
||||
// SWATINIT (although it does not belong there strictly speaking)
|
||||
typedef Ewoms::EclEquilInitializer<TypeTag> EquilInitializer;
|
||||
EquilInitializer equilInitializer(this->simulator(), materialLawManager_);
|
||||
|
||||
// since the EquilInitializer provides fluid states that are consistent with the
|
||||
// black-oil model, we can use naive instead of mass conservative determination
|
||||
// of the primary variables.
|
||||
useMassConservativeInitialCondition_ = false;
|
||||
|
||||
size_t numElems = this->model().numGridDof();
|
||||
initialFluidStates_.resize(numElems);
|
||||
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
|
||||
auto &elemFluidState = initialFluidStates_[elemIdx];
|
||||
elemFluidState.assign(equilInitializer.initialFluidState(elemIdx));
|
||||
}
|
||||
}
|
||||
|
||||
void readExplicitInitialCondition_()
|
||||
{
|
||||
const auto &gridManager = this->simulator().gridManager();
|
||||
const auto deck = gridManager.deck();
|
||||
const auto eclState = gridManager.eclState();
|
||||
|
||||
// since the values specified in the deck do not need to be consistent, we use an
|
||||
// initial condition that conserves the total mass specified by these values.
|
||||
useMassConservativeInitialCondition_ = true;
|
||||
|
||||
bool enableDisgas = deck->hasKeyword("DISGAS");
|
||||
bool enableVapoil = deck->hasKeyword("VAPOIL");
|
||||
|
||||
// make sure all required quantities are enables
|
||||
if (!deck->hasKeyword("SWAT") ||
|
||||
!deck->hasKeyword("SGAS"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"So far, the ECL input file requires the presence of the SWAT "
|
||||
"and SGAS keywords");
|
||||
if (!deck->hasKeyword("PRESSURE"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"So far, the ECL input file requires the presence of the PRESSURE "
|
||||
"keyword");
|
||||
if (enableDisgas && !deck->hasKeyword("RS"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"The ECL input file requires the RS keyword to be present if dissolved gas is enabled");
|
||||
if (enableVapoil && !deck->hasKeyword("RV"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"The ECL input file requires the RV keyword to be present if vaporized oil is enabled");
|
||||
if (!deck->hasKeyword("SWAT") ||
|
||||
!deck->hasKeyword("SGAS"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"The ECL input file requires the presence of the SWAT "
|
||||
"and SGAS keywords if the model is initialized explicitly");
|
||||
if (!deck->hasKeyword("PRESSURE"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"The ECL input file requires the presence of the PRESSURE "
|
||||
"keyword if the model is initialized explicitly");
|
||||
if (enableDisgas && !deck->hasKeyword("RS"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"The ECL input file requires the RS keyword to be present if"
|
||||
" dissolved gas is enabled");
|
||||
if (enableVapoil && !deck->hasKeyword("RV"))
|
||||
OPM_THROW(std::runtime_error,
|
||||
"The ECL input file requires the RV keyword to be present if"
|
||||
" vaporized oil is enabled");
|
||||
|
||||
size_t numDof = this->model().numGridDof();
|
||||
|
||||
@ -1025,7 +1071,7 @@ private:
|
||||
// this assumes that capillary pressures only depend on the phase saturations
|
||||
// and possibly on temperature. (this is always the case for ECL problems.)
|
||||
Scalar pc[numPhases];
|
||||
const auto& matParams = materialLawParams_(dofIdx);
|
||||
const auto& matParams = materialLawParams(dofIdx);
|
||||
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
|
||||
Valgrind::CheckDefined(oilPressure);
|
||||
Valgrind::CheckDefined(pc);
|
||||
@ -1133,15 +1179,10 @@ private:
|
||||
}
|
||||
}
|
||||
|
||||
const MaterialLawParams& materialLawParams_(int globalDofIdx) const
|
||||
{
|
||||
return materialLawManager_.materialLawParams(globalDofIdx);
|
||||
}
|
||||
|
||||
// update the hysteresis parameters of the material laws for the whole grid
|
||||
void updateHysteresis_()
|
||||
{
|
||||
if (!materialLawManager_.enableHysteresis())
|
||||
if (!materialLawManager_->enableHysteresis())
|
||||
return;
|
||||
|
||||
ElementContext elemCtx(this->simulator());
|
||||
@ -1157,9 +1198,8 @@ private:
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
|
||||
int compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
int cartesianDofIdx = gridManager.cartesianCellId(compressedDofIdx);
|
||||
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
materialLawManager_.updateHysteresis(intQuants.fluidState(), cartesianDofIdx);
|
||||
materialLawManager_->updateHysteresis(intQuants.fluidState(), compressedDofIdx);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1167,11 +1207,12 @@ private:
|
||||
std::vector<DimMatrix> intrinsicPermeability_;
|
||||
EclTransmissibility<TypeTag> transmissibilities_;
|
||||
|
||||
EclMaterialLawManager materialLawManager_;
|
||||
std::shared_ptr<EclMaterialLawManager> materialLawManager_;
|
||||
|
||||
std::vector<unsigned short> rockTableIdx_;
|
||||
std::vector<RockParams> rockParams_;
|
||||
|
||||
bool useMassConservativeInitialCondition_;
|
||||
std::vector<ScalarFluidState> initialFluidStates_;
|
||||
|
||||
EclWellManager<TypeTag> wellManager_;
|
||||
|
Loading…
Reference in New Issue
Block a user