mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
add the bhp well controls.
This commit is contained in:
parent
c2cdc7ec17
commit
970fe665d8
@ -6,6 +6,9 @@
|
||||
#include <cassert>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/grid/GridManager.hpp>
|
||||
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
#include <opm/core/io/vtk/writeVtkData.hpp>
|
||||
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
|
||||
#include <opm/core/pressure/FlowBCManager.hpp>
|
||||
@ -24,8 +27,17 @@
|
||||
int main (int argc, char** argv)
|
||||
try
|
||||
{
|
||||
|
||||
using namespace Opm;
|
||||
parameter::ParameterGroup param(argc, argv, false);
|
||||
|
||||
bool use_deck = param.has("deck_filename");
|
||||
if (!use_deck) {
|
||||
OPM_THROW(std::runtime_error, "FullyImplicitTwoPhaseSolver cannot run without deckfile.");
|
||||
}
|
||||
double gravity[3] = { 0.0 };
|
||||
std::string deck_filename = param.get<std::string>("deck_filename");
|
||||
EclipseGridParser deck = EclipseGridParser(deck_filename);
|
||||
int nx = param.getDefault("nx", 30);
|
||||
int ny = param.getDefault("ny", 1);
|
||||
int nz = 1;
|
||||
@ -47,14 +59,20 @@ try
|
||||
SaturationPropsBasic::RelPermFunc rel_perm_func = SaturationPropsBasic::Linear;
|
||||
IncompPropsAdBasic props(num_phases, rel_perm_func, density, viscosity,
|
||||
porosity, permeability, grid.dimensions, num_cells);
|
||||
std::vector<double> omega;
|
||||
/*
|
||||
std::vector<double> src(num_cells, 0.0);
|
||||
src[0] = 1. / day;
|
||||
src[num_cells-1] = -1. / day;
|
||||
*/
|
||||
|
||||
FlowBCManager bcs;
|
||||
LinearSolverUmfpack linsolver;
|
||||
FullyImplicitTwoPhaseSolver solver(grid, props, linsolver);
|
||||
TwophaseState state;
|
||||
state.init(grid, 2);
|
||||
WellState well_state;
|
||||
WellsManager wells(deck, grid, props.permeability());
|
||||
well_state.init(wells.c_wells(), state);
|
||||
FullyImplicitTwoPhaseSolver solver(grid, props, *wells.c_wells(), linsolver, gravity);
|
||||
std::vector<double> porevol;
|
||||
Opm::computePorevolume(grid, props.porosity(), porevol);
|
||||
const double dt = param.getDefault("dt", 10.) * day;
|
||||
@ -63,9 +81,8 @@ try
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
allcells[cell] = cell;
|
||||
}
|
||||
TwophaseState state;
|
||||
state.init(grid, 2);
|
||||
|
||||
std::vector<double> src; // empty src term.
|
||||
gravity[2] = param.getDefault("gravity", 0.0);
|
||||
//initial sat
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
state.saturation()[2*c] = 0.2;
|
||||
@ -74,8 +91,6 @@ try
|
||||
std::vector<double> p(num_cells, 100*Opm::unit::barsa);
|
||||
state.pressure() = p;
|
||||
std::ostringstream vtkfilename;
|
||||
|
||||
// Write the initial state.
|
||||
vtkfilename.str("");
|
||||
vtkfilename << "sim_2p_fincomp_" << std::setw(3) << std::setfill('0') << 0 << ".vtu";
|
||||
std::ofstream vtkfile(vtkfilename.str().c_str());
|
||||
@ -84,7 +99,7 @@ try
|
||||
dm["pressure"] = &state.pressure();
|
||||
Opm::writeVtkData(grid, dm, vtkfile);
|
||||
for (int i = 0; i < num_time_steps; ++i) {
|
||||
solver.step(dt, state, src);
|
||||
solver.step(dt, state, src, well_state);
|
||||
vtkfilename.str("");
|
||||
vtkfilename << "sim_2p_fincomp_" << std::setw(3) << std::setfill('0') << i + 1 << ".vtu";
|
||||
std::ofstream vtkfile(vtkfilename.str().c_str());
|
||||
|
BIN
opm/polymer/fullyimplicit/.FullyImplicitTwoPhaseSolver.cpp.swp
Normal file
BIN
opm/polymer/fullyimplicit/.FullyImplicitTwoPhaseSolver.cpp.swp
Normal file
Binary file not shown.
@ -22,6 +22,14 @@
|
||||
#include <algorithm>
|
||||
namespace Opm {
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
|
||||
namespace {
|
||||
|
||||
std::vector<int>
|
||||
@ -36,20 +44,37 @@ namespace {
|
||||
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
|
||||
};
|
||||
|
||||
|
||||
V computePerfPress(const UnstructuredGrid& g,
|
||||
const Wells& wells,
|
||||
const V& rho,
|
||||
const double grav)
|
||||
{
|
||||
const int nw = wells.number_of_wells;
|
||||
const int nperf = wells.well_connpos[nw];
|
||||
const int dim = g.dimensions;
|
||||
|
||||
V wdp = V::Zero(nperf, 1);
|
||||
assert(wdp.size() == rho.size());
|
||||
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double ref_depth = wells.depth_ref[w];
|
||||
for (int j = wells.well_connpos[w]; j < wells.well_connpos[nw + 1]; ++j) {
|
||||
const int cell = wells.well_cells[j];
|
||||
const double cell_depth = g.cell_centroids[dim * cell + dim - 1];
|
||||
wdp(j) = rho(j) * grav * (cell_depth - ref_depth);
|
||||
}
|
||||
}
|
||||
|
||||
return wdp;
|
||||
}
|
||||
|
||||
}//anonymous namespace
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
|
||||
|
||||
|
||||
|
||||
@ -57,25 +82,61 @@ typedef Eigen::Array<double,
|
||||
FullyImplicitTwoPhaseSolver::
|
||||
FullyImplicitTwoPhaseSolver(const UnstructuredGrid& grid,
|
||||
const IncompPropsAdInterface& fluid,
|
||||
const LinearSolverInterface& linsolver)
|
||||
const Wells& wells,
|
||||
const LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
: grid_ (grid)
|
||||
, fluid_(fluid)
|
||||
, wells_(wells)
|
||||
, linsolver_(linsolver)
|
||||
, grav_(gravity)
|
||||
, cells_ (buildAllCells(grid.number_of_cells))
|
||||
, ops_(grid)
|
||||
, residual_(std::vector<ADB>(fluid.numPhases(), ADB::null()))
|
||||
, wops_(wells)
|
||||
, mob_ (fluid.numPhases(), ADB::null())
|
||||
, residual_ ({ std::vector<ADB>(fluid.numPhases(), ADB::null()),
|
||||
ADB::null(),
|
||||
ADB::null() })
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
FullyImplicitTwoPhaseSolver::
|
||||
WellOps::WellOps(const Wells& wells)
|
||||
: w2p(wells.well_connpos[ wells.number_of_wells ],
|
||||
wells.number_of_wells)
|
||||
, p2w(wells.number_of_wells,
|
||||
wells.well_connpos[ wells.number_of_wells ])
|
||||
{
|
||||
const int nw = wells.number_of_wells;
|
||||
const int* const wpos = wells.well_connpos;
|
||||
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
|
||||
std::vector<Tri> scatter, gather;
|
||||
scatter.reserve(wpos[nw]);
|
||||
gather .reserve(wpos[nw]);
|
||||
|
||||
for (int w = 0, i = 0; w < nw; ++w) {
|
||||
for (; i < wpos[ w + 1 ]; ++i) {
|
||||
scatter.push_back(Tri(i, w, 1.0));
|
||||
gather .push_back(Tri(w, i, 1.0));
|
||||
}
|
||||
}
|
||||
|
||||
w2p.setFromTriplets(scatter.begin(), scatter.end());
|
||||
p2w.setFromTriplets(gather .begin(), gather .end());
|
||||
}
|
||||
|
||||
|
||||
|
||||
void
|
||||
FullyImplicitTwoPhaseSolver::
|
||||
step(const double dt,
|
||||
TwophaseState& x,
|
||||
const std::vector<double>& src)
|
||||
const std::vector<double>& src,
|
||||
WellState& xw)
|
||||
{
|
||||
|
||||
V pvol(grid_.number_of_cells);
|
||||
@ -88,12 +149,12 @@ typedef Eigen::Array<double,
|
||||
|
||||
const V pvdt = pvol / dt;
|
||||
|
||||
const SolutionState old_state = constantState(x);
|
||||
const SolutionState old_state = constantState(x, xw);
|
||||
const double atol = 1.0e-12;
|
||||
const double rtol = 5.0e-8;
|
||||
const int maxit = 15;
|
||||
|
||||
assemble(pvdt, old_state, x, src);
|
||||
assemble(pvdt, old_state, x, xw, src);
|
||||
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
@ -103,9 +164,9 @@ typedef Eigen::Array<double,
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
const V dx = solveJacobianSystem();
|
||||
updateState(dx, x);
|
||||
updateState(dx, x, xw);
|
||||
|
||||
assemble(pvdt, old_state, x, src);
|
||||
assemble(pvdt, old_state, x, xw, src);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
@ -129,6 +190,7 @@ typedef Eigen::Array<double,
|
||||
FullyImplicitTwoPhaseSolver::SolutionState::SolutionState(const int np)
|
||||
: pressure ( ADB::null())
|
||||
, saturation (np, ADB::null())
|
||||
, bhp ( ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
@ -137,25 +199,34 @@ typedef Eigen::Array<double,
|
||||
|
||||
|
||||
FullyImplicitTwoPhaseSolver::SolutionState
|
||||
FullyImplicitTwoPhaseSolver::constantState(const TwophaseState& x)
|
||||
FullyImplicitTwoPhaseSolver::constantState(const TwophaseState& x,
|
||||
const WellState& xw)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
std::vector<int> bpat(np ,nc);
|
||||
bpat.push_back(xw.bhp().size());
|
||||
|
||||
SolutionState state(np);
|
||||
|
||||
// Pressure.
|
||||
assert (not x.pressure().empty());
|
||||
const V p = Eigen::Map<const V>(& x.pressure()[0], nc);
|
||||
state.pressure = ADB::constant(p);
|
||||
state.pressure = ADB::constant(p, bpat);
|
||||
|
||||
// Saturation.
|
||||
assert (not x.saturation().empty());
|
||||
const DataBlock s_all = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
state.saturation[phase] = ADB::constant(s_all.col(phase));
|
||||
state.saturation[phase] = ADB::constant(s_all.col(phase), bpat);
|
||||
// state.saturation[1] = ADB::constant(s_all.col(1));
|
||||
}
|
||||
|
||||
// BHP
|
||||
assert (not x.bhp().empty());
|
||||
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
|
||||
state.bhp = ADB::constant(bhp, bpat);
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
@ -164,7 +235,8 @@ typedef Eigen::Array<double,
|
||||
|
||||
|
||||
FullyImplicitTwoPhaseSolver::SolutionState
|
||||
FullyImplicitTwoPhaseSolver::variableState(const TwophaseState& x)
|
||||
FullyImplicitTwoPhaseSolver::variableState(const TwophaseState& x,
|
||||
const WellState& xw)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
@ -183,6 +255,10 @@ typedef Eigen::Array<double,
|
||||
const V sw = s_all.col(0);
|
||||
vars0.push_back(sw);
|
||||
|
||||
// Initial Bottom-hole Pressure
|
||||
assert (not xw.bhp().empty());
|
||||
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
|
||||
vars0.push_back(bhp);
|
||||
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
|
||||
@ -201,6 +277,8 @@ typedef Eigen::Array<double,
|
||||
so = so - sw;
|
||||
state.saturation[1] = so;
|
||||
}
|
||||
// Bottom-hole pressure.
|
||||
state.pressure = vars[ nextvar++ ];
|
||||
|
||||
assert(nextvar == int(vars.size()));
|
||||
|
||||
@ -216,22 +294,119 @@ typedef Eigen::Array<double,
|
||||
assemble(const V& pvdt,
|
||||
const SolutionState& old_state,
|
||||
const TwophaseState& x ,
|
||||
const WellState& xw,
|
||||
const std::vector<double>& src)
|
||||
{
|
||||
// Create the primary variables.
|
||||
const SolutionState state = variableState(x);
|
||||
const SolutionState state = variableState(x, xw);
|
||||
|
||||
// -------- Mass balance equations --------
|
||||
const V trans = subset(transmissibility(), ops_.internal_faces);
|
||||
const std::vector<ADB> kr = computeRelPerm(state);
|
||||
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
|
||||
const ADB mflux = computeMassFlux(phase, trans, kr, state);
|
||||
ADB source = accumSource(phase, kr, src);
|
||||
residual_[phase] =
|
||||
residual_.mass_balance[phase] =
|
||||
pvdt*(state.saturation[phase] - old_state.saturation[phase])
|
||||
+ ops_.div*mflux - source;
|
||||
+ ops_.div*mflux;
|
||||
if (not src.empty()) {
|
||||
ADB source = accumSource(phase, kr, src);
|
||||
residual_.mass_balance[phase] = residual_.mass_balance[phase] - source;
|
||||
}
|
||||
}
|
||||
|
||||
// -------- Well equation, and well contributions to the mass balance equations --------
|
||||
|
||||
// Contribution to mass balance will have to wait.
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = wells_.number_of_phases;
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
|
||||
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
|
||||
const V transw = Eigen::Map<const V>(wells_.WI, nperf);
|
||||
|
||||
const ADB& bhp = state.bhp;
|
||||
|
||||
const DataBlock well_s = wops_.w2p * Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np).matrix();
|
||||
|
||||
// Extract variables for perforation cell pressures
|
||||
// and corresponding perforation well pressures.
|
||||
const ADB p_perfcell = subset(state.pressure, well_cells);
|
||||
// Finally construct well perforation pressures and well flows.
|
||||
|
||||
// Compute well pressure differentials.
|
||||
// Construct pressure difference vector for wells.
|
||||
const int dim = grid_.dimensions;
|
||||
const double* g = gravity();
|
||||
if (g) {
|
||||
// Guard against gravity in anything but last dimension.
|
||||
for (int dd = 0; dd < dim - 1; ++dd) {
|
||||
assert(g[dd] == 0.0);
|
||||
}
|
||||
}
|
||||
ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern());
|
||||
for (int phase = 0; phase < 2; ++phase) {
|
||||
const ADB cell_rho = fluidDensity(phase, state.pressure);
|
||||
cell_rho_total += state.saturation[phase] * cell_rho;
|
||||
}
|
||||
ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
|
||||
assert(np == wells_.number_of_phases);
|
||||
const DataBlock compi = Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np);
|
||||
for (int phase = 0; phase < 2; ++phase) {
|
||||
const ADB cell_rho = fluidDensity(phase, state.pressure);
|
||||
const V fraction = compi.col(phase);
|
||||
inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells);
|
||||
}
|
||||
const V rho_perf_cell = subset(cell_rho_total, well_cells).value();
|
||||
const V rho_perf_well = inj_rho_total.value();
|
||||
V prodperfs = V::Constant(nperf, -1.0);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
if (wells_.type[w] == PRODUCER) {
|
||||
std::fill(prodperfs.data() + wells_.well_connpos[w],
|
||||
prodperfs.data() + wells_.well_connpos[w+1], 1.0);
|
||||
}
|
||||
}
|
||||
const Selector<double> producer(prodperfs);
|
||||
const V rho_perf = producer.select(rho_perf_cell, rho_perf_well);
|
||||
const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0);
|
||||
|
||||
const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp;
|
||||
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
||||
|
||||
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
||||
ADB well_rates_all = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern());
|
||||
ADB perf_total_mob = subset(mob_[0], well_cells)
|
||||
+ subset(mob_[1], well_cells);
|
||||
std::vector<ADB> well_contribs(np, ADB::null());
|
||||
std::vector<ADB> well_perf_rates(np, ADB::null());
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
// const ADB& cell_b = rq_[phase].b;
|
||||
// const ADB perf_b = subset(cell_b, well_cells);
|
||||
const ADB& cell_mob = mob_[phase];
|
||||
const V well_fraction = compi.col(phase);
|
||||
// Using total mobilities for all phases for injection.
|
||||
const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob;
|
||||
const ADB perf_mob = producer.select(subset(cell_mob, well_cells),
|
||||
perf_mob_injector);
|
||||
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
||||
well_contribs[phase] = superset(perf_flux, well_cells, nc);
|
||||
residual_.mass_balance[phase] += well_contribs[phase];
|
||||
}
|
||||
|
||||
|
||||
// Handling BHP and SURFACE_RATE wells.
|
||||
V bhp_targets(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const WellControls* wc = wells_.ctrls[w];
|
||||
if (wc->type[wc->current] == BHP) {
|
||||
bhp_targets[w] = wc->target[wc->current];
|
||||
} else {
|
||||
OPM_THROW(std::runtime_error, "Can only handle BHP type controls.");
|
||||
}
|
||||
}
|
||||
const ADB bhp_residual = bhp - bhp_targets;
|
||||
// Choose bhp residual for positive bhp targets.
|
||||
residual_.well_eq = bhp_residual;
|
||||
}
|
||||
|
||||
|
||||
@ -265,7 +440,7 @@ typedef Eigen::Array<double,
|
||||
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
|
||||
|
||||
// compute the out-fracflow.
|
||||
ADB f_out = computeFracFlow(phase, kr);
|
||||
ADB f_out = computeFracFlow(phase);
|
||||
// compute the in-fracflow.
|
||||
V f_in;
|
||||
if (phase == 1) {
|
||||
@ -281,15 +456,10 @@ typedef Eigen::Array<double,
|
||||
|
||||
|
||||
ADB
|
||||
FullyImplicitTwoPhaseSolver::computeFracFlow(int phase,
|
||||
const std::vector<ADB>& kr) const
|
||||
FullyImplicitTwoPhaseSolver::computeFracFlow(const int phase) const
|
||||
{
|
||||
const double* mus = fluid_.viscosity();
|
||||
ADB mob_phase = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]);
|
||||
ADB mob_wat = kr[0] / V::Constant(kr[0].size(), 1, mus[0]);
|
||||
ADB mob_oil= kr[1] / V::Constant(kr[1].size(), 1, mus[1]);
|
||||
ADB total_mob = mob_wat + mob_oil;
|
||||
ADB f = mob_phase / total_mob;
|
||||
ADB total_mob = mob_[0] + mob_[1];
|
||||
ADB f = mob_[phase] / total_mob;
|
||||
|
||||
return f;
|
||||
}
|
||||
@ -305,13 +475,15 @@ typedef Eigen::Array<double,
|
||||
if (np != 2) {
|
||||
OPM_THROW(std::logic_error, "Only two-phase ok in FullyImplicitTwoPhaseSolver.");
|
||||
}
|
||||
ADB mass_res = collapseJacs(vertcat(residual_[0], residual_[1]));
|
||||
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = mass_res.derivative()[0];
|
||||
V dx(V::Zero(mass_res.size()));
|
||||
const ADB mass_res = vertcat(residual_.mass_balance[0], residual_.mass_balance[1]);
|
||||
const ADB total_res = collapseJacs(vertcat(mass_res, residual_.well_eq));
|
||||
|
||||
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_res.derivative()[0];
|
||||
V dx(V::Zero(total_res.size()));
|
||||
Opm::LinearSolverInterface::LinearSolverReport rep
|
||||
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
mass_res.value().data(), dx.data());
|
||||
total_res.value().data(), dx.data());
|
||||
if (!rep.converged) {
|
||||
OPM_THROW(std::runtime_error,
|
||||
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
|
||||
@ -325,10 +497,12 @@ typedef Eigen::Array<double,
|
||||
|
||||
|
||||
void FullyImplicitTwoPhaseSolver::updateState(const V& dx,
|
||||
TwophaseState& state) const
|
||||
TwophaseState& state,
|
||||
WellState& well_state) const
|
||||
{
|
||||
const int np = fluid_.numPhases();
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int nw = wells_.number_of_wells;
|
||||
const V null;
|
||||
assert(null.size() == 0);
|
||||
const V zero = V::Zero(nc);
|
||||
@ -339,8 +513,12 @@ typedef Eigen::Array<double,
|
||||
int varstart = nc;
|
||||
const V dsw = subset(dx, Span(nc, 1, varstart));
|
||||
varstart += dsw.size();
|
||||
const V dbhp = subset(dx, Span(nc, 1, varstart));
|
||||
varstart += dbhp.size();
|
||||
|
||||
assert(varstart == dx.size());
|
||||
|
||||
|
||||
// Pressure update.
|
||||
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc);
|
||||
const V p = p_old - dp;
|
||||
@ -362,6 +540,10 @@ typedef Eigen::Array<double,
|
||||
state.saturation()[c*np + 1] = so[c];
|
||||
}
|
||||
|
||||
// Bhp update.
|
||||
const V bhp_old = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
const V bhp = bhp_old - dbhp;
|
||||
std::copy(&p[0], &p[0] + nc, well_state.bhp().begin());
|
||||
}
|
||||
|
||||
|
||||
@ -389,21 +571,28 @@ typedef Eigen::Array<double,
|
||||
|
||||
ADB
|
||||
FullyImplicitTwoPhaseSolver::computeMassFlux(const int phase ,
|
||||
const V& trans,
|
||||
const V& trans ,
|
||||
const std::vector<ADB>& kr ,
|
||||
const SolutionState& state ) const
|
||||
const SolutionState& state )
|
||||
{
|
||||
// const ADB tr_mult = transMult(state.pressure);
|
||||
const double* mus = fluid_.viscosity();
|
||||
ADB mob = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]);
|
||||
if (phase ==0)
|
||||
std::cout << "watetr mob\n" << mob.value() << std::endl;
|
||||
const ADB dp = ops_.ngrad * state.pressure;
|
||||
// ADB& mob = mob_[phase];
|
||||
mob_[phase] = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]);
|
||||
// ADB mob = kr[phase] / V::Constant(kr[phase].size(), 1, mus[phase]);
|
||||
V z(grid_.number_of_cells);
|
||||
for (int c = 0; c < grid_.number_of_cells; ++c) {
|
||||
z(c) = grid_.cell_centroids[c * 3 + 2];
|
||||
}
|
||||
const double* grav = gravity();
|
||||
const ADB rho = fluidDensity(phase, state.pressure);
|
||||
const ADB rhoavg = ops_.caver * rho;
|
||||
const ADB dp = ops_.ngrad * state.pressure - grav[2] * (rhoavg * (ops_.ngrad * z.matrix()));
|
||||
const ADB head = trans * dp;
|
||||
|
||||
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
||||
|
||||
return upwind.select(mob) * head;
|
||||
return upwind.select(mob_[phase]) * head;
|
||||
}
|
||||
|
||||
|
||||
@ -415,13 +604,14 @@ typedef Eigen::Array<double,
|
||||
{
|
||||
double r = 0;
|
||||
for (std::vector<ADB>::const_iterator
|
||||
b = residual_.begin(),
|
||||
e = residual_.end();
|
||||
b = residual_.mass_balance.begin(),
|
||||
e = residual_.mass_balance.end();
|
||||
b != e; ++b)
|
||||
{
|
||||
r = std::max(r, (*b).value().matrix().norm());
|
||||
}
|
||||
|
||||
r = std::max(r, residual_.well_eq.value().matrix().norm());
|
||||
return r;
|
||||
}
|
||||
|
||||
@ -442,7 +632,15 @@ typedef Eigen::Array<double,
|
||||
return trans;
|
||||
}
|
||||
|
||||
ADB
|
||||
FullyImplicitTwoPhaseSolver::fluidDensity(const int phase,
|
||||
const ADB& p) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
ADB rho = ADB::constant(V::Constant(grid_.number_of_cells, 1, rhos[phase]), p.blockPattern());
|
||||
|
||||
return rho;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -7,7 +7,8 @@
|
||||
#include <opm/polymer//fullyimplicit/AutoDiffHelpers.hpp>
|
||||
#include <opm/polymer/fullyimplicit/IncompPropsAdInterface.hpp>
|
||||
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
||||
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
namespace Opm {
|
||||
@ -21,11 +22,14 @@ namespace Opm {
|
||||
public:
|
||||
FullyImplicitTwoPhaseSolver(const UnstructuredGrid& grid,
|
||||
const IncompPropsAdInterface& fluid,
|
||||
const LinearSolverInterface& linsolver);
|
||||
const Wells& wells,
|
||||
const LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
|
||||
void step(const double dt,
|
||||
TwophaseState& state,
|
||||
const std::vector<double>& src);
|
||||
const std::vector<double>& src,
|
||||
WellState& wstate);
|
||||
private:
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
@ -38,34 +42,60 @@ namespace Opm {
|
||||
SolutionState(const int np);
|
||||
ADB pressure;
|
||||
std::vector<ADB> saturation;
|
||||
ADB bhp;
|
||||
};
|
||||
/*
|
||||
struct Source {
|
||||
Wells& wells;
|
||||
std::vector<double> src;
|
||||
} source;
|
||||
*/
|
||||
struct WellOps {
|
||||
WellOps(const Wells& wells);
|
||||
M w2p; // well->perf
|
||||
M p2w; // perf->well
|
||||
};
|
||||
|
||||
const UnstructuredGrid& grid_;
|
||||
const IncompPropsAdInterface& fluid_;
|
||||
const Wells& wells_;
|
||||
const LinearSolverInterface& linsolver_;
|
||||
const double* grav_;
|
||||
const std::vector<int> cells_;
|
||||
HelperOps ops_;
|
||||
std::vector<ADB> residual_;
|
||||
const WellOps wops_;
|
||||
|
||||
std::vector<ADB> mob_;
|
||||
|
||||
struct {
|
||||
std::vector<ADB> mass_balance;
|
||||
ADB well_flux_eq;
|
||||
ADB well_eq;
|
||||
} residual_;
|
||||
|
||||
|
||||
SolutionState
|
||||
constantState(const TwophaseState& x);
|
||||
constantState(const TwophaseState& x,
|
||||
const WellState& xw);
|
||||
SolutionState
|
||||
variableState(const TwophaseState& x);
|
||||
variableState(const TwophaseState& x,
|
||||
const WellState& xw);
|
||||
void
|
||||
assemble(const V& pvdt,
|
||||
const SolutionState& old_state,
|
||||
const TwophaseState& x,
|
||||
const WellState& xw,
|
||||
const std::vector<double>& src);
|
||||
V solveJacobianSystem() const;
|
||||
void updateState(const V& dx,
|
||||
TwophaseState& x) const;
|
||||
TwophaseState& x,
|
||||
WellState& xw)const;
|
||||
std::vector<ADB>
|
||||
computeRelPerm(const SolutionState& state) const;
|
||||
V
|
||||
transmissibility() const;
|
||||
ADB
|
||||
computeFracFlow(int phase,
|
||||
const std::vector<ADB>& kr) const;
|
||||
computeFracFlow(const int phase) const;
|
||||
ADB
|
||||
accumSource(const int phase,
|
||||
const std::vector<ADB>& kr,
|
||||
@ -74,7 +104,7 @@ namespace Opm {
|
||||
computeMassFlux(const int phase,
|
||||
const V& trans,
|
||||
const std::vector<ADB>& kr,
|
||||
const SolutionState& state) const;
|
||||
const SolutionState& state);
|
||||
double
|
||||
residualNorm() const;
|
||||
|
||||
@ -86,6 +116,11 @@ namespace Opm {
|
||||
fluidDensity(const int phase) const;
|
||||
ADB
|
||||
transMult(const ADB& p) const;
|
||||
|
||||
ADB
|
||||
fluidDensity(const int phase,
|
||||
const ADB& p) const;
|
||||
const double* gravity() const { return grav_; }
|
||||
};
|
||||
} // namespace Opm
|
||||
#endif// OPM_FULLYIMPLICITTWOPHASESOLVER_HEADER_INCLUDED
|
||||
|
Loading…
Reference in New Issue
Block a user