Merge branch 'master' into ert

Conflicts:
	Makefile.am
	configure.ac
	examples/Makefile.am
	opm/core/GridManager.cpp
	opm/core/eclipse/EclipseGridParser.cpp
	opm/core/grid/cpgpreprocess/preprocess.h
	tests/Makefile.am
This commit is contained in:
Atgeirr Flø Rasmussen 2012-09-05 13:36:19 +02:00
commit 9c77d12f8d
43 changed files with 2244 additions and 1473 deletions

View File

@ -26,20 +26,20 @@ namespace Opm
{
BlackoilPropertiesBasic::BlackoilPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells)
const int dim,
const int num_cells)
{
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
rock_.init(dim, num_cells, poro, perm);
pvt_.init(param);
pvt_.init(param);
satprops_.init(param);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
}
BlackoilPropertiesBasic::~BlackoilPropertiesBasic()
@ -90,11 +90,11 @@ namespace Opm
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
/// array must be valid before calling.
void BlackoilPropertiesBasic::viscosity(const int n,
const double* p,
const double* z,
const int* /*cells*/,
double* mu,
double* dmudp) const
const double* p,
const double* z,
const int* /*cells*/,
double* mu,
double* dmudp) const
{
if (dmudp) {
THROW("BlackoilPropertiesBasic::viscosity() -- derivatives of viscosity not yet implemented.");
@ -114,16 +114,16 @@ namespace Opm
/// array must be valid before calling. The matrices are output
/// in Fortran order.
void BlackoilPropertiesBasic::matrix(const int n,
const double* /*p*/,
const double* /*z*/,
const int* /*cells*/,
double* A,
double* dAdp) const
const double* /*p*/,
const double* /*z*/,
const int* /*cells*/,
double* A,
double* dAdp) const
{
const int np = numPhases();
ASSERT(np <= 2);
double B[2]; // Must be enough since component classes do not handle more than 2.
pvt_.B(1, 0, 0, B);
const int np = numPhases();
ASSERT(np <= 2);
double B[2]; // Must be enough since component classes do not handle more than 2.
pvt_.B(1, 0, 0, B);
// Compute A matrix
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
@ -152,8 +152,8 @@ namespace Opm
/// of a call to the method matrix().
/// \param[out] rho Array of nP density values, array must be valid before calling.
void BlackoilPropertiesBasic::density(const int n,
const double* A,
double* rho) const
const double* A,
double* rho) const
{
const int np = numPhases();
const double* sdens = pvt_.surfaceDensities();
@ -186,10 +186,10 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesBasic::relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, kr, dkrds);
}
@ -205,10 +205,10 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesBasic::capPress(const int n,
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, pc, dpcds);
}
@ -226,7 +226,7 @@ namespace Opm
double* smin,
double* smax) const
{
satprops_.satRange(n, smin, smax);
satprops_.satRange(n, smin, smax);
}

View File

@ -35,16 +35,16 @@ namespace Opm
{
public:
/// Construct from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
BlackoilPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells);
const int dim,
const int num_cells);
/// Destructor.
virtual ~BlackoilPropertiesBasic();
@ -151,7 +151,7 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.

View File

@ -18,20 +18,69 @@
*/
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
namespace Opm
{
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
rock_.init(deck, global_cell);
pvt_.init(deck);
satprops_.init(deck, global_cell);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
rock_.init(deck, grid);
pvt_.init(deck, 200);
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, 200);
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
{
rock_.init(deck, grid);
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
pvt_.init(deck, pvt_samples);
// Unfortunate lack of pointer smartness here...
const int sat_samples = param.getDefault("sat_tab_size", 200);
std::string threephase_model = param.getDefault<std::string>("threephase_model", "simple");
bool use_stone2 = (threephase_model == "stone2");
if (sat_samples > 1) {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
} else {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Nonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Nonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleNonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleNonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
}
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
@ -235,7 +284,7 @@ namespace Opm
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, cells, kr, dkrds);
satprops_->relperm(n, s, cells, kr, dkrds);
}
@ -254,7 +303,7 @@ namespace Opm
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, cells, pc, dpcds);
satprops_->capPress(n, s, cells, pc, dpcds);
}
@ -270,7 +319,7 @@ namespace Opm
double* smin,
double* smax) const
{
satprops_.satRange(n, cells, smin, smax);
satprops_->satRange(n, cells, smin, smax);
}

View File

@ -26,6 +26,10 @@
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <boost/scoped_ptr.hpp>
struct UnstructuredGrid;
namespace Opm
{
@ -35,12 +39,28 @@ namespace Opm
class BlackoilPropertiesFromDeck : public BlackoilPropertiesInterface
{
public:
/// Construct from deck and cell mapping.
/// \param deck eclipse input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// Initialize from deck and grid.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
/// Initialize from deck, grid and parameters.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] param Parameters. Accepted parameters include:
/// pvt_tab_size (200) number of uniform sample points for dead-oil pvt tables.
/// sat_tab_size (200) number of uniform sample points for saturation tables.
/// threephase_model("simple") three-phase relperm model (accepts "simple" and "stone2").
/// For both size parameters, a 0 or negative value indicates that no spline fitting is to
/// be done, and the input fluid data used directly for linear interpolation.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
/// Destructor.
virtual ~BlackoilPropertiesFromDeck();
@ -147,9 +167,9 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
@ -162,7 +182,7 @@ namespace Opm
private:
RockFromDeck rock_;
BlackoilPvtProperties pvt_;
SaturationPropsFromDeck satprops_;
boost::scoped_ptr<SaturationPropsInterface> satprops_;
mutable std::vector<double> B_;
mutable std::vector<double> dB_;
mutable std::vector<double> R_;

View File

@ -138,9 +138,9 @@ namespace Opm
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.

View File

@ -28,22 +28,22 @@ namespace Opm
{
IncompPropertiesBasic::IncompPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells)
const int dim,
const int num_cells)
{
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
rock_.init(dim, num_cells, poro, perm);
pvt_.init(param);
pvt_.init(param);
satprops_.init(param);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
}
IncompPropertiesBasic::IncompPropertiesBasic(const int num_phases,
@ -56,14 +56,14 @@ namespace Opm
const int num_cells)
{
rock_.init(dim, num_cells, por, perm);
pvt_.init(num_phases, rho, mu);
pvt_.init(num_phases, rho, mu);
satprops_.init(num_phases, relpermfunc);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
}
IncompPropertiesBasic::~IncompPropertiesBasic()
@ -109,7 +109,7 @@ namespace Opm
/// \return Array of P viscosity values.
const double* IncompPropertiesBasic::viscosity() const
{
return &viscosity_[0];
return &viscosity_[0];
}
/// \return Array of P density values.
@ -117,7 +117,7 @@ namespace Opm
{
// No difference between reservoir and surface densities
// modelled by this class.
return pvt_.surfaceDensities();
return pvt_.surfaceDensities();
}
/// \return Array of P density values.
@ -125,7 +125,7 @@ namespace Opm
{
// No difference between reservoir and surface densities
// modelled by this class.
return pvt_.surfaceDensities();
return pvt_.surfaceDensities();
}
/// \param[in] n Number of data points.
@ -138,10 +138,10 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesBasic::relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, kr, dkrds);
}
@ -157,10 +157,10 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesBasic::capPress(const int n,
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, pc, dpcds);
}
@ -174,11 +174,11 @@ namespace Opm
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void IncompPropertiesBasic::satRange(const int n,
const int* /*cells*/,
double* smin,
double* smax) const
const int* /*cells*/,
double* smin,
double* smax) const
{
satprops_.satRange(n, smin, smax);
satprops_.satRange(n, smin, smax);
}
} // namespace Opm

View File

@ -42,29 +42,29 @@ namespace Opm
{
public:
/// Construct from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
IncompPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells);
const int dim,
const int num_cells);
/// Construct from arguments a basic two phase fluid.
IncompPropertiesBasic(const int num_phases,
const SaturationPropsBasic::RelPermFunc& relpermfunc,
const std::vector<double>& rho,
const std::vector<double>& mu,
const std::vector<double>& mu,
const double porosity,
const double permeability,
const int dim,
const int num_cells);
const int num_cells);
/// Destructor.
/// Destructor.
virtual ~IncompPropertiesBasic();
// ---- Rock interface ----
@ -132,9 +132,9 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
@ -145,9 +145,9 @@ namespace Opm
double* smax) const;
private:
RockBasic rock_;
PvtPropertiesBasic pvt_;
PvtPropertiesBasic pvt_;
SaturationPropsBasic satprops_;
std::vector<double> viscosity_;
std::vector<double> viscosity_;
};

View File

@ -27,15 +27,15 @@ namespace Opm
{
IncompPropertiesFromDeck::IncompPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
rock_.init(deck, global_cell);
pvt_.init(deck);
satprops_.init(deck, global_cell);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
rock_.init(deck, grid);
pvt_.init(deck);
satprops_.init(deck, grid, 200);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
}
IncompPropertiesFromDeck::~IncompPropertiesFromDeck()
@ -81,19 +81,19 @@ namespace Opm
/// \return Array of P viscosity values.
const double* IncompPropertiesFromDeck::viscosity() const
{
return pvt_.viscosity();
return pvt_.viscosity();
}
/// \return Array of P density values.
const double* IncompPropertiesFromDeck::density() const
{
return pvt_.reservoirDensities();
return pvt_.reservoirDensities();
}
/// \return Array of P density values.
const double* IncompPropertiesFromDeck::surfaceDensity() const
{
return pvt_.surfaceDensities();
return pvt_.surfaceDensities();
}
/// \param[in] n Number of data points.
@ -106,10 +106,10 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesFromDeck::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, cells, kr, dkrds);
}
@ -125,10 +125,10 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesFromDeck::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, cells, pc, dpcds);
}
@ -142,11 +142,11 @@ namespace Opm
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void IncompPropertiesFromDeck::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
const int* cells,
double* smin,
double* smax) const
{
satprops_.satRange(n, cells, smin, smax);
satprops_.satRange(n, cells, smin, smax);
}
} // namespace Opm

View File

@ -26,6 +26,8 @@
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
struct UnstructuredGrid;
namespace Opm
{
@ -43,14 +45,15 @@ namespace Opm
class IncompPropertiesFromDeck : public IncompPropertiesInterface
{
public:
/// Construct from deck and cell mapping.
/// \param deck eclipse input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
IncompPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
/// Destructor.
/// Destructor.
virtual ~IncompPropertiesFromDeck();
// ---- Rock interface ----
@ -118,9 +121,9 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
@ -131,8 +134,8 @@ namespace Opm
double* smax) const;
private:
RockFromDeck rock_;
PvtPropertiesIncompFromDeck pvt_;
SaturationPropsFromDeck satprops_;
PvtPropertiesIncompFromDeck pvt_;
SaturationPropsFromDeck<SatFuncStone2Uniform> satprops_;
};

View File

@ -109,9 +109,9 @@ namespace Opm
double* pc,
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.

View File

@ -34,41 +34,41 @@ namespace Opm
void PvtPropertiesBasic::init(const parameter::ParameterGroup& param)
{
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
density_.resize(num_phases);
viscosity_.resize(num_phases);
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
density_.resize(num_phases);
viscosity_.resize(num_phases);
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
// Setting mu and rho from parameters
using namespace Opm::prefix;
using namespace Opm::unit;
const double kgpm3 = kilogram/cubic(meter);
const double cP = centi*Poise;
std::string rname[3] = { "rho1", "rho2", "rho3" };
double rdefault[3] = { 1.0e3, 1.0e3, 1.0e3 };
std::string vname[3] = { "mu1", "mu2", "mu3" };
double vdefault[3] = { 1.0, 1.0, 1.0 };
for (int phase = 0; phase < num_phases; ++phase) {
density_[phase] = kgpm3*param.getDefault(rname[phase], rdefault[phase]);
viscosity_[phase] = cP*param.getDefault(vname[phase], vdefault[phase]);
}
// Setting mu and rho from parameters
using namespace Opm::prefix;
using namespace Opm::unit;
const double kgpm3 = kilogram/cubic(meter);
const double cP = centi*Poise;
std::string rname[3] = { "rho1", "rho2", "rho3" };
double rdefault[3] = { 1.0e3, 1.0e3, 1.0e3 };
std::string vname[3] = { "mu1", "mu2", "mu3" };
double vdefault[3] = { 1.0, 1.0, 1.0 };
for (int phase = 0; phase < num_phases; ++phase) {
density_[phase] = kgpm3*param.getDefault(rname[phase], rdefault[phase]);
viscosity_[phase] = cP*param.getDefault(vname[phase], vdefault[phase]);
}
}
void PvtPropertiesBasic::init(const int num_phases,
const std::vector<double>& rho,
const std::vector<double>& visc)
{
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
density_ = rho;
viscosity_ = visc;
}
@ -87,69 +87,69 @@ namespace Opm
void PvtPropertiesBasic::mu(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_mu) const
const double* /*p*/,
const double* /*z*/,
double* output_mu) const
{
const int np = numPhases();
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_mu[np*i + phase] = viscosity_[phase];
}
}
}
}
void PvtPropertiesBasic::B(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_B) const
const double* /*p*/,
const double* /*z*/,
double* output_B) const
{
const int np = numPhases();
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_B[np*i + phase] = formation_volume_factor_[phase];
}
}
}
}
void PvtPropertiesBasic::dBdp(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_B,
double* output_dBdp) const
const double* /*p*/,
const double* /*z*/,
double* output_B,
double* output_dBdp) const
{
const int np = numPhases();
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_B[np*i + phase] = formation_volume_factor_[phase];
output_dBdp[np*i + phase] = 0.0;
}
}
}
}
void PvtPropertiesBasic::R(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_R) const
const double* /*p*/,
const double* /*z*/,
double* output_R) const
{
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
}
void PvtPropertiesBasic::dRdp(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_R,
double* output_dRdp) const
const double* /*p*/,
const double* /*z*/,
double* output_R,
double* output_dRdp) const
{
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
std::fill(output_dRdp, output_dRdp + n*np, 0.0);
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
std::fill(output_dRdp, output_dRdp + n*np, 0.0);
}
} // namespace Opm

View File

@ -38,11 +38,11 @@ namespace Opm
PvtPropertiesBasic();
/// Initialize from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1, 2 or 3.
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
void init(const parameter::ParameterGroup& param);
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1, 2 or 3.
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
void init(const parameter::ParameterGroup& param);
/// Initialize from arguments.
/// Basic multi phase fluid pvt properties.
@ -55,7 +55,7 @@ namespace Opm
/// Densities of stock components at surface conditions.
/// \return Array of size numPhases().
const double* surfaceDensities() const;
const double* surfaceDensities() const;
/// Viscosity as a function of p and z.
void mu(const int n,
@ -90,9 +90,9 @@ namespace Opm
double* output_dRdp) const;
private:
std::vector<double> density_;
std::vector<double> viscosity_;
std::vector<double> formation_volume_factor_;
std::vector<double> density_;
std::vector<double> viscosity_;
std::vector<double> formation_volume_factor_;
};
}

View File

@ -38,54 +38,54 @@ namespace Opm
{
typedef std::vector<std::vector<std::vector<double> > > table_t;
// If we need multiple regions, this class and the SinglePvt* classes must change.
int region_number = 0;
int region_number = 0;
PhaseUsage phase_usage = phaseUsageFromDeck(deck);
if (phase_usage.phase_used[PhaseUsage::Vapour] ||
!phase_usage.phase_used[PhaseUsage::Aqua] ||
!phase_usage.phase_used[PhaseUsage::Liquid]) {
THROW("PvtPropertiesIncompFromDeck::init() -- must have gas and oil phases (only) in deck input.\n");
}
if (phase_usage.phase_used[PhaseUsage::Vapour] ||
!phase_usage.phase_used[PhaseUsage::Aqua] ||
!phase_usage.phase_used[PhaseUsage::Liquid]) {
THROW("PvtPropertiesIncompFromDeck::init() -- must have gas and oil phases (only) in deck input.\n");
}
// Surface densities. Accounting for different orders in eclipse and our code.
if (deck.hasField("DENSITY")) {
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
surface_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] = d[ECL_water];
surface_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] = d[ECL_oil];
} else {
THROW("Input is missing DENSITY\n");
}
// Surface densities. Accounting for different orders in eclipse and our code.
if (deck.hasField("DENSITY")) {
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
surface_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] = d[ECL_water];
surface_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] = d[ECL_oil];
} else {
THROW("Input is missing DENSITY\n");
}
// Make reservoir densities the same as surface densities initially.
// We will modify them with formation volume factors if found.
reservoir_density_ = surface_density_;
// Water viscosity.
if (deck.hasField("PVTW")) {
const std::vector<double>& pvtw = deck.getPVTW().pvtw_[region_number];
if (pvtw[2] != 0.0 || pvtw[4] != 0.0) {
MESSAGE("Compressibility effects in PVTW are ignored.");
}
if (deck.hasField("PVTW")) {
const std::vector<double>& pvtw = deck.getPVTW().pvtw_[region_number];
if (pvtw[2] != 0.0 || pvtw[4] != 0.0) {
MESSAGE("Compressibility effects in PVTW are ignored.");
}
reservoir_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] /= pvtw[1];
viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = pvtw[3];
} else {
// Eclipse 100 default.
// viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = 0.5*Opm::prefix::centi*Opm::unit::Poise;
THROW("Input is missing PVTW\n");
}
viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = pvtw[3];
} else {
// Eclipse 100 default.
// viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = 0.5*Opm::prefix::centi*Opm::unit::Poise;
THROW("Input is missing PVTW\n");
}
// Oil viscosity.
if (deck.hasField("PVCDO")) {
const std::vector<double>& pvcdo = deck.getPVCDO().pvcdo_[region_number];
if (pvcdo[2] != 0.0 || pvcdo[4] != 0.0) {
MESSAGE("Compressibility effects in PVCDO are ignored.");
}
if (deck.hasField("PVCDO")) {
const std::vector<double>& pvcdo = deck.getPVCDO().pvcdo_[region_number];
if (pvcdo[2] != 0.0 || pvcdo[4] != 0.0) {
MESSAGE("Compressibility effects in PVCDO are ignored.");
}
reservoir_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] /= pvcdo[1];
viscosity_[phase_usage.phase_pos[PhaseUsage::Liquid]] = pvcdo[3];
} else {
THROW("Input is missing PVCDO\n");
}
viscosity_[phase_usage.phase_pos[PhaseUsage::Liquid]] = pvcdo[3];
} else {
THROW("Input is missing PVCDO\n");
}
}
const double* PvtPropertiesIncompFromDeck::surfaceDensities() const

View File

@ -39,14 +39,14 @@ namespace Opm
PvtPropertiesIncompFromDeck();
/// Initialize from deck.
void init(const EclipseGridParser& deck);
void init(const EclipseGridParser& deck);
/// Number of active phases.
int numPhases() const;
/// Densities of stock components at surface conditions.
/// \return Array of size numPhases().
const double* surfaceDensities() const;
const double* surfaceDensities() const;
/// Densities of stock components at reservoir conditions.
/// Note: a reasonable question to ask is why there can be
@ -58,15 +58,15 @@ namespace Opm
/// reporting and using data given in terms of surface values,
/// we need to handle this difference.
/// \return Array of size numPhases().
const double* reservoirDensities() const;
const double* reservoirDensities() const;
/// Viscosities.
const double* viscosity() const;
private:
std::tr1::array<double, 2> surface_density_;
std::tr1::array<double, 2> reservoir_density_;
std::tr1::array<double, 2> viscosity_;
std::tr1::array<double, 2> surface_density_;
std::tr1::array<double, 2> reservoir_density_;
std::tr1::array<double, 2> viscosity_;
};
}

View File

@ -35,9 +35,9 @@ namespace Opm
/// Initialize with homogenous porosity and permeability.
void init(const int dimensions,
const int num_cells,
const double poro,
const double perm);
const int num_cells,
const double poro,
const double perm);
/// \return D, the number of spatial dimensions.
int numDimensions() const
@ -66,7 +66,7 @@ namespace Opm
}
private:
int dimensions_;
int dimensions_;
std::vector<double> porosity_;
std::vector<double> permeability_;
};

View File

@ -69,7 +69,8 @@ namespace Opm
const double cpnorm = rock_comp_*(pressure - pref_);
return (1.0 + cpnorm + 0.5*cpnorm*cpnorm);
} else {
return Opm::linearInterpolation(p_, poromult_, pressure);
// return Opm::linearInterpolation(p_, poromult_, pressure);
return Opm::linearInterpolationExtrap(p_, poromult_, pressure);
}
}
@ -78,8 +79,11 @@ namespace Opm
if (p_.empty()) {
return rock_comp_;
} else {
const double poromult = Opm::linearInterpolation(p_, poromult_, pressure);
const double dporomultdp = Opm::linearInterpolationDerivative(p_, poromult_, pressure);
//const double poromult = Opm::linearInterpolation(p_, poromult_, pressure);
//const double dporomultdp = Opm::linearInterpolationDerivative(p_, poromult_, pressure);
const double poromult = Opm::linearInterpolationExtrap(p_, poromult_, pressure);
const double dporomultdp = Opm::linearInterpolationDerivativeExtrap(p_, poromult_, pressure);
return dporomultdp/poromult;
}
}

View File

@ -19,7 +19,7 @@
#include <opm/core/fluid/RockFromDeck.hpp>
#include <opm/core/grid.h>
#include <tr1/array>
namespace Opm
@ -36,8 +36,6 @@ namespace Opm
PermeabilityKind fillTensor(const EclipseGridParser& parser,
std::vector<const std::vector<double>*>& tensor,
std::tr1::array<int,9>& kmap);
int numGlobalCells(const EclipseGridParser& parser);
} // anonymous namespace
@ -53,28 +51,29 @@ namespace Opm
/// Initialize from deck and cell mapping.
/// \param deck Deck input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// \param grid grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
void RockFromDeck::init(const EclipseGridParser& deck,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
assignPorosity(deck, global_cell);
permfield_valid_.assign(global_cell.size(), false);
assignPorosity(deck, grid);
permfield_valid_.assign(grid.number_of_cells, false);
const double perm_threshold = 0.0; // Maybe turn into parameter?
assignPermeability(deck, global_cell, perm_threshold);
assignPermeability(deck, grid, perm_threshold);
}
void RockFromDeck::assignPorosity(const EclipseGridParser& parser,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
porosity_.assign(global_cell.size(), 1.0);
porosity_.assign(grid.number_of_cells, 1.0);
const int* gc = grid.global_cell;
if (parser.hasField("PORO")) {
const std::vector<double>& poro = parser.getFloatingPointValue("PORO");
for (int c = 0; c < int(porosity_.size()); ++c) {
porosity_[c] = poro[global_cell[c]];
const int deck_pos = (gc == NULL) ? c : gc[c];
porosity_[c] = poro[deck_pos];
}
}
}
@ -82,14 +81,16 @@ namespace Opm
void RockFromDeck::assignPermeability(const EclipseGridParser& parser,
const std::vector<int>& global_cell,
const UnstructuredGrid& grid,
double perm_threshold)
{
const int dim = 3;
const int num_global_cells = numGlobalCells(parser);
const int num_global_cells = grid.cartdims[0]*grid.cartdims[1]*grid.cartdims[2];
const int nc = grid.number_of_cells;
ASSERT (num_global_cells > 0);
permeability_.assign(dim * dim * global_cell.size(), 0.0);
permeability_.assign(dim * dim * nc, 0.0);
std::vector<const std::vector<double>*> tensor;
tensor.reserve(10);
@ -111,13 +112,13 @@ namespace Opm
// chosen) default value...
//
if (tensor.size() > 1) {
const int nc = global_cell.size();
int off = 0;
const int* gc = grid.global_cell;
int off = 0;
for (int c = 0; c < nc; ++c, off += dim*dim) {
// SharedPermTensor K(dim, dim, &permeability_[off]);
int kix = 0;
const int glob = global_cell[c];
const int glob = (gc == NULL) ? c : gc[c];
for (int i = 0; i < dim; ++i) {
for (int j = 0; j < dim; ++j, ++kix) {
@ -331,26 +332,6 @@ namespace Opm
return kind;
}
int numGlobalCells(const EclipseGridParser& parser)
{
int ngc = -1;
if (parser.hasField("DIMENS")) {
const std::vector<int>&
dims = parser.getIntegerValue("DIMENS");
ngc = dims[0] * dims[1] * dims[2];
}
else if (parser.hasField("SPECGRID")) {
const SPECGRID& sgr = parser.getSPECGRID();
ngc = sgr.dimensions[ 0 ];
ngc *= sgr.dimensions[ 1 ];
ngc *= sgr.dimensions[ 2 ];
}
return ngc;
}
} // anonymous namespace
} // namespace Opm

View File

@ -24,6 +24,7 @@
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <vector>
struct UnstructuredGrid;
namespace Opm
{
@ -34,12 +35,13 @@ namespace Opm
/// Default constructor.
RockFromDeck();
/// Initialize from deck and cell mapping.
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// \param grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
void init(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
/// \return D, the number of spatial dimensions. Always 3 for deck input.
int numDimensions() const
@ -69,9 +71,9 @@ namespace Opm
private:
void assignPorosity(const EclipseGridParser& parser,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
void assignPermeability(const EclipseGridParser& parser,
const std::vector<int>& global_cell,
const UnstructuredGrid& grid,
const double perm_threshold);
std::vector<double> porosity_;

View File

@ -29,64 +29,64 @@ namespace Opm
namespace {
struct KrFunConstant
{
double kr(double)
{
return 1.0;
}
double dkrds(double)
{
return 0.0;
}
};
struct KrFunConstant
{
double kr(double)
{
return 1.0;
}
double dkrds(double)
{
return 0.0;
}
};
struct KrFunLinear
{
double kr(double s)
{
return s;
}
double dkrds(double)
{
return 1.0;
}
};
struct KrFunLinear
{
double kr(double s)
{
return s;
}
double dkrds(double)
{
return 1.0;
}
};
struct KrFunQuadratic
{
double kr(double s)
{
return s*s;
}
double dkrds(double s)
{
return 2.0*s;
}
};
struct KrFunQuadratic
{
double kr(double s)
{
return s*s;
}
double dkrds(double s)
{
return 2.0*s;
}
};
template <class Fun>
static inline void evalAllKrDeriv(const int n, const int np,
const double* s, double* kr, double* dkrds, Fun fun)
{
if (dkrds == 0) {
template <class Fun>
static inline void evalAllKrDeriv(const int n, const int np,
const double* s, double* kr, double* dkrds, Fun fun)
{
if (dkrds == 0) {
// #pragma omp parallel for
for (int i = 0; i < n*np; ++i) {
kr[i] = fun.kr(s[i]);
}
return;
}
for (int i = 0; i < n*np; ++i) {
kr[i] = fun.kr(s[i]);
}
return;
}
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
for (int phase = 0; phase < np; ++phase) {
kr[i*np + phase] = fun.kr(s[i*np + phase]);
// Only diagonal elements in derivative.
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
}
}
}
for (int i = 0; i < n; ++i) {
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
for (int phase = 0; phase < np; ++phase) {
kr[i*np + phase] = fun.kr(s[i*np + phase]);
// Only diagonal elements in derivative.
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
}
}
}
} // anon namespace
@ -99,6 +99,7 @@ namespace Opm
/// Default constructor.
SaturationPropsBasic::SaturationPropsBasic()
: num_phases_(0), relperm_func_(Constant)
{
}
@ -108,24 +109,25 @@ namespace Opm
/// Initialize from parameters.
void SaturationPropsBasic::init(const parameter::ParameterGroup& param)
{
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 2 || num_phases < 1) {
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
}
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 2 || num_phases < 1) {
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
}
num_phases_ = num_phases;
std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
if (rpf == "Constant") {
relperm_func_ = Constant;
if(num_phases!=1){
THROW("Constant relperm with more than one phase???");
}
} else if (rpf == "Linear") {
relperm_func_ = Linear;
} else if (rpf == "Quadratic") {
relperm_func_ = Quadratic;
} else {
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
}
//std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
std::string rpf = param.getDefault("relperm_func", std::string("Linear"));
if (rpf == "Constant") {
relperm_func_ = Constant;
if(num_phases!=1){
THROW("Constant relperm with more than one phase???");
}
} else if (rpf == "Linear") {
relperm_func_ = Linear;
} else if (rpf == "Quadratic") {
relperm_func_ = Quadratic;
} else {
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
}
}
@ -134,7 +136,7 @@ namespace Opm
/// \return P, the number of phases.
int SaturationPropsBasic::numPhases() const
{
return num_phases_;
return num_phases_;
}
@ -150,29 +152,29 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void SaturationPropsBasic::relperm(const int n,
const double* s,
double* kr,
double* dkrds) const
const double* s,
double* kr,
double* dkrds) const
{
switch (relperm_func_) {
case Constant:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
break;
}
case Linear:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
break;
}
case Quadratic:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
break;
}
default:
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
}
switch (relperm_func_) {
case Constant:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
break;
}
case Linear:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
break;
}
case Quadratic:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
break;
}
default:
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
}
}
@ -188,13 +190,13 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void SaturationPropsBasic::capPress(const int n,
const double* /*s*/,
double* pc,
double* dpcds) const
const double* /*s*/,
double* pc,
double* dpcds) const
{
std::fill(pc, pc + num_phases_*n, 0.0);
std::fill(pc, pc + num_phases_*n, 0.0);
if (dpcds) {
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
}
}
@ -205,11 +207,11 @@ namespace Opm
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void SaturationPropsBasic::satRange(const int n,
double* smin,
double* smax) const
double* smin,
double* smax) const
{
std::fill(smin, smin + num_phases_*n, 0.0);
std::fill(smax, smax + num_phases_*n, 1.0);
std::fill(smin, smin + num_phases_*n, 0.0);
std::fill(smax, smax + num_phases_*n, 1.0);
}

View File

@ -40,16 +40,16 @@ namespace Opm
SaturationPropsBasic();
/// Initialize from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
void init(const parameter::ParameterGroup& param);
enum RelPermFunc { Constant, Linear, Quadratic };
enum RelPermFunc { Constant, Linear, Quadratic };
/// Initialize from arguments a basic Saturation property.
void init(const int num_phases,
const RelPermFunc& relperm_func)
const RelPermFunc& relperm_func)
{
num_phases_ = num_phases;
relperm_func_ = relperm_func;
@ -86,18 +86,18 @@ namespace Opm
double* pc,
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void satRange(const int n,
double* smin,
double* smax) const;
void satRange(const int n,
double* smin,
double* smax) const;
private:
int num_phases_;
RelPermFunc relperm_func_;
int num_phases_;
RelPermFunc relperm_func_;
};

View File

@ -20,24 +20,44 @@
#ifndef OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#include <opm/core/fluid/SaturationPropsInterface.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <opm/core/fluid/SatFuncStone2.hpp>
#include <opm/core/fluid/SatFuncSimple.hpp>
#include <vector>
struct UnstructuredGrid;
namespace Opm
{
class SaturationPropsFromDeck : public BlackoilPhases
/// Interface to saturation functions from deck.
/// Possible values for template argument (for now):
/// SatFuncSetStone2Nonuniform,
/// SatFuncSetStone2Uniform.
/// SatFuncSetSimpleNonuniform,
/// SatFuncSetSimpleUniform.
template <class SatFuncSet>
class SaturationPropsFromDeck : public SaturationPropsInterface
{
public:
/// Default constructor.
SaturationPropsFromDeck();
/// Initialize from deck.
/// global_cell maps from grid cells to their original logical Cartesian indices.
/// Initialize from deck and grid.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] samples Number of uniform sample points for saturation tables.
/// NOTE: samples will only be used with the SatFuncSetUniform template argument.
void init(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid,
const int samples);
/// \return P, the number of phases.
int numPhases() const;
@ -72,41 +92,23 @@ namespace Opm
double* pc,
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void satRange(const int n,
void satRange(const int n,
const int* cells,
double* smin,
double* smax) const;
double* smin,
double* smax) const;
private:
PhaseUsage phase_usage_;
class SatFuncSet
{
public:
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
void evalKr(const double* s, double* kr) const;
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
void evalPc(const double* s, double* pc) const;
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
double smin_[PhaseUsage::MaxNumPhases];
double smax_[PhaseUsage::MaxNumPhases];
private:
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
UniformTableLinear<double> krw_;
UniformTableLinear<double> krow_;
UniformTableLinear<double> pcow_;
UniformTableLinear<double> krg_;
UniformTableLinear<double> krog_;
UniformTableLinear<double> pcog_;
double krocw_; // = krow_(s_wc)
};
std::vector<SatFuncSet> satfuncset_;
std::vector<int> cell_to_func_; // = SATNUM - 1
const SatFuncSet& funcForCell(const int cell) const;
typedef SatFuncSet Funcs;
const Funcs& funcForCell(const int cell) const;
};
@ -114,6 +116,7 @@ namespace Opm
} // namespace Opm
#include <opm/core/fluid/SaturationPropsFromDeck_impl.hpp>
#endif // OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED

View File

@ -0,0 +1,221 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/utility/NonuniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
#include <opm/core/grid.h>
namespace Opm
{
// ----------- Methods of SaturationPropsFromDeck ---------
/// Default constructor.
template <class SatFuncSet>
SaturationPropsFromDeck<SatFuncSet>::SaturationPropsFromDeck()
{
}
/// Initialize from deck.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::init(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const int samples)
{
phase_usage_ = phaseUsageFromDeck(deck);
// Extract input data.
// Oil phase should be active.
if (!phase_usage_.phase_used[Liquid]) {
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
}
// Obtain SATNUM, if it exists, and create cell_to_func_.
// Otherwise, let the cell_to_func_ mapping be just empty.
int satfuncs_expected = 1;
if (deck.hasField("SATNUM")) {
const std::vector<int>& satnum = deck.getIntegerValue("SATNUM");
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
const int num_cells = grid.number_of_cells;
cell_to_func_.resize(num_cells);
const int* gc = grid.global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int deck_pos = (gc == NULL) ? cell : gc[cell];
cell_to_func_[cell] = satnum[deck_pos] - 1;
}
}
// Find number of tables, check for consistency.
enum { Uninitialized = -1 };
int num_tables = Uninitialized;
if (phase_usage_.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
num_tables = swof_table.size();
if (num_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
}
}
if (phase_usage_.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
int num_sgof_tables = sgof_table.size();
if (num_sgof_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
}
if (num_tables == Uninitialized) {
num_tables = num_sgof_tables;
} else if (num_tables != num_sgof_tables) {
THROW("Inconsistent number of tables in SWOF and SGOF.");
}
}
// Initialize tables.
satfuncset_.resize(num_tables);
for (int table = 0; table < num_tables; ++table) {
satfuncset_[table].init(deck, table, phase_usage_, samples);
}
}
/// \return P, the number of phases.
template <class SatFuncSet>
int SaturationPropsFromDeck<SatFuncSet>::numPhases() const
{
return phase_usage_.num_phases;
}
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dkrds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKr(s + np*i, kr + np*i);
}
}
}
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dpcds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPc(s + np*i, pc + np*i);
}
}
}
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
for (int i = 0; i < n; ++i) {
for (int p = 0; p < np; ++p) {
smin[np*i + p] = funcForCell(cells[i]).smin_[p];
smax[np*i + p] = funcForCell(cells[i]).smax_[p];
}
}
}
// Map the cell number to the correct function set.
template <class SatFuncSet>
const typename SaturationPropsFromDeck<SatFuncSet>::Funcs&
SaturationPropsFromDeck<SatFuncSet>::funcForCell(const int cell) const
{
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
}
} // namespace Opm
#endif // OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED

View File

@ -0,0 +1,85 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#define OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
namespace Opm
{
class SaturationPropsInterface : public BlackoilPhases
{
public:
/// Virtual destructor.
virtual ~SaturationPropsInterface() {};
/// \return P, the number of phases.
virtual int numPhases() const = 0;
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const = 0;
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
virtual void satRange(const int n,
const int* cells,
double* smin,
double* smax) const = 0;
};
} // namespace Opm
#endif // OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED

View File

@ -47,7 +47,13 @@ namespace Opm
BlackoilPvtProperties();
/// Initialize from deck.
void init(const EclipseGridParser& deck);
/// \param deck An input deck.
/// \param samples If greater than zero, indicates the number of
/// uniform samples to be taken from monotone spline
/// curves interpolating the fluid data.
/// Otherwise, interpolate linearly in the original
/// data without fitting a spline.
void init(const EclipseGridParser& deck, const int samples);
/// Number of active phases.
int numPhases() const;
@ -64,7 +70,7 @@ namespace Opm
/// Densities of stock components at surface conditions.
/// \return Array of size numPhases().
const double* surfaceDensities() const;
const double* surfaceDensities() const;
/// Viscosity as a function of p and z.
void mu(const int n,
@ -105,11 +111,11 @@ namespace Opm
PhaseUsage phase_usage_;
int region_number_;
int region_number_;
std::vector<std::tr1::shared_ptr<SinglePvtInterface> > props_;
double densities_[MaxNumPhases];
double densities_[MaxNumPhases];
mutable std::vector<double> data1_;
mutable std::vector<double> data2_;
};

View File

@ -31,6 +31,11 @@
#include <opm/core/linalg/LinearSolverIstl.hpp>
#endif
#if HAVE_AGMG
#include <opm/core/linalg/LinearSolverAGMG.hpp>
#endif
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <string>
@ -70,6 +75,12 @@ namespace Opm
#endif
}
else if (ls == "agmg") {
#if HAVE_AGMG
solver_.reset(new LinearSolverAGMG(param));
#endif
}
else {
THROW("Linear solver " << ls << " is unknown.");
}

View File

@ -24,10 +24,7 @@
#include <opm/core/linalg/LinearSolverIstl.hpp>
// Work around the fact that istl headers expect
// HAVE_BOOST to be 1, and not just defined.
#undef HAVE_BOOST
#define HAVE_BOOST 1
#include <opm/core/utility/have_boost_redef.hpp>
// TODO: clean up includes.
#include <dune/common/deprecated.hh>

View File

@ -30,6 +30,7 @@
#include <opm/core/newwells.h>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <algorithm>
#include <cmath>
@ -58,6 +59,7 @@ namespace Opm
/// to change.
CompressibleTpfa::CompressibleTpfa(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
const LinearSolverInterface& linsolver,
const double residual_tol,
const double change_tol,
@ -66,6 +68,7 @@ namespace Opm
const struct Wells* wells)
: grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
linsolver_(linsolver),
residual_tol_(residual_tol),
change_tol_(change_tol),
@ -74,8 +77,8 @@ namespace Opm
wells_(wells),
htrans_(grid.cell_facepos[ grid.number_of_cells ]),
trans_ (grid.number_of_faces),
porevol_(grid.number_of_cells),
allcells_(grid.number_of_cells)
allcells_(grid.number_of_cells),
singular_(false)
{
if (wells_ && (wells_->number_of_phases != props.numPhases())) {
THROW("Inconsistent number of phases specified (wells vs. props): "
@ -86,7 +89,12 @@ namespace Opm
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
tpfa_trans_compute(gg, &htrans_[0], &trans_[0]);
computePorevolume(grid_, props.porosity(), porevol_);
// If we have rock compressibility, pore volumes are updated
// in the compute*() methods, otherwise they are constant and
// hence may be computed here.
if (rock_comp_props_ == NULL || !rock_comp_props_->isActive()) {
computePorevolume(grid_, props.porosity(), porevol_);
}
for (int c = 0; c < grid.number_of_cells; ++c) {
allcells_[c] = c;
}
@ -182,6 +190,21 @@ namespace Opm
/// @brief After solve(), was the resulting pressure singular.
/// Returns true if the pressure is singular in the following
/// sense: if everything is incompressible and there are no
/// pressure conditions, the absolute values of the pressure
/// solution are arbitrary. (But the differences in pressure
/// are significant.)
bool CompressibleTpfa::singularPressure() const
{
return singular_;
}
/// Compute well potentials.
void CompressibleTpfa::computeWellPotentials(const BlackoilState& state)
{
@ -230,6 +253,9 @@ namespace Opm
const WellState& /*well_state*/)
{
computeWellPotentials(state);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
}
}
@ -252,6 +278,8 @@ namespace Opm
// std::vector<double> face_gravcap_;
// std::vector<double> wellperf_A_;
// std::vector<double> wellperf_phasemob_;
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
computeCellDynamicData(dt, state, well_state);
computeFaceDynamicData(dt, state, well_state);
computeWellDynamicData(dt, state, well_state);
@ -273,6 +301,8 @@ namespace Opm
// std::vector<double> cell_viscosity_;
// std::vector<double> cell_phasemob_;
// std::vector<double> cell_voldisc_;
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
const int nc = grid_.number_of_cells;
const int np = props_.numPhases();
const double* cell_p = &state.pressure()[0];
@ -296,6 +326,14 @@ namespace Opm
// TODO: Check this!
cell_voldisc_.clear();
cell_voldisc_.resize(nc, 0.0);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
rock_comp_.resize(nc);
for (int cell = 0; cell < nc; ++cell) {
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
}
}
}
@ -341,7 +379,7 @@ namespace Opm
const double depth_diff = face_depth - grid_.cell_centroids[c[j]*dim + dim - 1];
props_.density(1, &cell_A_[np*np*c[j]], &gravcontrib[j][0]);
for (int p = 0; p < np; ++p) {
gravcontrib[j][p] *= depth_diff;
gravcontrib[j][p] *= depth_diff*grav;
}
} else {
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
@ -465,9 +503,20 @@ namespace Opm
cq.Af = &face_A_[0];
cq.phasemobf = &face_phasemob_[0];
cq.voldiscr = &cell_voldisc_[0];
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], h_);
int was_adjusted = 0;
if (! (rock_comp_props_ && rock_comp_props_->isActive())) {
was_adjusted =
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], h_);
} else {
was_adjusted =
cfs_tpfa_res_comprock_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], &initial_porevol_[0],
&rock_comp_[0], h_);
}
singular_ = (was_adjusted == 1);
}

View File

@ -33,6 +33,7 @@ namespace Opm
class BlackoilState;
class BlackoilPropertiesInterface;
class RockCompressibility;
class LinearSolverInterface;
class WellState;
@ -44,23 +45,25 @@ namespace Opm
{
public:
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] linsolver Linear solver to use.
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
/// \param[in] maxiter Maximum acceptable number of iterations.
/// \param[in] gravity Gravity vector. If non-null, the array should
/// have D elements.
/// \param[in] wells The wells argument. Will be used in solution,
/// is ignored if NULL.
/// Note: this class observes the well object, and
/// makes the assumption that the well topology
/// and completions does not change during the
/// run. However, controls (only) are allowed
/// to change.
CompressibleTpfa(const UnstructuredGrid& grid,
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] rock_comp_props Rock compressibility properties. May be null.
/// \param[in] linsolver Linear solver to use.
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
/// \param[in] maxiter Maximum acceptable number of iterations.
/// \param[in] gravity Gravity vector. If non-null, the array should
/// have D elements.
/// \param[in] wells The wells argument. Will be used in solution,
/// is ignored if NULL.
/// Note: this class observes the well object, and
/// makes the assumption that the well topology
/// and completions does not change during the
/// run. However, controls (only) are allowed
/// to change.
CompressibleTpfa(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
const LinearSolverInterface& linsolver,
const double residual_tol,
const double change_tol,
@ -68,8 +71,8 @@ namespace Opm
const double* gravity,
const Wells* wells);
/// Destructor.
~CompressibleTpfa();
/// Destructor.
~CompressibleTpfa();
/// Solve the pressure equation by Newton-Raphson scheme.
/// May throw an exception if the number of iterations
@ -78,17 +81,24 @@ namespace Opm
BlackoilState& state,
WellState& well_state);
/// @brief After solve(), was the resulting pressure singular.
/// Returns true if the pressure is singular in the following
/// sense: if everything is incompressible and there are no
/// pressure conditions, the absolute values of the pressure
/// solution are arbitrary. (But the differences in pressure
/// are significant.)
bool singularPressure() const;
private:
void computePerSolveDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeWellPotentials(const BlackoilState& state);
virtual void computePerSolveDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computePerIterationDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeCellDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
virtual void computeCellDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeFaceDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
@ -101,28 +111,31 @@ namespace Opm
void solveIncrement();
double residualNorm() const;
double incrementNorm() const;
void computeResults(BlackoilState& state,
void computeResults(BlackoilState& state,
WellState& well_state) const;
protected:
void computeWellPotentials(const BlackoilState& state);
// ------ Data that will remain unmodified after construction. ------
const UnstructuredGrid& grid_;
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
const RockCompressibility* rock_comp_props_;
const LinearSolverInterface& linsolver_;
const double residual_tol_;
const double change_tol_;
const int maxiter_;
const double* gravity_; // May be NULL
const Wells* wells_; // May be NULL, outside may modify controls (only) between calls to solve().
std::vector<double> htrans_;
std::vector<double> trans_ ;
std::vector<double> porevol_;
std::vector<double> htrans_;
std::vector<double> trans_ ;
std::vector<int> allcells_;
// ------ Internal data for the cfs_tpfa_res solver. ------
struct cfs_tpfa_res_data* h_;
struct cfs_tpfa_res_data* h_;
// ------ Data that will be modified for every solve. ------
std::vector<double> wellperf_gpot_;
std::vector<double> initial_porevol_;
// ------ Data that will be modified for every solver iteration. ------
std::vector<double> cell_A_;
@ -135,13 +148,15 @@ namespace Opm
std::vector<double> face_gravcap_;
std::vector<double> wellperf_A_;
std::vector<double> wellperf_phasemob_;
std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
// The update to be applied to the pressures (cell and bhp).
std::vector<double> pressure_increment_;
// True if the matrix assembled would be singular but for the
// adjustment made in the cfs_*_assemble() calls. This happens
// if everything is incompressible and there are no pressure
// conditions.
bool singular_;
};
} // namespace Opm

View File

@ -1156,7 +1156,7 @@ cfs_tpfa_res_construct(struct UnstructuredGrid *G ,
/* ---------------------------------------------------------------------- */
void
int
cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
double dt ,
struct cfs_tpfa_res_forces *forces ,
@ -1170,7 +1170,7 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
struct cfs_tpfa_res_data *h )
/* ---------------------------------------------------------------------- */
{
int res_is_neumann, well_is_neumann, c, np2;
int res_is_neumann, well_is_neumann, c, np2, singular;
csrmatrix_zero( h->J);
vector_zero (h->J->m, h->F);
@ -1207,9 +1207,76 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
assemble_sources(dt, forces->src, h);
}
if (res_is_neumann && well_is_neumann && h->pimpl->is_incomp) {
h->J->sa[0] *= 2;
singular = res_is_neumann && well_is_neumann && h->pimpl->is_incomp;
if (singular) {
h->J->sa[0] *= 2.0;
}
return singular;
}
/* ---------------------------------------------------------------------- */
int
cfs_tpfa_res_comprock_assemble(
struct UnstructuredGrid *G ,
double dt ,
struct cfs_tpfa_res_forces *forces ,
const double *zc ,
struct compr_quantities_gen *cq ,
const double *trans ,
const double *gravcap_f,
const double *cpress ,
const double *wpress ,
const double *porevol ,
const double *porevol0 ,
const double *rock_comp,
struct cfs_tpfa_res_data *h )
/* ---------------------------------------------------------------------- */
{
/* We want to add this term to the usual residual:
*
* (porevol(pressure)-porevol(initial_pressure))/dt.
*
* Its derivative (for the diagonal term of the Jacobian) is:
*
* porevol(pressure)*rock_comp(pressure)/dt
*/
int c, rock_is_incomp, singular;
size_t j;
double dpv;
/* Assemble usual system (without rock compressibility). */
singular = cfs_tpfa_res_assemble(G, dt, forces, zc, cq, trans, gravcap_f,
cpress, wpress, porevol0, h);
/* If we made a singularity-removing adjustment in the
regular assembly, we undo it here. */
if (singular) {
h->J->sa[0] /= 2.0;
}
/* Add new terms to residual and Jacobian. */
rock_is_incomp = 1;
for (c = 0; c < G->number_of_cells; c++) {
j = csrmatrix_elm_index(c, c, h->J);
dpv = (porevol[c] - porevol0[c]);
if (dpv != 0.0 || rock_comp[c] != 0.0) {
rock_is_incomp = 0;
}
h->J->sa[j] += porevol[c] * rock_comp[c];
h->F[c] += dpv;
}
/* Re-do the singularity-removing adjustment if necessary */
if (rock_is_incomp && singular) {
h->J->sa[0] *= 2.0;
}
return rock_is_incomp && singular;
}

View File

@ -59,7 +59,11 @@ cfs_tpfa_res_construct(struct UnstructuredGrid *G ,
void
cfs_tpfa_res_destroy(struct cfs_tpfa_res_data *h);
void
/* Return value is 1 if the assembled matrix was adjusted to remove a
singularity. This happens if all fluids are incompressible and
there are no pressure conditions on wells or boundaries.
Otherwise return 0. */
int
cfs_tpfa_res_assemble(struct UnstructuredGrid *G,
double dt,
struct cfs_tpfa_res_forces *forces,
@ -72,6 +76,27 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G,
const double *porevol,
struct cfs_tpfa_res_data *h);
/* Return value is 1 if the assembled matrix was adjusted to remove a
singularity. This happens if all fluids are incompressible, the
rock is incompressible, and there are no pressure conditions on
wells or boundaries.
Otherwise return 0. */
int
cfs_tpfa_res_comprock_assemble(
struct UnstructuredGrid *G,
double dt,
struct cfs_tpfa_res_forces *forces,
const double *zc,
struct compr_quantities_gen *cq,
const double *trans,
const double *gravcap_f,
const double *cpress,
const double *wpress,
const double *porevol,
const double *porevol0,
const double *rock_comp,
struct cfs_tpfa_res_data *h);
void
cfs_tpfa_res_flux(struct UnstructuredGrid *G ,
struct cfs_tpfa_res_forces *forces ,

View File

@ -771,7 +771,7 @@ ifs_tpfa_assemble_comprock_increment(struct UnstructuredGrid *G ,
assemble_incompressible(G, F, trans, gpress, h, &system_singular, &ok);
/* We want to solve a Newton step for the residual
* (porevol(pressure)-porevol(initial_pressure))/dt + residual_for_imcompressible
* (porevol(pressure)-porevol(initial_pressure))/dt + residual_for_incompressible
*
*/

View File

@ -20,6 +20,16 @@
#ifndef OPM_IFS_TPFA_HEADER_INCLUDED
#define OPM_IFS_TPFA_HEADER_INCLUDED
/**
* \file
* Interfaces and data structures to assemble a system of simultaneous linear
* equations discretising a flow problem that is either incompressible or
* features rock compressibility using the two-point flux approximation method.
*
* Includes support for reconstructing the Darcy flux field as well as well
* connection fluxes.
*/
#include <opm/core/grid.h>
#ifdef __cplusplus
@ -31,37 +41,66 @@ struct CSRMatrix;
struct FlowBoundaryConditions;
struct Wells;
/**
* Main data structure presenting a view of an assembled system of simultaneous
* linear equations which may be solved using external software.
*/
struct ifs_tpfa_data {
struct CSRMatrix *A;
double *b;
double *x;
struct CSRMatrix *A; /**< Coefficient matrix */
double *b; /**< Right-hand side */
double *x; /**< Solution */
struct ifs_tpfa_impl *pimpl;
struct ifs_tpfa_impl *pimpl; /**< Internal management structure */
};
/**
* Solution variables.
*/
struct ifs_tpfa_solution {
double *cell_press;
double *face_flux ;
double *cell_press; /**< Cell pressures */
double *face_flux ; /**< Interface fluxes */
double *well_press; /* BHP */
double *well_flux ; /* Perforation (total) fluxes */
double *well_press; /**< Bottom-hole pressures for each well */
double *well_flux ; /**< Well connection total fluxes */
};
/**
* Driving forces pertaining to a particular model setup.
*/
struct ifs_tpfa_forces {
const double *src;
const struct FlowBoundaryConditions *bc ;
const double *src; /**< Explicit source terms */
const struct FlowBoundaryConditions *bc ; /**< Boundary conditions */
const struct Wells *W ;
const double *totmob;
const double *wdp ;
const struct Wells *W ; /**< Well topology */
const double *totmob; /**< Total mobility in each cell */
const double *wdp ; /**< Gravity adjustment at each perforation */
};
/**
* Allocate TPFA management structure capable of assembling a system of
* simultaneous linear equations corresponding to a particular grid and well
* configuration.
*
* @param[in] G Grid.
* @param[in] W Well topology.
* @return Fully formed TPFA management structure if successful, @c NULL in case
* of allocation failure.
*/
struct ifs_tpfa_data *
ifs_tpfa_construct(struct UnstructuredGrid *G,
struct Wells *W);
/**
*
* @param[in] G
* @param[in] F
* @param[in] trans
* @param[in] gpress
* @param[in,out] h
* @return
*/
int
ifs_tpfa_assemble(struct UnstructuredGrid *G ,
const struct ifs_tpfa_forces *F ,

View File

@ -42,6 +42,12 @@ namespace Opm
<< "\n Pressure time: " << pressure_time
<< "\n Transport time: " << transport_time << std::endl;
}
void SimulatorReport::reportParam(std::ostream& os)
{
os << "/timing/total_time=" << total_time
<< "\n/timing/pressure/total_time=" << pressure_time
<< "\n/timing/transport/total_time=" << transport_time << std::endl;
}
} // namespace Opm

View File

@ -38,6 +38,7 @@ namespace Opm
void operator+=(const SimulatorReport& sr);
/// Print a report to the given stream.
void report(std::ostream& os);
void reportParam(std::ostream& os);
};
} // namespace Opm

View File

@ -24,6 +24,7 @@
#include <opm/core/transport/reorder/reordersequence.h>
#include <opm/core/utility/RootFinders.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <fstream>
@ -38,263 +39,277 @@ namespace Opm
typedef RegulaFalsi<WarnAndContinueOnError> RootFinder;
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
const Opm::BlackoilPropertiesInterface& props,
const double tol,
const int maxit)
: grid_(grid),
props_(props),
tol_(tol),
maxit_(maxit),
darcyflux_(0),
source_(0),
dt_(0.0),
saturation_(grid.number_of_cells, -1.0),
fractionalflow_(grid.number_of_cells, -1.0),
mob_(2*grid.number_of_cells, -1.0),
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(
const UnstructuredGrid& grid,
const Opm::BlackoilPropertiesInterface& props,
const double tol,
const int maxit)
: grid_(grid),
props_(props),
tol_(tol),
maxit_(maxit),
darcyflux_(0),
source_(0),
dt_(0.0),
saturation_(grid.number_of_cells, -1.0),
fractionalflow_(grid.number_of_cells, -1.0),
gravity_(0),
mob_(2*grid.number_of_cells, -1.0),
ia_upw_(grid.number_of_cells + 1, -1),
ja_upw_(grid.number_of_faces, -1),
ia_downw_(grid.number_of_cells + 1, -1),
ja_downw_(grid.number_of_faces, -1)
ja_upw_(grid.number_of_faces, -1),
ia_downw_(grid.number_of_cells + 1, -1),
ja_downw_(grid.number_of_faces, -1)
{
if (props.numPhases() != 2) {
THROW("Property object must have 2 phases");
}
if (props.numPhases() != 2) {
THROW("Property object must have 2 phases");
}
int np = props.numPhases();
int num_cells = props.numCells();
visc_.resize(np*num_cells);
int num_cells = props.numCells();
visc_.resize(np*num_cells);
A_.resize(np*np*num_cells);
smin_.resize(np*num_cells);
smax_.resize(np*num_cells);
allcells_.resize(num_cells);
for (int i = 0; i < num_cells; ++i) {
allcells_[i] = i;
}
props.satRange(props.numCells(), &allcells_[0], &smin_[0], &smax_[0]);
smin_.resize(np*num_cells);
smax_.resize(np*num_cells);
allcells_.resize(num_cells);
for (int i = 0; i < num_cells; ++i) {
allcells_[i] = i;
}
props.satRange(props.numCells(), &allcells_[0], &smin_[0], &smax_[0]);
}
void TransportModelCompressibleTwophase::solve(const double* darcyflux,
const double* pressure,
const double* surfacevol0,
const double* porevolume0,
const double* porevolume,
const double* source,
const double dt,
std::vector<double>& saturation)
std::vector<double>& saturation,
std::vector<double>& surfacevol)
{
darcyflux_ = darcyflux;
surfacevol0_ = surfacevol0;
darcyflux_ = darcyflux;
surfacevol0_ = &surfacevol[0];
porevolume0_ = porevolume0;
porevolume_ = porevolume;
source_ = source;
dt_ = dt;
source_ = source;
dt_ = dt;
toWaterSat(saturation, saturation_);
props_.viscosity(props_.numCells(), pressure, NULL, &allcells_[0], &visc_[0], NULL);
props_.matrix(props_.numCells(), pressure, NULL, &allcells_[0], &A_[0], NULL);
std::vector<int> seq(grid_.number_of_cells);
std::vector<int> comp(grid_.number_of_cells + 1);
int ncomp;
compute_sequence_graph(&grid_, darcyflux_,
&seq[0], &comp[0], &ncomp,
&ia_upw_[0], &ja_upw_[0]);
const int nf = grid_.number_of_faces;
std::vector<double> neg_darcyflux(nf);
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
compute_sequence_graph(&grid_, &neg_darcyflux[0],
&seq[0], &comp[0], &ncomp,
&ia_downw_[0], &ja_downw_[0]);
reorderAndTransport(grid_, darcyflux);
// Check immiscibility requirement (only done for first cell).
if (A_[1] != 0.0 || A_[2] != 0.0) {
THROW("TransportModelCompressibleTwophase requires a property object without miscibility.");
}
std::vector<int> seq(grid_.number_of_cells);
std::vector<int> comp(grid_.number_of_cells + 1);
int ncomp;
compute_sequence_graph(&grid_, darcyflux_,
&seq[0], &comp[0], &ncomp,
&ia_upw_[0], &ja_upw_[0]);
const int nf = grid_.number_of_faces;
std::vector<double> neg_darcyflux(nf);
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
compute_sequence_graph(&grid_, &neg_darcyflux[0],
&seq[0], &comp[0], &ncomp,
&ia_downw_[0], &ja_downw_[0]);
reorderAndTransport(grid_, darcyflux);
toBothSat(saturation_, saturation);
// Compute surface volume as a postprocessing step from saturation and A_
computeSurfacevol(grid_.number_of_cells, props_.numPhases(), &A_[0], &saturation[0], &surfacevol[0]);
}
// Residual function r(s) for a single-cell implicit Euler transport
//
// [[ incompressible was: r(s) = s - s0 + dt/pv*( influx + outflux*f(s) ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s))
// r(s) = s - B*z0 + s*(poro - poro0)/poro0 + dt/pv*( influx + outflux*f(s) )
//
// @@@ What about the source term
//
//
// where influx is water influx, outflux is total outflux.
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} + q_w.
// outflux = B_i sum_{i->j} b_i v_{ij} - q = sum_{i->j} v_{ij} - q (as before)
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} - B_i q_w.
// outflux = B_i sum_{i->j} b_i v_{ij} - B_i q = sum_{i->j} v_{ij} - B_i q
// Influxes are negative, outfluxes positive.
struct TransportModelCompressibleTwophase::Residual
{
int cell;
double s0;
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w // TODO: fix comment.
double outflux; // sum_j max(v_ij, 0) - q
int cell;
double B_cell;
double z0;
double influx; // B_i sum_j b_j min(v_ij, 0)*f(s_j) - B_i q_w
double outflux; // sum_j max(v_ij, 0) - B_i q
// @@@ TODO: figure out change to rock-comp. terms with fluid compr.
// double comp_term; // q - sum_j v_ij
double dtpv; // dt/pv(i)
const TransportModelCompressibleTwophase& tm;
explicit Residual(const TransportModelCompressibleTwophase& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
s0 = tm.saturation_[cell];
double comp_term; // Now: used to be: q - sum_j v_ij
double dtpv; // dt/pv(i)
const TransportModelCompressibleTwophase& tm;
explicit Residual(const TransportModelCompressibleTwophase& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
const int np = tm.props_.numPhases();
const double B_cell = 1.0/tm.A_[np*np*cell + 0];
z0 = tm.surfacevol0_[np*cell + 0]; // I.e. water surface volume
B_cell = 1.0/tm.A_[np*np*cell + 0];
double src_flux = -tm.source_[cell];
bool src_is_inflow = src_flux < 0.0;
influx = src_is_inflow ? src_flux : 0.0;
outflux = !src_is_inflow ? src_flux : 0.0;
// comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
dtpv = tm.dt_/tm.porevolume_[cell];
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
const int f = tm.grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == tm.grid_.face_cells[2*f]) {
flux = tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f+1];
} else {
flux =-tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f];
}
// Add flux to influx or outflux, if interior.
if (other != -1) {
if (flux < 0.0) {
influx = src_is_inflow ? B_cell*src_flux : 0.0;
outflux = !src_is_inflow ? B_cell*src_flux : 0.0;
comp_term = (tm.porevolume_[cell] - tm.porevolume0_[cell])/tm.porevolume0_[cell];
dtpv = tm.dt_/tm.porevolume0_[cell];
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
const int f = tm.grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == tm.grid_.face_cells[2*f]) {
flux = tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f+1];
} else {
flux =-tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f];
}
// Add flux to influx or outflux, if interior.
if (other != -1) {
if (flux < 0.0) {
const double b_face = tm.A_[np*np*other + 0];
influx += B_cell*b_face*flux*tm.fractionalflow_[other];
} else {
outflux += flux;
}
// comp_term -= flux;
}
}
}
double operator()(double s) const
{
// return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx);
}
influx += B_cell*b_face*flux*tm.fractionalflow_[other];
} else {
outflux += flux; // Because B_cell*b_face = 1 for outflow faces
}
}
}
}
double operator()(double s) const
{
// return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
return s - B_cell*z0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx) + s*comp_term;
}
};
void TransportModelCompressibleTwophase::solveSingleCell(const int cell)
{
Residual res(*this, cell);
int iters_used;
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
Residual res(*this, cell);
int iters_used;
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
}
void TransportModelCompressibleTwophase::solveMultiCell(const int num_cells, const int* cells)
{
// Experiment: when a cell changes more than the tolerance,
// mark all downwind cells as needing updates. After
// computing a single update in each cell, use marks
// to guide further updating. Clear mark in cell when
// its solution gets updated.
// Verdict: this is a good one! Approx. halved total time.
std::vector<int> needs_update(num_cells, 1);
// This one also needs the mapping from all cells to
// the strongly connected subset to filter out connections
std::vector<int> pos(grid_.number_of_cells, -1);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
pos[cell] = i;
}
// Experiment: when a cell changes more than the tolerance,
// mark all downwind cells as needing updates. After
// computing a single update in each cell, use marks
// to guide further updating. Clear mark in cell when
// its solution gets updated.
// Verdict: this is a good one! Approx. halved total time.
std::vector<int> needs_update(num_cells, 1);
// This one also needs the mapping from all cells to
// the strongly connected subset to filter out connections
std::vector<int> pos(grid_.number_of_cells, -1);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
pos[cell] = i;
}
// Note: partially copied from below.
const double tol = 1e-9;
const int max_iters = 300;
// Must store s0 before we start.
std::vector<double> s0(num_cells);
// Must set initial fractional flows before we start.
// Also, we compute the # of upstream neighbours.
// std::vector<int> num_upstream(num_cells);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
s0[i] = saturation_[cell];
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
}
// Solve once in each cell.
// std::vector<int> fully_marked_stack;
// fully_marked_stack.reserve(num_cells);
int num_iters = 0;
int update_count = 0; // Change name/meaning to cells_updated?
do {
update_count = 0; // Must reset count for every iteration.
for (int i = 0; i < num_cells; ++i) {
// while (!fully_marked_stack.empty()) {
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
// const int fully_marked_ci = fully_marked_stack.back();
// fully_marked_stack.pop_back();
// ++update_count;
// const int cell = cells[fully_marked_ci];
// const double old_s = saturation_[cell];
// saturation_[cell] = s0[fully_marked_ci];
// solveSingleCell(cell);
// const double s_change = std::fabs(saturation_[cell] - old_s);
// if (s_change > tol) {
// // Mark downwind cells.
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
// const int downwind_cell = ja_downw_[j];
// int ci = pos[downwind_cell];
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
// }
// }
// // Unmark this cell.
// needs_update[fully_marked_ci] = 0;
// }
if (!needs_update[i]) {
continue;
}
++update_count;
const int cell = cells[i];
const double old_s = saturation_[cell];
saturation_[cell] = s0[i];
solveSingleCell(cell);
const double s_change = std::fabs(saturation_[cell] - old_s);
if (s_change > tol) {
// Mark downwind cells.
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
const int downwind_cell = ja_downw_[j];
int ci = pos[downwind_cell];
// Note: partially copied from below.
const double tol = 1e-9;
const int max_iters = 300;
// Must store s0 before we start.
std::vector<double> s0(num_cells);
// Must set initial fractional flows before we start.
// Also, we compute the # of upstream neighbours.
// std::vector<int> num_upstream(num_cells);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
s0[i] = saturation_[cell];
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
}
// Solve once in each cell.
// std::vector<int> fully_marked_stack;
// fully_marked_stack.reserve(num_cells);
int num_iters = 0;
int update_count = 0; // Change name/meaning to cells_updated?
do {
update_count = 0; // Must reset count for every iteration.
for (int i = 0; i < num_cells; ++i) {
// while (!fully_marked_stack.empty()) {
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
// const int fully_marked_ci = fully_marked_stack.back();
// fully_marked_stack.pop_back();
// ++update_count;
// const int cell = cells[fully_marked_ci];
// const double old_s = saturation_[cell];
// saturation_[cell] = s0[fully_marked_ci];
// solveSingleCell(cell);
// const double s_change = std::fabs(saturation_[cell] - old_s);
// if (s_change > tol) {
// // Mark downwind cells.
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
// const int downwind_cell = ja_downw_[j];
// int ci = pos[downwind_cell];
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
// }
// }
// // Unmark this cell.
// needs_update[fully_marked_ci] = 0;
// }
if (!needs_update[i]) {
continue;
}
++update_count;
const int cell = cells[i];
const double old_s = saturation_[cell];
// solveSingleCell() requires saturation_[cell]
// to be s0.
saturation_[cell] = s0[i];
solveSingleCell(cell);
const double s_change = std::fabs(saturation_[cell] - old_s);
if (s_change > tol) {
// Mark downwind cells.
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
const int downwind_cell = ja_downw_[j];
int ci = pos[downwind_cell];
if (ci != -1) {
needs_update[ci] = 1;
}
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
}
}
// Unmark this cell.
needs_update[i] = 0;
}
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
// << " # marked cells = "
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
} while (update_count > 0 && ++num_iters < max_iters);
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
}
}
// Unmark this cell.
needs_update[i] = 0;
}
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
// << " # marked cells = "
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
} while (update_count > 0 && ++num_iters < max_iters);
// Done with iterations, check if we succeeded.
if (update_count > 0) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Remaining update count = " << update_count);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;
// Done with iterations, check if we succeeded.
if (update_count > 0) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Remaining update count = " << update_count);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;
}
double TransportModelCompressibleTwophase::fracFlow(double s, int cell) const
{
double sat[2] = { s, 1.0 - s };
double mob[2];
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[2*cell + 0];
mob[1] /= visc_[2*cell + 1];
return mob[0]/(mob[0] + mob[1]);
double sat[2] = { s, 1.0 - s };
double mob[2];
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[2*cell + 0];
mob[1] /= visc_[2*cell + 1];
return mob[0]/(mob[0] + mob[1]);
}
@ -303,23 +318,24 @@ namespace Opm
// Residual function r(s) for a single-cell implicit Euler gravity segregation
//
// r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ).
// [[ incompressible was: r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s) )
struct TransportModelCompressibleTwophase::GravityResidual
{
int cell;
int cell;
int nbcell[2];
double s0;
double dtpv; // dt/pv(i)
double s0;
double dtpv; // dt/pv(i)
double gf[2];
const TransportModelCompressibleTwophase& tm;
explicit GravityResidual(const TransportModelCompressibleTwophase& tmodel,
const TransportModelCompressibleTwophase& tm;
explicit GravityResidual(const TransportModelCompressibleTwophase& tmodel,
const std::vector<int>& cells,
const int pos,
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
: tm(tmodel)
{
cell = cells[pos];
: tm(tmodel)
{
cell = cells[pos];
nbcell[0] = -1;
gf[0] = 0.0;
if (pos > 0) {
@ -332,70 +348,94 @@ namespace Opm
nbcell[1] = cells[pos + 1];
gf[1] = gravflux[pos];
}
s0 = tm.saturation_[cell];
dtpv = tm.dt_/tm.porevolume_[cell];
}
double operator()(double s) const
{
double res = s - s0;
s0 = tm.saturation_[cell];
dtpv = tm.dt_/tm.porevolume0_[cell];
}
double operator()(double s) const
{
double res = s - s0;
double mobcell[2];
tm.mobility(s, cell, mobcell);
for (int nb = 0; nb < 2; ++nb) {
if (nbcell[nb] != -1) {
if (nbcell[nb] != -1) {
double m[2];
if (gf[nb] < 0.0) {
m[0] = mobcell[0];
m[1] = tm.mob_[2*nbcell[nb] + 1];
} else {
} else {
m[0] = tm.mob_[2*nbcell[nb]];
m[1] = mobcell[1];
}
if (m[0] + m[1] > 0.0) {
}
if (m[0] + m[1] > 0.0) {
res += -dtpv*gf[nb]*m[0]*m[1]/(m[0] + m[1]);
}
}
}
}
return res;
}
}
};
void TransportModelCompressibleTwophase::mobility(double s, int cell, double* mob) const
{
double sat[2] = { s, 1.0 - s };
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[0];
mob[1] /= visc_[1];
double sat[2] = { s, 1.0 - s };
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[0];
mob[1] /= visc_[1];
}
void TransportModelCompressibleTwophase::initGravity(const double* grav)
{
// Set up gravflux_ = T_ij g (rho_w - rho_o) (z_i - z_j)
// Set up transmissibilities.
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
const int nf = grid_.number_of_faces;
const int dim = grid_.dimensions;
trans_.resize(nf);
gravflux_.resize(nf);
tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid_), props_.permeability(), &htrans[0]);
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &gravflux_[0]);
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &trans_[0]);
const double delta_rho = 0.0;// props_.density()[0] - props_.density()[1];
THROW("TransportModelCompressibleTwophase gravity solver not done yet."); // See line above...
// Remember gravity vector.
gravity_ = grav;
}
void TransportModelCompressibleTwophase::initGravityDynamic()
{
// Set up gravflux_ = T_ij g [ (b_w,i rho_w,S - b_o,i rho_o,S) (z_i - z_f)
// + (b_w,j rho_w,S - b_o,j rho_o,S) (z_f - z_j) ]
// But b_w,i * rho_w,S = rho_w,i, which we conmpute with a call to props_.density().
// We assume that we already have stored T_ij in trans_.
// We also assume that the A_ matrices are updated from an earlier call to solve().
const int nc = grid_.number_of_cells;
const int nf = grid_.number_of_faces;
const int np = props_.numPhases();
ASSERT(np == 2);
const int dim = grid_.dimensions;
density_.resize(nc*np);
props_.density(grid_.number_of_cells, &A_[0], &density_[0]);
std::fill(gravflux_.begin(), gravflux_.end(), 0.0);
for (int f = 0; f < nf; ++f) {
const int* c = &grid_.face_cells[2*f];
double gdz = 0.0;
const double signs[2] = { 1.0, -1.0 };
if (c[0] != -1 && c[1] != -1) {
for (int d = 0; d < dim; ++d) {
gdz += grav[d]*(grid_.cell_centroids[dim*c[0] + d] - grid_.cell_centroids[dim*c[1] + d]);
for (int ci = 0; ci < 2; ++ci) {
double gdz = 0.0;
for (int d = 0; d < dim; ++d) {
gdz += gravity_[d]*(grid_.cell_centroids[dim*c[ci] + d] - grid_.face_centroids[dim*f + d]);
}
gravflux_[f] += signs[ci]*trans_[f]*gdz*(density_[2*c[ci]] - density_[2*c[ci] + 1]);
}
}
gravflux_[f] *= delta_rho*gdz;
}
}
void TransportModelCompressibleTwophase::solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux)
@ -407,7 +447,7 @@ namespace Opm
saturation_[cell] = RootFinder::solve(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
}
saturation_[cell] = std::min(std::max(saturation_[cell], smin_[2*cell]), smax_[2*cell]);
mobility(saturation_[cell], cell, &mob_[2*cell]);
mobility(saturation_[cell], cell, &mob_[2*cell]);
}
@ -418,17 +458,17 @@ namespace Opm
const int nc = cells.size();
std::vector<double> col_gravflux(nc - 1);
for (int ci = 0; ci < nc - 1; ++ci) {
const int cell = cells[ci];
const int next_cell = cells[ci + 1];
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
const int face = grid_.cell_faces[j];
const int c1 = grid_.face_cells[2*face + 0];
const int cell = cells[ci];
const int next_cell = cells[ci + 1];
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
const int face = grid_.cell_faces[j];
const int c1 = grid_.face_cells[2*face + 0];
const int c2 = grid_.face_cells[2*face + 1];
if (c1 == next_cell || c2 == next_cell) {
if (c1 == next_cell || c2 == next_cell) {
const double gf = gravflux_[face];
col_gravflux[ci] = (c1 == cell) ? gf : -gf;
}
}
}
}
}
// Store initial saturation s0
@ -438,7 +478,7 @@ namespace Opm
}
// Solve single cell problems, repeating if necessary.
double max_s_change = 0.0;
double max_s_change = 0.0;
int num_iters = 0;
do {
max_s_change = 0.0;
@ -454,12 +494,12 @@ namespace Opm
std::fabs(saturation_[cells[ci2]] - old_s[1])));
}
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change << std::endl;
} while (max_s_change > tol_ && ++num_iters < maxit_);
} while (max_s_change > tol_ && ++num_iters < maxit_);
if (max_s_change > tol_) {
THROW("In solveGravityColumn(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
}
if (max_s_change > tol_) {
THROW("In solveGravityColumn(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
}
return num_iters + 1;
}
@ -467,10 +507,14 @@ namespace Opm
void TransportModelCompressibleTwophase::solveGravity(const std::vector<std::vector<int> >& columns,
const double* pressure,
const double* porevolume,
const double* porevolume0,
const double dt,
std::vector<double>& saturation)
std::vector<double>& saturation,
std::vector<double>& surfacevol)
{
// Assume that solve() has already been called, so that A_ is current.
initGravityDynamic();
// Initialize mobilities.
const int nc = grid_.number_of_cells;
std::vector<int> cells(nc);
@ -489,7 +533,7 @@ namespace Opm
}
// Set up other variables.
porevolume_ = porevolume;
porevolume0_ = porevolume0;
dt_ = dt;
toWaterSat(saturation, saturation_);
@ -502,6 +546,9 @@ namespace Opm
std::cout << "Gauss-Seidel column solver average iterations: "
<< double(num_iters)/double(columns.size()) << std::endl;
toBothSat(saturation_, saturation);
// Compute surface volume as a postprocessing step from saturation and A_
computeSurfacevol(grid_.number_of_cells, props_.numPhases(), &A_[0], &saturation[0], &surfacevol[0]);
}
} // namespace Opm

View File

@ -30,37 +30,42 @@ namespace Opm
class BlackoilPropertiesInterface;
/// Implements a reordering transport solver for compressible,
/// non-miscible two-phase flow.
class TransportModelCompressibleTwophase : public TransportModelInterface
{
public:
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
const Opm::BlackoilPropertiesInterface& props,
const double tol,
const int maxit);
/// Solve for saturation at next timestep.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] pressure Array of cell pressures
/// \param[in] surfacevol0 Array of surface volumes at start of timestep
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
void solve(const double* darcyflux,
/// Solve for saturation at next timestep.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] pressure Array of cell pressures
/// \param[in] surfacevol0 Array of surface volumes at start of timestep
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
/// \param[in] porevolume Array of pore volumes at end of timestep.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
/// \param[in, out] surfacevol Surface volume densities for each phase.
void solve(const double* darcyflux,
const double* pressure,
const double* surfacevol0,
const double* porevolume0,
const double* porevolume,
const double* source,
const double dt,
std::vector<double>& saturation);
const double* source,
const double dt,
std::vector<double>& saturation,
std::vector<double>& surfacevol);
/// Initialise quantities needed by gravity solver.
/// \param[in] grav gravity vector
/// \param[in] grav Gravity vector
void initGravity(const double* grav);
/// Solve for gravity segregation.
@ -68,52 +73,62 @@ namespace Opm
/// It assumes that the input columns contain cells in a single
/// vertical stack, that do not interact with other columns (for
/// gravity segregation.
/// \TODO: Implement this.
/// \param[in] columns Vector of cell-columns.
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
/// \param[in, out] surfacevol Surface volume densities for each phase.
void solveGravity(const std::vector<std::vector<int> >& columns,
const double* pressure,
const double* porevolume,
const double* porevolume0,
const double dt,
std::vector<double>& saturation);
std::vector<double>& saturation,
std::vector<double>& surfacevol);
private:
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
void solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux);
int solveGravityColumn(const std::vector<int>& cells);
void initGravityDynamic();
private:
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
std::vector<int> allcells_;
std::vector<double> visc_;
std::vector<double> A_;
std::vector<double> smin_;
std::vector<double> smax_;
double tol_;
double maxit_;
std::vector<double> smin_;
std::vector<double> smax_;
double tol_;
double maxit_;
const double* darcyflux_; // one flux per grid face
const double* surfacevol0_; // one per phase per cell
const double* porevolume_; // one volume per cell
const double* source_; // one source per cell
double dt_;
const double* darcyflux_; // one flux per grid face
const double* surfacevol0_; // one per phase per cell
const double* porevolume0_; // one volume per cell
const double* porevolume_; // one volume per cell
const double* source_; // one source per cell
double dt_;
std::vector<double> saturation_; // P (= num. phases) per cell
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
// For gravity segregation.
const double* gravity_;
std::vector<double> trans_;
std::vector<double> density_;
std::vector<double> gravflux_;
std::vector<double> mob_;
std::vector<double> s0_;
// Storing the upwind and downwind graphs for experiments.
std::vector<int> ia_upw_;
std::vector<int> ja_upw_;
std::vector<int> ia_downw_;
std::vector<int> ja_downw_;
// Storing the upwind and downwind graphs for experiments.
std::vector<int> ia_upw_;
std::vector<int> ja_upw_;
std::vector<int> ia_downw_;
std::vector<int> ja_downw_;
struct Residual;
double fracFlow(double s, int cell) const;
struct Residual;
double fracFlow(double s, int cell) const;
struct GravityResidual;
void mobility(double s, int cell, double* mob) const;

View File

@ -41,71 +41,79 @@ namespace Opm
TransportModelTwophase::TransportModelTwophase(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const double tol,
const int maxit)
: grid_(grid),
props_(props),
tol_(tol),
maxit_(maxit),
darcyflux_(0),
source_(0),
dt_(0.0),
saturation_(grid.number_of_cells, -1.0),
fractionalflow_(grid.number_of_cells, -1.0),
mob_(2*grid.number_of_cells, -1.0)
const Opm::IncompPropertiesInterface& props,
const double tol,
const int maxit)
: grid_(grid),
props_(props),
tol_(tol),
maxit_(maxit),
darcyflux_(0),
source_(0),
dt_(0.0),
saturation_(grid.number_of_cells, -1.0),
fractionalflow_(grid.number_of_cells, -1.0),
reorder_iterations_(grid.number_of_cells, 0),
mob_(2*grid.number_of_cells, -1.0)
#ifdef EXPERIMENT_GAUSS_SEIDEL
, ia_upw_(grid.number_of_cells + 1, -1),
ja_upw_(grid.number_of_faces, -1),
ia_downw_(grid.number_of_cells + 1, -1),
ja_downw_(grid.number_of_faces, -1)
, ia_upw_(grid.number_of_cells + 1, -1),
ja_upw_(grid.number_of_faces, -1),
ia_downw_(grid.number_of_cells + 1, -1),
ja_downw_(grid.number_of_faces, -1)
#endif
{
if (props.numPhases() != 2) {
THROW("Property object must have 2 phases");
}
visc_ = props.viscosity();
int num_cells = props.numCells();
smin_.resize(props.numPhases()*num_cells);
smax_.resize(props.numPhases()*num_cells);
std::vector<int> cells(num_cells);
for (int i = 0; i < num_cells; ++i) {
cells[i] = i;
}
props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]);
if (props.numPhases() != 2) {
THROW("Property object must have 2 phases");
}
visc_ = props.viscosity();
int num_cells = props.numCells();
smin_.resize(props.numPhases()*num_cells);
smax_.resize(props.numPhases()*num_cells);
std::vector<int> cells(num_cells);
for (int i = 0; i < num_cells; ++i) {
cells[i] = i;
}
props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]);
}
void TransportModelTwophase::solve(const double* darcyflux,
const double* porevolume,
const double* source,
const double dt,
std::vector<double>& saturation)
const double* source,
const double dt,
std::vector<double>& saturation)
{
darcyflux_ = darcyflux;
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
dt_ = dt;
source_ = source;
dt_ = dt;
toWaterSat(saturation, saturation_);
#ifdef EXPERIMENT_GAUSS_SEIDEL
std::vector<int> seq(grid_.number_of_cells);
std::vector<int> comp(grid_.number_of_cells + 1);
int ncomp;
compute_sequence_graph(&grid_, darcyflux_,
&seq[0], &comp[0], &ncomp,
&ia_upw_[0], &ja_upw_[0]);
const int nf = grid_.number_of_faces;
std::vector<double> neg_darcyflux(nf);
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
compute_sequence_graph(&grid_, &neg_darcyflux[0],
&seq[0], &comp[0], &ncomp,
&ia_downw_[0], &ja_downw_[0]);
std::vector<int> seq(grid_.number_of_cells);
std::vector<int> comp(grid_.number_of_cells + 1);
int ncomp;
compute_sequence_graph(&grid_, darcyflux_,
&seq[0], &comp[0], &ncomp,
&ia_upw_[0], &ja_upw_[0]);
const int nf = grid_.number_of_faces;
std::vector<double> neg_darcyflux(nf);
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
compute_sequence_graph(&grid_, &neg_darcyflux[0],
&seq[0], &comp[0], &ncomp,
&ia_downw_[0], &ja_downw_[0]);
#endif
reorderAndTransport(grid_, darcyflux);
std::fill(reorder_iterations_.begin(),reorder_iterations_.end(),0);
reorderAndTransport(grid_, darcyflux);
toBothSat(saturation_, saturation);
}
const std::vector<int>& TransportModelTwophase::getReorderIterations() const
{
return reorder_iterations_;
}
// Residual function r(s) for a single-cell implicit Euler transport
//
// r(s) = s - s0 + dt/pv*( influx + outflux*f(s) )
@ -114,330 +122,332 @@ namespace Opm
// Influxes are negative, outfluxes positive.
struct TransportModelTwophase::Residual
{
int cell;
double s0;
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w
double outflux; // sum_j max(v_ij, 0) - q
int cell;
double s0;
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w
double outflux; // sum_j max(v_ij, 0) - q
double comp_term; // q - sum_j v_ij
double dtpv; // dt/pv(i)
const TransportModelTwophase& tm;
explicit Residual(const TransportModelTwophase& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
s0 = tm.saturation_[cell];
double dtpv; // dt/pv(i)
const TransportModelTwophase& tm;
explicit Residual(const TransportModelTwophase& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
s0 = tm.saturation_[cell];
double src_flux = -tm.source_[cell];
bool src_is_inflow = src_flux < 0.0;
influx = src_is_inflow ? src_flux : 0.0;
outflux = !src_is_inflow ? src_flux : 0.0;
influx = src_is_inflow ? src_flux : 0.0;
outflux = !src_is_inflow ? src_flux : 0.0;
comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
dtpv = tm.dt_/tm.porevolume_[cell];
dtpv = tm.dt_/tm.porevolume_[cell];
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
int f = tm.grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == tm.grid_.face_cells[2*f]) {
flux = tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f+1];
} else {
flux =-tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f];
}
// Add flux to influx or outflux, if interior.
if (other != -1) {
if (flux < 0.0) {
influx += flux*tm.fractionalflow_[other];
} else {
outflux += flux;
}
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
int f = tm.grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == tm.grid_.face_cells[2*f]) {
flux = tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f+1];
} else {
flux =-tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f];
}
// Add flux to influx or outflux, if interior.
if (other != -1) {
if (flux < 0.0) {
influx += flux*tm.fractionalflow_[other];
} else {
outflux += flux;
}
comp_term -= flux;
}
}
}
double operator()(double s) const
{
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
}
}
}
}
double operator()(double s) const
{
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
}
};
void TransportModelTwophase::solveSingleCell(const int cell)
{
Residual res(*this, cell);
// const double r0 = res(saturation_[cell]);
// if (std::fabs(r0) < tol_) {
// return;
// }
int iters_used;
// saturation_[cell] = modifiedRegulaFalsi(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
Residual res(*this, cell);
// const double r0 = res(saturation_[cell]);
// if (std::fabs(r0) < tol_) {
// return;
// }
int iters_used = 0;
// saturation_[cell] = modifiedRegulaFalsi(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
// add if it is iteration on an out loop
reorder_iterations_[cell] = reorder_iterations_[cell] + iters_used;
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
}
// namespace {
// class TofComputer
// {
// public:
// TofComputer(const int num_cells,
// const int* ia,
// const int* ja,
// const int startcell,
// std::vector<int>& tof)
// : ia_(ia),
// ja_(ja)
// {
// tof.clear();
// tof.resize(num_cells, num_cells);
// tof[startcell] = 0;
// tof_ = &tof[0];
// visitTof(startcell);
// }
// class TofComputer
// {
// public:
// TofComputer(const int num_cells,
// const int* ia,
// const int* ja,
// const int startcell,
// std::vector<int>& tof)
// : ia_(ia),
// ja_(ja)
// {
// tof.clear();
// tof.resize(num_cells, num_cells);
// tof[startcell] = 0;
// tof_ = &tof[0];
// visitTof(startcell);
// }
// private:
// const int* ia_;
// const int* ja_;
// int* tof_;
// private:
// const int* ia_;
// const int* ja_;
// int* tof_;
// void visitTof(const int cell)
// {
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
// const int nb_cell = ja_[j];
// if (tof_[nb_cell] > tof_[cell] + 1) {
// tof_[nb_cell] = tof_[cell] + 1;
// visitTof(nb_cell);
// }
// }
// }
// void visitTof(const int cell)
// {
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
// const int nb_cell = ja_[j];
// if (tof_[nb_cell] > tof_[cell] + 1) {
// tof_[nb_cell] = tof_[cell] + 1;
// visitTof(nb_cell);
// }
// }
// }
// };
// };
// } // anon namespace
void TransportModelTwophase::solveMultiCell(const int num_cells, const int* cells)
{
// std::ofstream os("dump");
// std::copy(cells, cells + num_cells, std::ostream_iterator<double>(os, "\n"));
// std::ofstream os("dump");
// std::copy(cells, cells + num_cells, std::ostream_iterator<double>(os, "\n"));
// Experiment: try a breath-first search to build a more suitable ordering.
// Verdict: failed to improve #iterations.
// {
// std::vector<int> pos(grid_.number_of_cells, -1);
// for (int i = 0; i < num_cells; ++i) {
// const int cell = cells[i];
// pos[cell] = i;
// }
// std::vector<int> done_pos(num_cells, 0);
// std::vector<int> upstream_pos;
// std::vector<int> new_pos;
// upstream_pos.push_back(0);
// done_pos[0] = 1;
// int current = 0;
// while (int(new_pos.size()) < num_cells) {
// const int i = upstream_pos[current++];
// new_pos.push_back(i);
// const int cell = cells[i];
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
// const int opos = pos[ja_[j]];
// if (!done_pos[opos]) {
// upstream_pos.push_back(opos);
// done_pos[opos] = 1;
// }
// }
// }
// std::reverse(new_pos.begin(), new_pos.end());
// std::copy(new_pos.begin(), new_pos.end(), const_cast<int*>(cells));
// }
// Experiment: try a breath-first search to build a more suitable ordering.
// Verdict: failed to improve #iterations.
// {
// std::vector<int> pos(grid_.number_of_cells, -1);
// for (int i = 0; i < num_cells; ++i) {
// const int cell = cells[i];
// pos[cell] = i;
// }
// std::vector<int> done_pos(num_cells, 0);
// std::vector<int> upstream_pos;
// std::vector<int> new_pos;
// upstream_pos.push_back(0);
// done_pos[0] = 1;
// int current = 0;
// while (int(new_pos.size()) < num_cells) {
// const int i = upstream_pos[current++];
// new_pos.push_back(i);
// const int cell = cells[i];
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
// const int opos = pos[ja_[j]];
// if (!done_pos[opos]) {
// upstream_pos.push_back(opos);
// done_pos[opos] = 1;
// }
// }
// }
// std::reverse(new_pos.begin(), new_pos.end());
// std::copy(new_pos.begin(), new_pos.end(), const_cast<int*>(cells));
// }
// Experiment: try a random ordering.
// Verdict: amazingly, reduced #iterations by approx. 25%!
// int* c = const_cast<int*>(cells);
// std::random_shuffle(c, c + num_cells);
// Experiment: try a random ordering.
// Verdict: amazingly, reduced #iterations by approx. 25%!
// int* c = const_cast<int*>(cells);
// std::random_shuffle(c, c + num_cells);
// Experiment: compute topological tof from first cell.
// Verdict: maybe useful, not tried to exploit it yet.
// std::vector<int> tof;
// TofComputer comp(grid_.number_of_cells, &ia_[0], &ja_[0], cells[0], tof);
// std::ofstream tofdump("tofdump");
// std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tofdump, "\n"));
// Experiment: compute topological tof from first cell.
// Verdict: maybe useful, not tried to exploit it yet.
// std::vector<int> tof;
// TofComputer comp(grid_.number_of_cells, &ia_[0], &ja_[0], cells[0], tof);
// std::ofstream tofdump("tofdump");
// std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tofdump, "\n"));
// Experiment: implement a metric measuring badness of ordering
// as average distance in (cyclic) ordering from
// upstream neighbours.
// Verdict: does not seem to predict #iterations very well, if at all.
// std::vector<int> pos(grid_.number_of_cells, -1);
// for (int i = 0; i < num_cells; ++i) {
// const int cell = cells[i];
// pos[cell] = i;
// }
// double diffsum = 0;
// for (int i = 0; i < num_cells; ++i) {
// const int cell = cells[i];
// int num_upstream = 0;
// int loc_diffsum = 0;
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
// const int opos = pos[ja_[j]];
// if (opos == -1) {
// std::cout << "Hmmm" << std::endl;
// continue;
// }
// ++num_upstream;
// const int diff = (i - opos + num_cells) % num_cells;
// loc_diffsum += diff;
// }
// diffsum += double(loc_diffsum)/double(num_upstream);
// }
// std::cout << "Average distance from upstream neighbours: " << diffsum/double(num_cells)
// << std::endl;
// Experiment: implement a metric measuring badness of ordering
// as average distance in (cyclic) ordering from
// upstream neighbours.
// Verdict: does not seem to predict #iterations very well, if at all.
// std::vector<int> pos(grid_.number_of_cells, -1);
// for (int i = 0; i < num_cells; ++i) {
// const int cell = cells[i];
// pos[cell] = i;
// }
// double diffsum = 0;
// for (int i = 0; i < num_cells; ++i) {
// const int cell = cells[i];
// int num_upstream = 0;
// int loc_diffsum = 0;
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
// const int opos = pos[ja_[j]];
// if (opos == -1) {
// std::cout << "Hmmm" << std::endl;
// continue;
// }
// ++num_upstream;
// const int diff = (i - opos + num_cells) % num_cells;
// loc_diffsum += diff;
// }
// diffsum += double(loc_diffsum)/double(num_upstream);
// }
// std::cout << "Average distance from upstream neighbours: " << diffsum/double(num_cells)
// << std::endl;
#ifdef EXPERIMENT_GAUSS_SEIDEL
// Experiment: when a cell changes more than the tolerance,
// mark all downwind cells as needing updates. After
// computing a single update in each cell, use marks
// to guide further updating. Clear mark in cell when
// its solution gets updated.
// Verdict: this is a good one! Approx. halved total time.
std::vector<int> needs_update(num_cells, 1);
// This one also needs the mapping from all cells to
// the strongly connected subset to filter out connections
std::vector<int> pos(grid_.number_of_cells, -1);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
pos[cell] = i;
}
// Experiment: when a cell changes more than the tolerance,
// mark all downwind cells as needing updates. After
// computing a single update in each cell, use marks
// to guide further updating. Clear mark in cell when
// its solution gets updated.
// Verdict: this is a good one! Approx. halved total time.
std::vector<int> needs_update(num_cells, 1);
// This one also needs the mapping from all cells to
// the strongly connected subset to filter out connections
std::vector<int> pos(grid_.number_of_cells, -1);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
pos[cell] = i;
}
// Note: partially copied from below.
const double tol = 1e-9;
const int max_iters = 300;
// Must store s0 before we start.
std::vector<double> s0(num_cells);
// Must set initial fractional flows before we start.
// Also, we compute the # of upstream neighbours.
// std::vector<int> num_upstream(num_cells);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
s0[i] = saturation_[cell];
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
}
// Solve once in each cell.
// std::vector<int> fully_marked_stack;
// fully_marked_stack.reserve(num_cells);
int num_iters = 0;
int update_count = 0; // Change name/meaning to cells_updated?
do {
update_count = 0; // Must reset count for every iteration.
for (int i = 0; i < num_cells; ++i) {
// while (!fully_marked_stack.empty()) {
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
// const int fully_marked_ci = fully_marked_stack.back();
// fully_marked_stack.pop_back();
// ++update_count;
// const int cell = cells[fully_marked_ci];
// const double old_s = saturation_[cell];
// saturation_[cell] = s0[fully_marked_ci];
// solveSingleCell(cell);
// const double s_change = std::fabs(saturation_[cell] - old_s);
// if (s_change > tol) {
// // Mark downwind cells.
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
// const int downwind_cell = ja_downw_[j];
// int ci = pos[downwind_cell];
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
// }
// }
// // Unmark this cell.
// needs_update[fully_marked_ci] = 0;
// }
if (!needs_update[i]) {
continue;
}
++update_count;
const int cell = cells[i];
const double old_s = saturation_[cell];
saturation_[cell] = s0[i];
solveSingleCell(cell);
const double s_change = std::fabs(saturation_[cell] - old_s);
if (s_change > tol) {
// Mark downwind cells.
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
const int downwind_cell = ja_downw_[j];
int ci = pos[downwind_cell];
// Note: partially copied from below.
const double tol = 1e-9;
const int max_iters = 300;
// Must store s0 before we start.
std::vector<double> s0(num_cells);
// Must set initial fractional flows before we start.
// Also, we compute the # of upstream neighbours.
// std::vector<int> num_upstream(num_cells);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
s0[i] = saturation_[cell];
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
}
// Solve once in each cell.
// std::vector<int> fully_marked_stack;
// fully_marked_stack.reserve(num_cells);
int num_iters = 0;
int update_count = 0; // Change name/meaning to cells_updated?
do {
update_count = 0; // Must reset count for every iteration.
for (int i = 0; i < num_cells; ++i) {
// while (!fully_marked_stack.empty()) {
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
// const int fully_marked_ci = fully_marked_stack.back();
// fully_marked_stack.pop_back();
// ++update_count;
// const int cell = cells[fully_marked_ci];
// const double old_s = saturation_[cell];
// saturation_[cell] = s0[fully_marked_ci];
// solveSingleCell(cell);
// const double s_change = std::fabs(saturation_[cell] - old_s);
// if (s_change > tol) {
// // Mark downwind cells.
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
// const int downwind_cell = ja_downw_[j];
// int ci = pos[downwind_cell];
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
// }
// }
// // Unmark this cell.
// needs_update[fully_marked_ci] = 0;
// }
if (!needs_update[i]) {
continue;
}
++update_count;
const int cell = cells[i];
const double old_s = saturation_[cell];
saturation_[cell] = s0[i];
solveSingleCell(cell);
const double s_change = std::fabs(saturation_[cell] - old_s);
if (s_change > tol) {
// Mark downwind cells.
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
const int downwind_cell = ja_downw_[j];
int ci = pos[downwind_cell];
if (ci != -1) {
needs_update[ci] = 1;
}
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
}
}
// Unmark this cell.
needs_update[i] = 0;
}
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
// << " # marked cells = "
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
} while (update_count > 0 && ++num_iters < max_iters);
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
}
}
// Unmark this cell.
needs_update[i] = 0;
}
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
// << " # marked cells = "
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
} while (update_count > 0 && ++num_iters < max_iters);
// Done with iterations, check if we succeeded.
if (update_count > 0) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Remaining update count = " << update_count);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;
// Done with iterations, check if we succeeded.
if (update_count > 0) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Remaining update count = " << update_count);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;
#else
double max_s_change = 0.0;
const double tol = 1e-9;
const int max_iters = 300;
int num_iters = 0;
// Must store s0 before we start.
std::vector<double> s0(num_cells);
// Must set initial fractional flows before we start.
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
s0[i] = saturation_[cell];
}
do {
max_s_change = 0.0;
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
const double old_s = saturation_[cell];
saturation_[cell] = s0[i];
solveSingleCell(cell);
double s_change = std::fabs(saturation_[cell] - old_s);
// std::cout << "cell = " << cell << " delta s = " << s_change << std::endl;
if (max_s_change < s_change) {
max_s_change = s_change;
}
}
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change
// << " in cell " << max_change_cell << std::endl;
} while (max_s_change > tol && ++num_iters < max_iters);
if (max_s_change > tol) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;
double max_s_change = 0.0;
const double tol = 1e-9;
const int max_iters = 300;
int num_iters = 0;
// Must store s0 before we start.
std::vector<double> s0(num_cells);
// Must set initial fractional flows before we start.
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
s0[i] = saturation_[cell];
}
do {
max_s_change = 0.0;
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
const double old_s = saturation_[cell];
saturation_[cell] = s0[i];
solveSingleCell(cell);
double s_change = std::fabs(saturation_[cell] - old_s);
// std::cout << "cell = " << cell << " delta s = " << s_change << std::endl;
if (max_s_change < s_change) {
max_s_change = s_change;
}
}
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change
// << " in cell " << max_change_cell << std::endl;
} while (max_s_change > tol && ++num_iters < max_iters);
if (max_s_change > tol) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;
#endif // EXPERIMENT_GAUSS_SEIDEL
}
double TransportModelTwophase::fracFlow(double s, int cell) const
{
double sat[2] = { s, 1.0 - s };
double mob[2];
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[0];
mob[1] /= visc_[1];
return mob[0]/(mob[0] + mob[1]);
double sat[2] = { s, 1.0 - s };
double mob[2];
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[0];
mob[1] /= visc_[1];
return mob[0]/(mob[0] + mob[1]);
}
@ -450,19 +460,19 @@ namespace Opm
//
struct TransportModelTwophase::GravityResidual
{
int cell;
int cell;
int nbcell[2];
double s0;
double dtpv; // dt/pv(i)
double s0;
double dtpv; // dt/pv(i)
double gf[2];
const TransportModelTwophase& tm;
explicit GravityResidual(const TransportModelTwophase& tmodel,
const TransportModelTwophase& tm;
explicit GravityResidual(const TransportModelTwophase& tmodel,
const std::vector<int>& cells,
const int pos,
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
: tm(tmodel)
{
cell = cells[pos];
: tm(tmodel)
{
cell = cells[pos];
nbcell[0] = -1;
gf[0] = 0.0;
if (pos > 0) {
@ -475,40 +485,40 @@ namespace Opm
nbcell[1] = cells[pos + 1];
gf[1] = gravflux[pos];
}
s0 = tm.saturation_[cell];
dtpv = tm.dt_/tm.porevolume_[cell];
}
double operator()(double s) const
{
double res = s - s0;
s0 = tm.saturation_[cell];
dtpv = tm.dt_/tm.porevolume_[cell];
}
double operator()(double s) const
{
double res = s - s0;
double mobcell[2];
tm.mobility(s, cell, mobcell);
for (int nb = 0; nb < 2; ++nb) {
if (nbcell[nb] != -1) {
if (nbcell[nb] != -1) {
double m[2];
if (gf[nb] < 0.0) {
m[0] = mobcell[0];
m[1] = tm.mob_[2*nbcell[nb] + 1];
} else {
} else {
m[0] = tm.mob_[2*nbcell[nb]];
m[1] = mobcell[1];
}
if (m[0] + m[1] > 0.0) {
}
if (m[0] + m[1] > 0.0) {
res += -dtpv*gf[nb]*m[0]*m[1]/(m[0] + m[1]);
}
}
}
}
return res;
}
}
};
void TransportModelTwophase::mobility(double s, int cell, double* mob) const
{
double sat[2] = { s, 1.0 - s };
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[0];
mob[1] /= visc_[1];
double sat[2] = { s, 1.0 - s };
props_.relperm(1, sat, &cell, mob, 0);
mob[0] /= visc_[0];
mob[1] /= visc_[1];
}
@ -544,11 +554,12 @@ namespace Opm
const int cell = cells[pos];
GravityResidual res(*this, cells, pos, gravflux);
if (std::fabs(res(saturation_[cell])) > tol_) {
int iters_used;
int iters_used = 0;
saturation_[cell] = RootFinder::solve(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
reorder_iterations_[cell] = reorder_iterations_[cell] + iters_used;
}
saturation_[cell] = std::min(std::max(saturation_[cell], smin_[2*cell]), smax_[2*cell]);
mobility(saturation_[cell], cell, &mob_[2*cell]);
mobility(saturation_[cell], cell, &mob_[2*cell]);
}
@ -559,17 +570,17 @@ namespace Opm
const int nc = cells.size();
std::vector<double> col_gravflux(nc - 1);
for (int ci = 0; ci < nc - 1; ++ci) {
const int cell = cells[ci];
const int next_cell = cells[ci + 1];
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
const int face = grid_.cell_faces[j];
const int c1 = grid_.face_cells[2*face + 0];
const int cell = cells[ci];
const int next_cell = cells[ci + 1];
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
const int face = grid_.cell_faces[j];
const int c1 = grid_.face_cells[2*face + 0];
const int c2 = grid_.face_cells[2*face + 1];
if (c1 == next_cell || c2 == next_cell) {
if (c1 == next_cell || c2 == next_cell) {
const double gf = gravflux_[face];
col_gravflux[ci] = (c1 == cell) ? gf : -gf;
}
}
}
}
}
// Store initial saturation s0
@ -579,7 +590,7 @@ namespace Opm
}
// Solve single cell problems, repeating if necessary.
double max_s_change = 0.0;
double max_s_change = 0.0;
int num_iters = 0;
do {
max_s_change = 0.0;
@ -595,12 +606,12 @@ namespace Opm
std::fabs(saturation_[cells[ci2]] - old_s[1])));
}
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change << std::endl;
} while (max_s_change > tol_ && ++num_iters < maxit_);
} while (max_s_change > tol_ && ++num_iters < maxit_);
if (max_s_change > tol_) {
THROW("In solveGravityColumn(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
}
if (max_s_change > tol_) {
THROW("In solveGravityColumn(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
}
return num_iters + 1;
}

View File

@ -23,7 +23,7 @@
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <vector>
#include <map>
#include <ostream>
struct UnstructuredGrid;
namespace Opm
@ -35,27 +35,27 @@ namespace Opm
class TransportModelTwophase : public TransportModelInterface
{
public:
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
TransportModelTwophase(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const double tol,
const int maxit);
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
TransportModelTwophase(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const double tol,
const int maxit);
/// Solve for saturation at next timestep.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
void solve(const double* darcyflux,
/// Solve for saturation at next timestep.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
void solve(const double* darcyflux,
const double* porevolume,
const double* source,
const double dt,
std::vector<double>& saturation);
const double* source,
const double dt,
std::vector<double>& saturation);
/// Initialise quantities needed by gravity solver.
/// \param[in] grav gravity vector
@ -66,52 +66,57 @@ namespace Opm
/// It assumes that the input columns contain cells in a single
/// vertical stack, that do not interact with other columns (for
/// gravity segregation.
/// \param[in] columns Vector of cell-columns.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
/// \param[in] columns Vector of cell-columns.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
void solveGravity(const std::vector<std::vector<int> >& columns,
const double* porevolume,
const double dt,
std::vector<double>& saturation);
//// Return the number of iterations used by the reordering solver.
//// \return vector of iteration per cell
const std::vector<int>& getReorderIterations() const;
private:
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
void solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux);
int solveGravityColumn(const std::vector<int>& cells);
private:
const UnstructuredGrid& grid_;
const IncompPropertiesInterface& props_;
const double* visc_;
std::vector<double> smin_;
std::vector<double> smax_;
double tol_;
double maxit_;
const UnstructuredGrid& grid_;
const IncompPropertiesInterface& props_;
const double* visc_;
std::vector<double> smin_;
std::vector<double> smax_;
double tol_;
double maxit_;
const double* darcyflux_; // one flux per grid face
const double* porevolume_; // one volume per cell
const double* source_; // one source per cell
double dt_;
const double* darcyflux_; // one flux per grid face
const double* porevolume_; // one volume per cell
const double* source_; // one source per cell
double dt_;
std::vector<double> saturation_; // one per cell, only water saturation!
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
std::vector<int> reorder_iterations_;
//std::vector<double> reorder_fval_;
// For gravity segregation.
std::vector<double> gravflux_;
std::vector<double> mob_;
std::vector<double> s0_;
// Storing the upwind and downwind graphs for experiments.
std::vector<int> ia_upw_;
std::vector<int> ja_upw_;
std::vector<int> ia_downw_;
std::vector<int> ja_downw_;
// Storing the upwind and downwind graphs for experiments.
std::vector<int> ia_upw_;
std::vector<int> ja_upw_;
std::vector<int> ia_downw_;
std::vector<int> ja_downw_;
struct Residual;
double fracFlow(double s, int cell) const;
struct Residual;
double fracFlow(double s, int cell) const;
struct GravityResidual;
void mobility(double s, int cell, double* mob) const;

View File

@ -512,11 +512,11 @@ namespace Opm
State& state)
{
const int num_phases = props.numPhases();
if (num_phases != 2) {
THROW("initStateFromDeck(): currently handling only two-phase scenarios.");
}
state.init(grid, num_phases);
if (deck.hasField("EQUIL")) {
if (num_phases != 2) {
THROW("initStateFromDeck(): EQUIL-based init currently handling only two-phase scenarios.");
}
// Set saturations depending on oil-water contact.
const EQUIL& equil= deck.getEQUIL();
if (equil.equil.size() != 1) {
@ -535,11 +535,27 @@ namespace Opm
const std::vector<double>& sw_deck = deck.getFloatingPointValue("SWAT");
const std::vector<double>& p_deck = deck.getFloatingPointValue("PRESSURE");
const int num_cells = grid.number_of_cells;
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[2*c] = sw_deck[c_deck];
s[2*c + 1] = 1.0 - s[2*c];
p[c] = p_deck[c_deck];
if (num_phases == 2) {
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[2*c] = sw_deck[c_deck];
s[2*c + 1] = 1.0 - s[2*c];
p[c] = p_deck[c_deck];
}
} else if (num_phases == 3) {
if (!deck.hasField("SGAS")) {
THROW("initStateFromDeck(): missing SGAS keyword in 3-phase init (only SWAT and PRESSURE found).");
}
const std::vector<double>& sg_deck = deck.getFloatingPointValue("SGAS");
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[3*c] = sw_deck[c_deck];
s[3*c + 1] = 1.0 - (sw_deck[c_deck] + sg_deck[c_deck]);
s[3*c + 2] = sg_deck[c_deck];
p[c] = p_deck[c_deck];
}
} else {
THROW("initStateFromDeck(): init with SWAT etc. only available with 2 or 3 phases.");
}
} else {
THROW("initStateFromDeck(): we must either have EQUIL, or both SWAT and PRESSURE.");

View File

@ -40,14 +40,14 @@ namespace Opm
/// @param[out] porevol the pore volume by cell.
void computePorevolume(const UnstructuredGrid& grid,
const double* porosity,
std::vector<double>& porevol)
std::vector<double>& porevol)
{
int num_cells = grid.number_of_cells;
porevol.resize(num_cells);
std::transform(porosity, porosity + num_cells,
grid.cell_volumes,
porevol.begin(),
std::multiplies<double>());
int num_cells = grid.number_of_cells;
porevol.resize(num_cells);
std::transform(porosity, porosity + num_cells,
grid.cell_volumes,
porevol.begin(),
std::multiplies<double>());
}
@ -70,6 +70,25 @@ namespace Opm
}
}
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at standard conditions)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity)
{
int num_cells = grid.number_of_cells;
porosity.resize(num_cells);
for (int i = 0; i < num_cells; ++i) {
porosity[i] = porosity_standard[i]*rock_comp.poroMult(pressure[i]);
}
}
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.
@ -79,20 +98,20 @@ namespace Opm
/// For each phase p, we compute
/// sat_vol_p = sum_i s_p_i pv_i
void computeSaturatedVol(const std::vector<double>& pv,
const std::vector<double>& s,
double* sat_vol)
const std::vector<double>& s,
double* sat_vol)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
std::fill(sat_vol, sat_vol + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
for (int p = 0; p < np; ++p) {
sat_vol[p] += pv[c]*s[np*c + p];
}
}
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
std::fill(sat_vol, sat_vol + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
for (int p = 0; p < np; ++p) {
sat_vol[p] += pv[c]*s[np*c + p];
}
}
}
@ -104,28 +123,28 @@ namespace Opm
/// For each phase p, we compute
/// aver_sat_p = (sum_i s_p_i pv_i) / (sum_i pv_i).
void computeAverageSat(const std::vector<double>& pv,
const std::vector<double>& s,
double* aver_sat)
const std::vector<double>& s,
double* aver_sat)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double tot_pv = 0.0;
// Note that we abuse the output array to accumulate the
// saturated pore volumes.
std::fill(aver_sat, aver_sat + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
tot_pv += pv[c];
for (int p = 0; p < np; ++p) {
aver_sat[p] += pv[c]*s[np*c + p];
}
}
// Must divide by pore volumes to get saturations.
for (int p = 0; p < np; ++p) {
aver_sat[p] /= tot_pv;
}
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double tot_pv = 0.0;
// Note that we abuse the output array to accumulate the
// saturated pore volumes.
std::fill(aver_sat, aver_sat + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
tot_pv += pv[c];
for (int p = 0; p < np; ++p) {
aver_sat[p] += pv[c]*s[np*c + p];
}
}
// Must divide by pore volumes to get saturations.
for (int p = 0; p < np; ++p) {
aver_sat[p] /= tot_pv;
}
}
@ -142,38 +161,38 @@ namespace Opm
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const IncompPropertiesInterface& props,
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced)
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced)
{
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
const double* visc = props.viscosity();
std::vector<double> mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
const double* visc = props.viscosity();
std::vector<double> mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
}
@ -184,9 +203,9 @@ namespace Opm
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob)
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob)
{
std::vector<double> pmobc;
@ -212,10 +231,10 @@ namespace Opm
/// @param[out] totmob total mobility
/// @param[out] omega fractional-flow weighted fluid densities.
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
{
std::vector<double> pmobc;
@ -312,33 +331,33 @@ namespace Opm
/// (+) positive inflow of first phase (water)
/// (-) negative total outflow of both phases
void computeTransportSource(const UnstructuredGrid& grid,
const std::vector<double>& src,
const std::vector<double>& faceflux,
const double inflow_frac,
const std::vector<double>& src,
const std::vector<double>& faceflux,
const double inflow_frac,
const Wells* wells,
const std::vector<double>& well_perfrates,
std::vector<double>& transport_src)
std::vector<double>& transport_src)
{
int nc = grid.number_of_cells;
transport_src.resize(nc);
int nc = grid.number_of_cells;
transport_src.resize(nc);
// Source term and boundary contributions.
for (int c = 0; c < nc; ++c) {
transport_src[c] = 0.0;
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
int f = grid.cell_faces[hf];
const int* f2c = &grid.face_cells[2*f];
double bdy_influx = 0.0;
if (f2c[0] == c && f2c[1] == -1) {
bdy_influx = -faceflux[f];
} else if (f2c[0] == -1 && f2c[1] == c) {
bdy_influx = faceflux[f];
}
if (bdy_influx != 0.0) {
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
}
}
}
for (int c = 0; c < nc; ++c) {
transport_src[c] = 0.0;
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
int f = grid.cell_faces[hf];
const int* f2c = &grid.face_cells[2*f];
double bdy_influx = 0.0;
if (f2c[0] == c && f2c[1] == -1) {
bdy_influx = -faceflux[f];
} else if (f2c[0] == -1 && f2c[1] == c) {
bdy_influx = faceflux[f];
}
if (bdy_influx != 0.0) {
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
}
}
}
// Well contributions.
if (wells) {
@ -373,52 +392,52 @@ namespace Opm
/// @param[in] face_flux signed per-face fluxes
/// @param[out] cell_velocity the estimated velocities.
void estimateCellVelocity(const UnstructuredGrid& grid,
const std::vector<double>& face_flux,
std::vector<double>& cell_velocity)
const std::vector<double>& face_flux,
std::vector<double>& cell_velocity)
{
const int dim = grid.dimensions;
cell_velocity.clear();
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
for (int face = 0; face < grid.number_of_faces; ++face) {
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
const double* fc = &grid.face_centroids[face*dim];
double flux = face_flux[face];
for (int i = 0; i < 2; ++i) {
if (c[i] >= 0) {
const double* cc = &grid.cell_centroids[c[i]*dim];
for (int d = 0; d < dim; ++d) {
double v_contrib = fc[d] - cc[d];
v_contrib *= flux/grid.cell_volumes[c[i]];
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
}
}
}
}
const int dim = grid.dimensions;
cell_velocity.clear();
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
for (int face = 0; face < grid.number_of_faces; ++face) {
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
const double* fc = &grid.face_centroids[face*dim];
double flux = face_flux[face];
for (int i = 0; i < 2; ++i) {
if (c[i] >= 0) {
const double* cc = &grid.cell_centroids[c[i]*dim];
for (int d = 0; d < dim; ++d) {
double v_contrib = fc[d] - cc[d];
v_contrib *= flux/grid.cell_volumes[c[i]];
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
}
}
}
}
}
/// Extract a vector of water saturations from a vector of
/// interleaved water and oil saturations.
void toWaterSat(const std::vector<double>& sboth,
std::vector<double>& sw)
std::vector<double>& sw)
{
int num = sboth.size()/2;
sw.resize(num);
for (int i = 0; i < num; ++i) {
sw[i] = sboth[2*i];
}
int num = sboth.size()/2;
sw.resize(num);
for (int i = 0; i < num; ++i) {
sw[i] = sboth[2*i];
}
}
/// Make a a vector of interleaved water and oil saturations from
/// a vector of water saturations.
void toBothSat(const std::vector<double>& sw,
std::vector<double>& sboth)
std::vector<double>& sboth)
{
int num = sw.size();
sboth.resize(2*num);
for (int i = 0; i < num; ++i) {
sboth[2*i] = sw[i];
sboth[2*i + 1] = 1.0 - sw[i];
}
int num = sw.size();
sboth.resize(2*num);
for (int i = 0; i < num; ++i) {
sboth[2*i] = sw[i];
sboth[2*i + 1] = 1.0 - sw[i];
}
}
@ -431,30 +450,30 @@ namespace Opm
if (np != 2) {
THROW("wellsToSrc() requires a 2 phase case.");
}
src.resize(num_cells);
for (int w = 0; w < wells.number_of_wells; ++w) {
src.resize(num_cells);
for (int w = 0; w < wells.number_of_wells; ++w) {
const int cur = wells.ctrls[w]->current;
if (wells.ctrls[w]->num != 1) {
MESSAGE("In wellsToSrc(): well has more than one control, all but current control will be ignored.");
}
if (wells.ctrls[w]->type[cur] != RESERVOIR_RATE) {
THROW("In wellsToSrc(): well is something other than RESERVOIR_RATE.");
}
if (wells.well_connpos[w+1] - wells.well_connpos[w] != 1) {
THROW("In wellsToSrc(): well has multiple perforations.");
}
if (wells.ctrls[w]->num != 1) {
MESSAGE("In wellsToSrc(): well has more than one control, all but current control will be ignored.");
}
if (wells.ctrls[w]->type[cur] != RESERVOIR_RATE) {
THROW("In wellsToSrc(): well is something other than RESERVOIR_RATE.");
}
if (wells.well_connpos[w+1] - wells.well_connpos[w] != 1) {
THROW("In wellsToSrc(): well has multiple perforations.");
}
for (int p = 0; p < np; ++p) {
if (wells.ctrls[w]->distr[np*cur + p] != 1.0) {
THROW("In wellsToSrc(): well not controlled on total rate.");
}
}
double flow = wells.ctrls[w]->target[cur];
double flow = wells.ctrls[w]->target[cur];
if (wells.type[w] == INJECTOR) {
flow *= wells.comp_frac[np*w + 0]; // Obtaining water rate for inflow source.
}
const double cell = wells.well_cells[wells.well_connpos[w]];
src[cell] = flow;
}
const double cell = wells.well_cells[wells.well_connpos[w]];
src[cell] = flow;
}
}
@ -574,8 +593,10 @@ namespace Opm
{
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
const double* visc = props.viscosity();
std::vector<double> data_now;
@ -586,7 +607,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@ -594,11 +616,14 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
double mob[max_np];
props.relperm(1, &saturation[2*cell], &cell, mob, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/tmob;
well_rate_water += perf_rate*fracflow;
}
}
@ -627,8 +652,10 @@ namespace Opm
// TODO: refactor, since this is almost identical to the other push().
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
std::vector<double> data_now;
data_now.reserve(1 + 3*nw);
@ -638,7 +665,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@ -646,13 +674,16 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
props.relperm(1, &s[2*cell], &cell, mob, 0);
double visc[2];
props.viscosity(1, &p[cell], &z[2*cell], &cell, visc, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double mob[max_np];
props.relperm(1, &s[np*cell], &cell, mob, 0);
double visc[max_np];
props.viscosity(1, &p[cell], &z[np*cell], &cell, visc, 0);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/(tmob);
well_rate_water += perf_rate*fracflow;
}
}

View File

@ -44,7 +44,7 @@ namespace Opm
/// @brief Computes pore volume of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity array of grid.number_of_cells porosity values
/// @param[in] porosity array of grid.number_of_cells porosity values (at reference pressure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porevol the pore volume by cell.
@ -54,6 +54,17 @@ namespace Opm
const std::vector<double>& pressure,
std::vector<double>& porevol);
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at reference presure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity);
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.

View File

@ -48,39 +48,39 @@ namespace Opm
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
const std::vector<double>& press,
const std::vector<double>& z,
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced)
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced)
{
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
std::vector<double> visc(np);
std::vector<double> mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
std::vector<double> mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
props.viscosity(1, &press[c], &z[np*c], &c, &visc[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
}
@ -93,11 +93,11 @@ namespace Opm
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::BlackoilPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<int>& cells,
const std::vector<double>& press,
const std::vector<double>& z,
const std::vector<double>& s,
std::vector<double>& totmob)
const std::vector<double>& s,
std::vector<double>& totmob)
{
std::vector<double> pmobc;
@ -126,12 +126,12 @@ namespace Opm
/// @param[out] totmob total mobility
/// @param[out] omega fractional-flow weighted fluid densities.
void computeTotalMobilityOmega(const Opm::BlackoilPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<int>& cells,
const std::vector<double>& p,
const std::vector<double>& z,
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
{
std::vector<double> pmobc;
@ -185,10 +185,10 @@ namespace Opm
props.relperm(nc, &s[0], &cells[0],
&pmobc[0], dpmobc);
std::transform(pmobc.begin(), pmobc.end(),
mu.begin(),
pmobc.begin(),
std::divides<double>());
std::transform(pmobc.begin(), pmobc.end(),
mu.begin(),
pmobc.begin(),
std::divides<double>());
}
/// Computes the fractional flow for each cell in the cells argument
@ -220,5 +220,35 @@ namespace Opm
}
}
/// Computes the surface volume densities from saturations by the formula
/// z = A s
/// for a number of data points, where z is the surface volume density,
/// s is the saturation (both as column vectors) and A is the
/// phase-to-component relation matrix.
/// @param[in] n number of data points
/// @param[in] np number of phases, must be 2 or 3
/// @param[in] A array containing n square matrices of size num_phases^2,
/// in Fortran ordering, typically the output of a call
/// to the matrix() method of a BlackoilProperties* class.
/// @param[in] saturation concatenated saturation values (for all P phases)
/// @param[out] surfacevol concatenated surface-volume values (for all P phases)
void computeSurfacevol(const int n,
const int np,
const double* A,
const double* saturation,
double* surfacevol)
{
// Note: since this is a simple matrix-vector product, it can
// be done by a BLAS call, but then we have to reorder the A
// matrix data.
std::fill(surfacevol, surfacevol + n*np, 0.0);
for (int i = 0; i < n; ++i) {
for (int col = 0; col < np; ++col) {
for (int row = 0; row < np; ++row) {
surfacevol[i*np + row] += A[i*np*np + row + col*np] * saturation[i*np + col];
}
}
}
}
} // namespace Opm

View File

@ -46,11 +46,11 @@ namespace Opm
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
const std::vector<double>& p,
const std::vector<double>& z,
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced);
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced);
/// @brief Computes total mobility for a set of saturation values.
/// @param[in] props rock and fluid properties
@ -60,11 +60,11 @@ namespace Opm
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::BlackoilPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<int>& cells,
const std::vector<double>& p,
const std::vector<double>& z,
const std::vector<double>& s,
std::vector<double>& totmob);
const std::vector<double>& s,
std::vector<double>& totmob);
/// @brief Computes total mobility and omega for a set of saturation values.
/// @param[in] props rock and fluid properties
@ -75,12 +75,12 @@ namespace Opm
/// @param[out] totmob total mobility
/// @param[out] omega fractional-flow weighted fluid densities.
void computeTotalMobilityOmega(const Opm::BlackoilPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<int>& cells,
const std::vector<double>& p,
const std::vector<double>& z,
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega);
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega);
/// @brief Computes phase mobilities for a set of saturation values.
@ -96,7 +96,7 @@ namespace Opm
const std::vector<double>& z,
const std::vector<double>& s,
std::vector<double>& pmobc);
/// Computes the fractional flow for each cell in the cells argument
/// @param[in] props rock and fluid properties
@ -112,6 +112,25 @@ namespace Opm
const std::vector<double>& s,
std::vector<double>& fractional_flows);
/// Computes the surface volume densities from saturations by the formula
/// z = A s
/// for a number of data points, where z is the surface volume density,
/// s is the saturation (both as column vectors) and A is the
/// phase-to-component relation matrix.
/// @param[in] n number of data points
/// @param[in] np number of phases, must be 2 or 3
/// @param[in] A array containing n square matrices of size num_phases,
/// in Fortran ordering, typically the output of a call
/// to the matrix() method of a BlackoilProperties* class.
/// @param[in] saturation concatenated saturation values (for all P phases)
/// @param[out] surfacevol concatenated surface-volume values (for all P phases)
void computeSurfacevol(const int n,
const int np,
const double* A,
const double* saturation,
double* surfacevol);
} // namespace Opm
#endif // OPM_MISCUTILITIESBLACKOIL_HEADER_INCLUDED