Merge branch 'master' into ert

Conflicts:
	Makefile.am
	configure.ac
	examples/Makefile.am
	opm/core/GridManager.cpp
	opm/core/eclipse/EclipseGridParser.cpp
	opm/core/grid/cpgpreprocess/preprocess.h
	tests/Makefile.am
This commit is contained in:
Atgeirr Flø Rasmussen 2012-09-05 13:36:19 +02:00
commit 9c77d12f8d
43 changed files with 2244 additions and 1473 deletions

View File

@ -18,19 +18,68 @@
*/
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
namespace Opm
{
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
rock_.init(deck, global_cell);
pvt_.init(deck);
satprops_.init(deck, global_cell);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
rock_.init(deck, grid);
pvt_.init(deck, 200);
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, 200);
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
{
rock_.init(deck, grid);
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
pvt_.init(deck, pvt_samples);
// Unfortunate lack of pointer smartness here...
const int sat_samples = param.getDefault("sat_tab_size", 200);
std::string threephase_model = param.getDefault<std::string>("threephase_model", "simple");
bool use_stone2 = (threephase_model == "stone2");
if (sat_samples > 1) {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
} else {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Nonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Nonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleNonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleNonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
}
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
@ -235,7 +284,7 @@ namespace Opm
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, cells, kr, dkrds);
satprops_->relperm(n, s, cells, kr, dkrds);
}
@ -254,7 +303,7 @@ namespace Opm
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, cells, pc, dpcds);
satprops_->capPress(n, s, cells, pc, dpcds);
}
@ -270,7 +319,7 @@ namespace Opm
double* smin,
double* smax) const
{
satprops_.satRange(n, cells, smin, smax);
satprops_->satRange(n, cells, smin, smax);
}

View File

@ -26,6 +26,10 @@
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <boost/scoped_ptr.hpp>
struct UnstructuredGrid;
namespace Opm
{
@ -35,12 +39,28 @@ namespace Opm
class BlackoilPropertiesFromDeck : public BlackoilPropertiesInterface
{
public:
/// Construct from deck and cell mapping.
/// \param deck eclipse input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// Initialize from deck and grid.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
/// Initialize from deck, grid and parameters.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] param Parameters. Accepted parameters include:
/// pvt_tab_size (200) number of uniform sample points for dead-oil pvt tables.
/// sat_tab_size (200) number of uniform sample points for saturation tables.
/// threephase_model("simple") three-phase relperm model (accepts "simple" and "stone2").
/// For both size parameters, a 0 or negative value indicates that no spline fitting is to
/// be done, and the input fluid data used directly for linear interpolation.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
/// Destructor.
virtual ~BlackoilPropertiesFromDeck();
@ -162,7 +182,7 @@ namespace Opm
private:
RockFromDeck rock_;
BlackoilPvtProperties pvt_;
SaturationPropsFromDeck satprops_;
boost::scoped_ptr<SaturationPropsInterface> satprops_;
mutable std::vector<double> B_;
mutable std::vector<double> dB_;
mutable std::vector<double> R_;

View File

@ -27,11 +27,11 @@ namespace Opm
{
IncompPropertiesFromDeck::IncompPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
rock_.init(deck, global_cell);
rock_.init(deck, grid);
pvt_.init(deck);
satprops_.init(deck, global_cell);
satprops_.init(deck, grid, 200);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");

View File

@ -26,6 +26,8 @@
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
struct UnstructuredGrid;
namespace Opm
{
@ -43,12 +45,13 @@ namespace Opm
class IncompPropertiesFromDeck : public IncompPropertiesInterface
{
public:
/// Construct from deck and cell mapping.
/// \param deck eclipse input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
IncompPropertiesFromDeck(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
/// Destructor.
virtual ~IncompPropertiesFromDeck();
@ -132,7 +135,7 @@ namespace Opm
private:
RockFromDeck rock_;
PvtPropertiesIncompFromDeck pvt_;
SaturationPropsFromDeck satprops_;
SaturationPropsFromDeck<SatFuncStone2Uniform> satprops_;
};

View File

@ -69,7 +69,8 @@ namespace Opm
const double cpnorm = rock_comp_*(pressure - pref_);
return (1.0 + cpnorm + 0.5*cpnorm*cpnorm);
} else {
return Opm::linearInterpolation(p_, poromult_, pressure);
// return Opm::linearInterpolation(p_, poromult_, pressure);
return Opm::linearInterpolationExtrap(p_, poromult_, pressure);
}
}
@ -78,8 +79,11 @@ namespace Opm
if (p_.empty()) {
return rock_comp_;
} else {
const double poromult = Opm::linearInterpolation(p_, poromult_, pressure);
const double dporomultdp = Opm::linearInterpolationDerivative(p_, poromult_, pressure);
//const double poromult = Opm::linearInterpolation(p_, poromult_, pressure);
//const double dporomultdp = Opm::linearInterpolationDerivative(p_, poromult_, pressure);
const double poromult = Opm::linearInterpolationExtrap(p_, poromult_, pressure);
const double dporomultdp = Opm::linearInterpolationDerivativeExtrap(p_, poromult_, pressure);
return dporomultdp/poromult;
}
}

View File

@ -19,7 +19,7 @@
#include <opm/core/fluid/RockFromDeck.hpp>
#include <opm/core/grid.h>
#include <tr1/array>
namespace Opm
@ -36,8 +36,6 @@ namespace Opm
PermeabilityKind fillTensor(const EclipseGridParser& parser,
std::vector<const std::vector<double>*>& tensor,
std::tr1::array<int,9>& kmap);
int numGlobalCells(const EclipseGridParser& parser);
} // anonymous namespace
@ -53,28 +51,29 @@ namespace Opm
/// Initialize from deck and cell mapping.
/// \param deck Deck input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// \param grid grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
void RockFromDeck::init(const EclipseGridParser& deck,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
assignPorosity(deck, global_cell);
permfield_valid_.assign(global_cell.size(), false);
assignPorosity(deck, grid);
permfield_valid_.assign(grid.number_of_cells, false);
const double perm_threshold = 0.0; // Maybe turn into parameter?
assignPermeability(deck, global_cell, perm_threshold);
assignPermeability(deck, grid, perm_threshold);
}
void RockFromDeck::assignPorosity(const EclipseGridParser& parser,
const std::vector<int>& global_cell)
const UnstructuredGrid& grid)
{
porosity_.assign(global_cell.size(), 1.0);
porosity_.assign(grid.number_of_cells, 1.0);
const int* gc = grid.global_cell;
if (parser.hasField("PORO")) {
const std::vector<double>& poro = parser.getFloatingPointValue("PORO");
for (int c = 0; c < int(porosity_.size()); ++c) {
porosity_[c] = poro[global_cell[c]];
const int deck_pos = (gc == NULL) ? c : gc[c];
porosity_[c] = poro[deck_pos];
}
}
}
@ -82,14 +81,16 @@ namespace Opm
void RockFromDeck::assignPermeability(const EclipseGridParser& parser,
const std::vector<int>& global_cell,
const UnstructuredGrid& grid,
double perm_threshold)
{
const int dim = 3;
const int num_global_cells = numGlobalCells(parser);
const int num_global_cells = grid.cartdims[0]*grid.cartdims[1]*grid.cartdims[2];
const int nc = grid.number_of_cells;
ASSERT (num_global_cells > 0);
permeability_.assign(dim * dim * global_cell.size(), 0.0);
permeability_.assign(dim * dim * nc, 0.0);
std::vector<const std::vector<double>*> tensor;
tensor.reserve(10);
@ -111,13 +112,13 @@ namespace Opm
// chosen) default value...
//
if (tensor.size() > 1) {
const int nc = global_cell.size();
const int* gc = grid.global_cell;
int off = 0;
for (int c = 0; c < nc; ++c, off += dim*dim) {
// SharedPermTensor K(dim, dim, &permeability_[off]);
int kix = 0;
const int glob = global_cell[c];
const int glob = (gc == NULL) ? c : gc[c];
for (int i = 0; i < dim; ++i) {
for (int j = 0; j < dim; ++j, ++kix) {
@ -331,26 +332,6 @@ namespace Opm
return kind;
}
int numGlobalCells(const EclipseGridParser& parser)
{
int ngc = -1;
if (parser.hasField("DIMENS")) {
const std::vector<int>&
dims = parser.getIntegerValue("DIMENS");
ngc = dims[0] * dims[1] * dims[2];
}
else if (parser.hasField("SPECGRID")) {
const SPECGRID& sgr = parser.getSPECGRID();
ngc = sgr.dimensions[ 0 ];
ngc *= sgr.dimensions[ 1 ];
ngc *= sgr.dimensions[ 2 ];
}
return ngc;
}
} // anonymous namespace
} // namespace Opm

View File

@ -24,6 +24,7 @@
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <vector>
struct UnstructuredGrid;
namespace Opm
{
@ -34,12 +35,13 @@ namespace Opm
/// Default constructor.
RockFromDeck();
/// Initialize from deck and cell mapping.
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param global_cell mapping from cell indices (typically from a processed grid)
/// \param grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
void init(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
/// \return D, the number of spatial dimensions. Always 3 for deck input.
int numDimensions() const
@ -69,9 +71,9 @@ namespace Opm
private:
void assignPorosity(const EclipseGridParser& parser,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid);
void assignPermeability(const EclipseGridParser& parser,
const std::vector<int>& global_cell,
const UnstructuredGrid& grid,
const double perm_threshold);
std::vector<double> porosity_;

View File

@ -99,6 +99,7 @@ namespace Opm
/// Default constructor.
SaturationPropsBasic::SaturationPropsBasic()
: num_phases_(0), relperm_func_(Constant)
{
}
@ -113,7 +114,8 @@ namespace Opm
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
}
num_phases_ = num_phases;
std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
//std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
std::string rpf = param.getDefault("relperm_func", std::string("Linear"));
if (rpf == "Constant") {
relperm_func_ = Constant;
if(num_phases!=1){

View File

@ -20,24 +20,44 @@
#ifndef OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#include <opm/core/fluid/SaturationPropsInterface.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <opm/core/fluid/SatFuncStone2.hpp>
#include <opm/core/fluid/SatFuncSimple.hpp>
#include <vector>
struct UnstructuredGrid;
namespace Opm
{
class SaturationPropsFromDeck : public BlackoilPhases
/// Interface to saturation functions from deck.
/// Possible values for template argument (for now):
/// SatFuncSetStone2Nonuniform,
/// SatFuncSetStone2Uniform.
/// SatFuncSetSimpleNonuniform,
/// SatFuncSetSimpleUniform.
template <class SatFuncSet>
class SaturationPropsFromDeck : public SaturationPropsInterface
{
public:
/// Default constructor.
SaturationPropsFromDeck();
/// Initialize from deck.
/// global_cell maps from grid cells to their original logical Cartesian indices.
/// Initialize from deck and grid.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] samples Number of uniform sample points for saturation tables.
/// NOTE: samples will only be used with the SatFuncSetUniform template argument.
void init(const EclipseGridParser& deck,
const std::vector<int>& global_cell);
const UnstructuredGrid& grid,
const int samples);
/// \return P, the number of phases.
int numPhases() const;
@ -83,30 +103,12 @@ namespace Opm
private:
PhaseUsage phase_usage_;
class SatFuncSet
{
public:
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
void evalKr(const double* s, double* kr) const;
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
void evalPc(const double* s, double* pc) const;
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
double smin_[PhaseUsage::MaxNumPhases];
double smax_[PhaseUsage::MaxNumPhases];
private:
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
UniformTableLinear<double> krw_;
UniformTableLinear<double> krow_;
UniformTableLinear<double> pcow_;
UniformTableLinear<double> krg_;
UniformTableLinear<double> krog_;
UniformTableLinear<double> pcog_;
double krocw_; // = krow_(s_wc)
};
std::vector<SatFuncSet> satfuncset_;
std::vector<int> cell_to_func_; // = SATNUM - 1
const SatFuncSet& funcForCell(const int cell) const;
typedef SatFuncSet Funcs;
const Funcs& funcForCell(const int cell) const;
};
@ -114,6 +116,7 @@ namespace Opm
} // namespace Opm
#include <opm/core/fluid/SaturationPropsFromDeck_impl.hpp>
#endif // OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED

View File

@ -0,0 +1,221 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/utility/NonuniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
#include <opm/core/grid.h>
namespace Opm
{
// ----------- Methods of SaturationPropsFromDeck ---------
/// Default constructor.
template <class SatFuncSet>
SaturationPropsFromDeck<SatFuncSet>::SaturationPropsFromDeck()
{
}
/// Initialize from deck.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::init(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const int samples)
{
phase_usage_ = phaseUsageFromDeck(deck);
// Extract input data.
// Oil phase should be active.
if (!phase_usage_.phase_used[Liquid]) {
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
}
// Obtain SATNUM, if it exists, and create cell_to_func_.
// Otherwise, let the cell_to_func_ mapping be just empty.
int satfuncs_expected = 1;
if (deck.hasField("SATNUM")) {
const std::vector<int>& satnum = deck.getIntegerValue("SATNUM");
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
const int num_cells = grid.number_of_cells;
cell_to_func_.resize(num_cells);
const int* gc = grid.global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int deck_pos = (gc == NULL) ? cell : gc[cell];
cell_to_func_[cell] = satnum[deck_pos] - 1;
}
}
// Find number of tables, check for consistency.
enum { Uninitialized = -1 };
int num_tables = Uninitialized;
if (phase_usage_.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
num_tables = swof_table.size();
if (num_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
}
}
if (phase_usage_.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
int num_sgof_tables = sgof_table.size();
if (num_sgof_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
}
if (num_tables == Uninitialized) {
num_tables = num_sgof_tables;
} else if (num_tables != num_sgof_tables) {
THROW("Inconsistent number of tables in SWOF and SGOF.");
}
}
// Initialize tables.
satfuncset_.resize(num_tables);
for (int table = 0; table < num_tables; ++table) {
satfuncset_[table].init(deck, table, phase_usage_, samples);
}
}
/// \return P, the number of phases.
template <class SatFuncSet>
int SaturationPropsFromDeck<SatFuncSet>::numPhases() const
{
return phase_usage_.num_phases;
}
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dkrds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKr(s + np*i, kr + np*i);
}
}
}
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dpcds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPc(s + np*i, pc + np*i);
}
}
}
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
for (int i = 0; i < n; ++i) {
for (int p = 0; p < np; ++p) {
smin[np*i + p] = funcForCell(cells[i]).smin_[p];
smax[np*i + p] = funcForCell(cells[i]).smax_[p];
}
}
}
// Map the cell number to the correct function set.
template <class SatFuncSet>
const typename SaturationPropsFromDeck<SatFuncSet>::Funcs&
SaturationPropsFromDeck<SatFuncSet>::funcForCell(const int cell) const
{
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
}
} // namespace Opm
#endif // OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED

View File

@ -0,0 +1,85 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#define OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
namespace Opm
{
class SaturationPropsInterface : public BlackoilPhases
{
public:
/// Virtual destructor.
virtual ~SaturationPropsInterface() {};
/// \return P, the number of phases.
virtual int numPhases() const = 0;
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const = 0;
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
virtual void satRange(const int n,
const int* cells,
double* smin,
double* smax) const = 0;
};
} // namespace Opm
#endif // OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED

View File

@ -47,7 +47,13 @@ namespace Opm
BlackoilPvtProperties();
/// Initialize from deck.
void init(const EclipseGridParser& deck);
/// \param deck An input deck.
/// \param samples If greater than zero, indicates the number of
/// uniform samples to be taken from monotone spline
/// curves interpolating the fluid data.
/// Otherwise, interpolate linearly in the original
/// data without fitting a spline.
void init(const EclipseGridParser& deck, const int samples);
/// Number of active phases.
int numPhases() const;

View File

@ -31,6 +31,11 @@
#include <opm/core/linalg/LinearSolverIstl.hpp>
#endif
#if HAVE_AGMG
#include <opm/core/linalg/LinearSolverAGMG.hpp>
#endif
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <string>
@ -70,6 +75,12 @@ namespace Opm
#endif
}
else if (ls == "agmg") {
#if HAVE_AGMG
solver_.reset(new LinearSolverAGMG(param));
#endif
}
else {
THROW("Linear solver " << ls << " is unknown.");
}

View File

@ -24,10 +24,7 @@
#include <opm/core/linalg/LinearSolverIstl.hpp>
// Work around the fact that istl headers expect
// HAVE_BOOST to be 1, and not just defined.
#undef HAVE_BOOST
#define HAVE_BOOST 1
#include <opm/core/utility/have_boost_redef.hpp>
// TODO: clean up includes.
#include <dune/common/deprecated.hh>

View File

@ -30,6 +30,7 @@
#include <opm/core/newwells.h>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <algorithm>
#include <cmath>
@ -58,6 +59,7 @@ namespace Opm
/// to change.
CompressibleTpfa::CompressibleTpfa(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
const LinearSolverInterface& linsolver,
const double residual_tol,
const double change_tol,
@ -66,6 +68,7 @@ namespace Opm
const struct Wells* wells)
: grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
linsolver_(linsolver),
residual_tol_(residual_tol),
change_tol_(change_tol),
@ -74,8 +77,8 @@ namespace Opm
wells_(wells),
htrans_(grid.cell_facepos[ grid.number_of_cells ]),
trans_ (grid.number_of_faces),
porevol_(grid.number_of_cells),
allcells_(grid.number_of_cells)
allcells_(grid.number_of_cells),
singular_(false)
{
if (wells_ && (wells_->number_of_phases != props.numPhases())) {
THROW("Inconsistent number of phases specified (wells vs. props): "
@ -86,7 +89,12 @@ namespace Opm
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
tpfa_trans_compute(gg, &htrans_[0], &trans_[0]);
// If we have rock compressibility, pore volumes are updated
// in the compute*() methods, otherwise they are constant and
// hence may be computed here.
if (rock_comp_props_ == NULL || !rock_comp_props_->isActive()) {
computePorevolume(grid_, props.porosity(), porevol_);
}
for (int c = 0; c < grid.number_of_cells; ++c) {
allcells_[c] = c;
}
@ -182,6 +190,21 @@ namespace Opm
/// @brief After solve(), was the resulting pressure singular.
/// Returns true if the pressure is singular in the following
/// sense: if everything is incompressible and there are no
/// pressure conditions, the absolute values of the pressure
/// solution are arbitrary. (But the differences in pressure
/// are significant.)
bool CompressibleTpfa::singularPressure() const
{
return singular_;
}
/// Compute well potentials.
void CompressibleTpfa::computeWellPotentials(const BlackoilState& state)
{
@ -230,6 +253,9 @@ namespace Opm
const WellState& /*well_state*/)
{
computeWellPotentials(state);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
}
}
@ -252,6 +278,8 @@ namespace Opm
// std::vector<double> face_gravcap_;
// std::vector<double> wellperf_A_;
// std::vector<double> wellperf_phasemob_;
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
computeCellDynamicData(dt, state, well_state);
computeFaceDynamicData(dt, state, well_state);
computeWellDynamicData(dt, state, well_state);
@ -273,6 +301,8 @@ namespace Opm
// std::vector<double> cell_viscosity_;
// std::vector<double> cell_phasemob_;
// std::vector<double> cell_voldisc_;
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
const int nc = grid_.number_of_cells;
const int np = props_.numPhases();
const double* cell_p = &state.pressure()[0];
@ -296,6 +326,14 @@ namespace Opm
// TODO: Check this!
cell_voldisc_.clear();
cell_voldisc_.resize(nc, 0.0);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
rock_comp_.resize(nc);
for (int cell = 0; cell < nc; ++cell) {
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
}
}
}
@ -341,7 +379,7 @@ namespace Opm
const double depth_diff = face_depth - grid_.cell_centroids[c[j]*dim + dim - 1];
props_.density(1, &cell_A_[np*np*c[j]], &gravcontrib[j][0]);
for (int p = 0; p < np; ++p) {
gravcontrib[j][p] *= depth_diff;
gravcontrib[j][p] *= depth_diff*grav;
}
} else {
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
@ -465,9 +503,20 @@ namespace Opm
cq.Af = &face_A_[0];
cq.phasemobf = &face_phasemob_[0];
cq.voldiscr = &cell_voldisc_[0];
int was_adjusted = 0;
if (! (rock_comp_props_ && rock_comp_props_->isActive())) {
was_adjusted =
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], h_);
} else {
was_adjusted =
cfs_tpfa_res_comprock_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], &initial_porevol_[0],
&rock_comp_[0], h_);
}
singular_ = (was_adjusted == 1);
}

View File

@ -33,6 +33,7 @@ namespace Opm
class BlackoilState;
class BlackoilPropertiesInterface;
class RockCompressibility;
class LinearSolverInterface;
class WellState;
@ -46,6 +47,7 @@ namespace Opm
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] rock_comp_props Rock compressibility properties. May be null.
/// \param[in] linsolver Linear solver to use.
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
@ -61,6 +63,7 @@ namespace Opm
/// to change.
CompressibleTpfa(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
const LinearSolverInterface& linsolver,
const double residual_tol,
const double change_tol,
@ -78,15 +81,22 @@ namespace Opm
BlackoilState& state,
WellState& well_state);
/// @brief After solve(), was the resulting pressure singular.
/// Returns true if the pressure is singular in the following
/// sense: if everything is incompressible and there are no
/// pressure conditions, the absolute values of the pressure
/// solution are arbitrary. (But the differences in pressure
/// are significant.)
bool singularPressure() const;
private:
void computePerSolveDynamicData(const double dt,
virtual void computePerSolveDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeWellPotentials(const BlackoilState& state);
void computePerIterationDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeCellDynamicData(const double dt,
virtual void computeCellDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeFaceDynamicData(const double dt,
@ -103,10 +113,13 @@ namespace Opm
double incrementNorm() const;
void computeResults(BlackoilState& state,
WellState& well_state) const;
protected:
void computeWellPotentials(const BlackoilState& state);
// ------ Data that will remain unmodified after construction. ------
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
const RockCompressibility* rock_comp_props_;
const LinearSolverInterface& linsolver_;
const double residual_tol_;
const double change_tol_;
@ -115,7 +128,6 @@ namespace Opm
const Wells* wells_; // May be NULL, outside may modify controls (only) between calls to solve().
std::vector<double> htrans_;
std::vector<double> trans_ ;
std::vector<double> porevol_;
std::vector<int> allcells_;
// ------ Internal data for the cfs_tpfa_res solver. ------
@ -123,6 +135,7 @@ namespace Opm
// ------ Data that will be modified for every solve. ------
std::vector<double> wellperf_gpot_;
std::vector<double> initial_porevol_;
// ------ Data that will be modified for every solver iteration. ------
std::vector<double> cell_A_;
@ -135,13 +148,15 @@ namespace Opm
std::vector<double> face_gravcap_;
std::vector<double> wellperf_A_;
std::vector<double> wellperf_phasemob_;
std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
// The update to be applied to the pressures (cell and bhp).
std::vector<double> pressure_increment_;
// True if the matrix assembled would be singular but for the
// adjustment made in the cfs_*_assemble() calls. This happens
// if everything is incompressible and there are no pressure
// conditions.
bool singular_;
};
} // namespace Opm

View File

@ -1156,7 +1156,7 @@ cfs_tpfa_res_construct(struct UnstructuredGrid *G ,
/* ---------------------------------------------------------------------- */
void
int
cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
double dt ,
struct cfs_tpfa_res_forces *forces ,
@ -1170,7 +1170,7 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
struct cfs_tpfa_res_data *h )
/* ---------------------------------------------------------------------- */
{
int res_is_neumann, well_is_neumann, c, np2;
int res_is_neumann, well_is_neumann, c, np2, singular;
csrmatrix_zero( h->J);
vector_zero (h->J->m, h->F);
@ -1207,9 +1207,76 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
assemble_sources(dt, forces->src, h);
}
if (res_is_neumann && well_is_neumann && h->pimpl->is_incomp) {
h->J->sa[0] *= 2;
singular = res_is_neumann && well_is_neumann && h->pimpl->is_incomp;
if (singular) {
h->J->sa[0] *= 2.0;
}
return singular;
}
/* ---------------------------------------------------------------------- */
int
cfs_tpfa_res_comprock_assemble(
struct UnstructuredGrid *G ,
double dt ,
struct cfs_tpfa_res_forces *forces ,
const double *zc ,
struct compr_quantities_gen *cq ,
const double *trans ,
const double *gravcap_f,
const double *cpress ,
const double *wpress ,
const double *porevol ,
const double *porevol0 ,
const double *rock_comp,
struct cfs_tpfa_res_data *h )
/* ---------------------------------------------------------------------- */
{
/* We want to add this term to the usual residual:
*
* (porevol(pressure)-porevol(initial_pressure))/dt.
*
* Its derivative (for the diagonal term of the Jacobian) is:
*
* porevol(pressure)*rock_comp(pressure)/dt
*/
int c, rock_is_incomp, singular;
size_t j;
double dpv;
/* Assemble usual system (without rock compressibility). */
singular = cfs_tpfa_res_assemble(G, dt, forces, zc, cq, trans, gravcap_f,
cpress, wpress, porevol0, h);
/* If we made a singularity-removing adjustment in the
regular assembly, we undo it here. */
if (singular) {
h->J->sa[0] /= 2.0;
}
/* Add new terms to residual and Jacobian. */
rock_is_incomp = 1;
for (c = 0; c < G->number_of_cells; c++) {
j = csrmatrix_elm_index(c, c, h->J);
dpv = (porevol[c] - porevol0[c]);
if (dpv != 0.0 || rock_comp[c] != 0.0) {
rock_is_incomp = 0;
}
h->J->sa[j] += porevol[c] * rock_comp[c];
h->F[c] += dpv;
}
/* Re-do the singularity-removing adjustment if necessary */
if (rock_is_incomp && singular) {
h->J->sa[0] *= 2.0;
}
return rock_is_incomp && singular;
}

View File

@ -59,7 +59,11 @@ cfs_tpfa_res_construct(struct UnstructuredGrid *G ,
void
cfs_tpfa_res_destroy(struct cfs_tpfa_res_data *h);
void
/* Return value is 1 if the assembled matrix was adjusted to remove a
singularity. This happens if all fluids are incompressible and
there are no pressure conditions on wells or boundaries.
Otherwise return 0. */
int
cfs_tpfa_res_assemble(struct UnstructuredGrid *G,
double dt,
struct cfs_tpfa_res_forces *forces,
@ -72,6 +76,27 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G,
const double *porevol,
struct cfs_tpfa_res_data *h);
/* Return value is 1 if the assembled matrix was adjusted to remove a
singularity. This happens if all fluids are incompressible, the
rock is incompressible, and there are no pressure conditions on
wells or boundaries.
Otherwise return 0. */
int
cfs_tpfa_res_comprock_assemble(
struct UnstructuredGrid *G,
double dt,
struct cfs_tpfa_res_forces *forces,
const double *zc,
struct compr_quantities_gen *cq,
const double *trans,
const double *gravcap_f,
const double *cpress,
const double *wpress,
const double *porevol,
const double *porevol0,
const double *rock_comp,
struct cfs_tpfa_res_data *h);
void
cfs_tpfa_res_flux(struct UnstructuredGrid *G ,
struct cfs_tpfa_res_forces *forces ,

View File

@ -771,7 +771,7 @@ ifs_tpfa_assemble_comprock_increment(struct UnstructuredGrid *G ,
assemble_incompressible(G, F, trans, gpress, h, &system_singular, &ok);
/* We want to solve a Newton step for the residual
* (porevol(pressure)-porevol(initial_pressure))/dt + residual_for_imcompressible
* (porevol(pressure)-porevol(initial_pressure))/dt + residual_for_incompressible
*
*/

View File

@ -20,6 +20,16 @@
#ifndef OPM_IFS_TPFA_HEADER_INCLUDED
#define OPM_IFS_TPFA_HEADER_INCLUDED
/**
* \file
* Interfaces and data structures to assemble a system of simultaneous linear
* equations discretising a flow problem that is either incompressible or
* features rock compressibility using the two-point flux approximation method.
*
* Includes support for reconstructing the Darcy flux field as well as well
* connection fluxes.
*/
#include <opm/core/grid.h>
#ifdef __cplusplus
@ -31,37 +41,66 @@ struct CSRMatrix;
struct FlowBoundaryConditions;
struct Wells;
/**
* Main data structure presenting a view of an assembled system of simultaneous
* linear equations which may be solved using external software.
*/
struct ifs_tpfa_data {
struct CSRMatrix *A;
double *b;
double *x;
struct CSRMatrix *A; /**< Coefficient matrix */
double *b; /**< Right-hand side */
double *x; /**< Solution */
struct ifs_tpfa_impl *pimpl;
struct ifs_tpfa_impl *pimpl; /**< Internal management structure */
};
/**
* Solution variables.
*/
struct ifs_tpfa_solution {
double *cell_press;
double *face_flux ;
double *cell_press; /**< Cell pressures */
double *face_flux ; /**< Interface fluxes */
double *well_press; /* BHP */
double *well_flux ; /* Perforation (total) fluxes */
double *well_press; /**< Bottom-hole pressures for each well */
double *well_flux ; /**< Well connection total fluxes */
};
/**
* Driving forces pertaining to a particular model setup.
*/
struct ifs_tpfa_forces {
const double *src;
const struct FlowBoundaryConditions *bc ;
const double *src; /**< Explicit source terms */
const struct FlowBoundaryConditions *bc ; /**< Boundary conditions */
const struct Wells *W ;
const double *totmob;
const double *wdp ;
const struct Wells *W ; /**< Well topology */
const double *totmob; /**< Total mobility in each cell */
const double *wdp ; /**< Gravity adjustment at each perforation */
};
/**
* Allocate TPFA management structure capable of assembling a system of
* simultaneous linear equations corresponding to a particular grid and well
* configuration.
*
* @param[in] G Grid.
* @param[in] W Well topology.
* @return Fully formed TPFA management structure if successful, @c NULL in case
* of allocation failure.
*/
struct ifs_tpfa_data *
ifs_tpfa_construct(struct UnstructuredGrid *G,
struct Wells *W);
/**
*
* @param[in] G
* @param[in] F
* @param[in] trans
* @param[in] gpress
* @param[in,out] h
* @return
*/
int
ifs_tpfa_assemble(struct UnstructuredGrid *G ,
const struct ifs_tpfa_forces *F ,

View File

@ -42,6 +42,12 @@ namespace Opm
<< "\n Pressure time: " << pressure_time
<< "\n Transport time: " << transport_time << std::endl;
}
void SimulatorReport::reportParam(std::ostream& os)
{
os << "/timing/total_time=" << total_time
<< "\n/timing/pressure/total_time=" << pressure_time
<< "\n/timing/transport/total_time=" << transport_time << std::endl;
}
} // namespace Opm

View File

@ -38,6 +38,7 @@ namespace Opm
void operator+=(const SimulatorReport& sr);
/// Print a report to the given stream.
void report(std::ostream& os);
void reportParam(std::ostream& os);
};
} // namespace Opm

View File

@ -24,6 +24,7 @@
#include <opm/core/transport/reorder/reordersequence.h>
#include <opm/core/utility/RootFinders.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/pressure/tpfa/trans_tpfa.h>
#include <fstream>
@ -38,7 +39,8 @@ namespace Opm
typedef RegulaFalsi<WarnAndContinueOnError> RootFinder;
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(
const UnstructuredGrid& grid,
const Opm::BlackoilPropertiesInterface& props,
const double tol,
const int maxit)
@ -51,6 +53,7 @@ namespace Opm
dt_(0.0),
saturation_(grid.number_of_cells, -1.0),
fractionalflow_(grid.number_of_cells, -1.0),
gravity_(0),
mob_(2*grid.number_of_cells, -1.0),
ia_upw_(grid.number_of_cells + 1, -1),
ja_upw_(grid.number_of_faces, -1),
@ -75,14 +78,16 @@ namespace Opm
void TransportModelCompressibleTwophase::solve(const double* darcyflux,
const double* pressure,
const double* surfacevol0,
const double* porevolume0,
const double* porevolume,
const double* source,
const double dt,
std::vector<double>& saturation)
std::vector<double>& saturation,
std::vector<double>& surfacevol)
{
darcyflux_ = darcyflux;
surfacevol0_ = surfacevol0;
surfacevol0_ = &surfacevol[0];
porevolume0_ = porevolume0;
porevolume_ = porevolume;
source_ = source;
dt_ = dt;
@ -91,6 +96,11 @@ namespace Opm
props_.viscosity(props_.numCells(), pressure, NULL, &allcells_[0], &visc_[0], NULL);
props_.matrix(props_.numCells(), pressure, NULL, &allcells_[0], &A_[0], NULL);
// Check immiscibility requirement (only done for first cell).
if (A_[1] != 0.0 || A_[2] != 0.0) {
THROW("TransportModelCompressibleTwophase requires a property object without miscibility.");
}
std::vector<int> seq(grid_.number_of_cells);
std::vector<int> comp(grid_.number_of_cells + 1);
int ncomp;
@ -105,43 +115,47 @@ namespace Opm
&ia_downw_[0], &ja_downw_[0]);
reorderAndTransport(grid_, darcyflux);
toBothSat(saturation_, saturation);
// Compute surface volume as a postprocessing step from saturation and A_
computeSurfacevol(grid_.number_of_cells, props_.numPhases(), &A_[0], &saturation[0], &surfacevol[0]);
}
// Residual function r(s) for a single-cell implicit Euler transport
//
// [[ incompressible was: r(s) = s - s0 + dt/pv*( influx + outflux*f(s) ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s))
// r(s) = s - B*z0 + s*(poro - poro0)/poro0 + dt/pv*( influx + outflux*f(s) )
//
// @@@ What about the source term
//
// where influx is water influx, outflux is total outflux.
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} + q_w.
// outflux = B_i sum_{i->j} b_i v_{ij} - q = sum_{i->j} v_{ij} - q (as before)
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} - B_i q_w.
// outflux = B_i sum_{i->j} b_i v_{ij} - B_i q = sum_{i->j} v_{ij} - B_i q
// Influxes are negative, outfluxes positive.
struct TransportModelCompressibleTwophase::Residual
{
int cell;
double s0;
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w // TODO: fix comment.
double outflux; // sum_j max(v_ij, 0) - q
double B_cell;
double z0;
double influx; // B_i sum_j b_j min(v_ij, 0)*f(s_j) - B_i q_w
double outflux; // sum_j max(v_ij, 0) - B_i q
// @@@ TODO: figure out change to rock-comp. terms with fluid compr.
// double comp_term; // q - sum_j v_ij
double comp_term; // Now: used to be: q - sum_j v_ij
double dtpv; // dt/pv(i)
const TransportModelCompressibleTwophase& tm;
explicit Residual(const TransportModelCompressibleTwophase& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
s0 = tm.saturation_[cell];
const int np = tm.props_.numPhases();
const double B_cell = 1.0/tm.A_[np*np*cell + 0];
z0 = tm.surfacevol0_[np*cell + 0]; // I.e. water surface volume
B_cell = 1.0/tm.A_[np*np*cell + 0];
double src_flux = -tm.source_[cell];
bool src_is_inflow = src_flux < 0.0;
influx = src_is_inflow ? src_flux : 0.0;
outflux = !src_is_inflow ? src_flux : 0.0;
// comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
dtpv = tm.dt_/tm.porevolume_[cell];
influx = src_is_inflow ? B_cell*src_flux : 0.0;
outflux = !src_is_inflow ? B_cell*src_flux : 0.0;
comp_term = (tm.porevolume_[cell] - tm.porevolume0_[cell])/tm.porevolume0_[cell];
dtpv = tm.dt_/tm.porevolume0_[cell];
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
const int f = tm.grid_.cell_faces[i];
double flux;
@ -160,16 +174,15 @@ namespace Opm
const double b_face = tm.A_[np*np*other + 0];
influx += B_cell*b_face*flux*tm.fractionalflow_[other];
} else {
outflux += flux;
outflux += flux; // Because B_cell*b_face = 1 for outflow faces
}
// comp_term -= flux;
}
}
}
double operator()(double s) const
{
// return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx);
return s - B_cell*z0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx) + s*comp_term;
}
};
@ -252,6 +265,8 @@ namespace Opm
++update_count;
const int cell = cells[i];
const double old_s = saturation_[cell];
// solveSingleCell() requires saturation_[cell]
// to be s0.
saturation_[cell] = s0[i];
solveSingleCell(cell);
const double s_change = std::fabs(saturation_[cell] - old_s);
@ -303,8 +318,9 @@ namespace Opm
// Residual function r(s) for a single-cell implicit Euler gravity segregation
//
// r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ).
// [[ incompressible was: r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s) )
struct TransportModelCompressibleTwophase::GravityResidual
{
int cell;
@ -333,7 +349,7 @@ namespace Opm
gf[1] = gravflux[pos];
}
s0 = tm.saturation_[cell];
dtpv = tm.dt_/tm.porevolume_[cell];
dtpv = tm.dt_/tm.porevolume0_[cell];
}
double operator()(double s) const
@ -372,30 +388,54 @@ namespace Opm
void TransportModelCompressibleTwophase::initGravity(const double* grav)
{
// Set up gravflux_ = T_ij g (rho_w - rho_o) (z_i - z_j)
// Set up transmissibilities.
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
const int nf = grid_.number_of_faces;
const int dim = grid_.dimensions;
trans_.resize(nf);
gravflux_.resize(nf);
tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid_), props_.permeability(), &htrans[0]);
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &gravflux_[0]);
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &trans_[0]);
const double delta_rho = 0.0;// props_.density()[0] - props_.density()[1];
THROW("TransportModelCompressibleTwophase gravity solver not done yet."); // See line above...
// Remember gravity vector.
gravity_ = grav;
}
void TransportModelCompressibleTwophase::initGravityDynamic()
{
// Set up gravflux_ = T_ij g [ (b_w,i rho_w,S - b_o,i rho_o,S) (z_i - z_f)
// + (b_w,j rho_w,S - b_o,j rho_o,S) (z_f - z_j) ]
// But b_w,i * rho_w,S = rho_w,i, which we conmpute with a call to props_.density().
// We assume that we already have stored T_ij in trans_.
// We also assume that the A_ matrices are updated from an earlier call to solve().
const int nc = grid_.number_of_cells;
const int nf = grid_.number_of_faces;
const int np = props_.numPhases();
ASSERT(np == 2);
const int dim = grid_.dimensions;
density_.resize(nc*np);
props_.density(grid_.number_of_cells, &A_[0], &density_[0]);
std::fill(gravflux_.begin(), gravflux_.end(), 0.0);
for (int f = 0; f < nf; ++f) {
const int* c = &grid_.face_cells[2*f];
double gdz = 0.0;
const double signs[2] = { 1.0, -1.0 };
if (c[0] != -1 && c[1] != -1) {
for (int ci = 0; ci < 2; ++ci) {
double gdz = 0.0;
for (int d = 0; d < dim; ++d) {
gdz += grav[d]*(grid_.cell_centroids[dim*c[0] + d] - grid_.cell_centroids[dim*c[1] + d]);
gdz += gravity_[d]*(grid_.cell_centroids[dim*c[ci] + d] - grid_.face_centroids[dim*f + d]);
}
gravflux_[f] += signs[ci]*trans_[f]*gdz*(density_[2*c[ci]] - density_[2*c[ci] + 1]);
}
}
gravflux_[f] *= delta_rho*gdz;
}
}
void TransportModelCompressibleTwophase::solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux)
@ -467,10 +507,14 @@ namespace Opm
void TransportModelCompressibleTwophase::solveGravity(const std::vector<std::vector<int> >& columns,
const double* pressure,
const double* porevolume,
const double* porevolume0,
const double dt,
std::vector<double>& saturation)
std::vector<double>& saturation,
std::vector<double>& surfacevol)
{
// Assume that solve() has already been called, so that A_ is current.
initGravityDynamic();
// Initialize mobilities.
const int nc = grid_.number_of_cells;
std::vector<int> cells(nc);
@ -489,7 +533,7 @@ namespace Opm
}
// Set up other variables.
porevolume_ = porevolume;
porevolume0_ = porevolume0;
dt_ = dt;
toWaterSat(saturation, saturation_);
@ -502,6 +546,9 @@ namespace Opm
std::cout << "Gauss-Seidel column solver average iterations: "
<< double(num_iters)/double(columns.size()) << std::endl;
toBothSat(saturation_, saturation);
// Compute surface volume as a postprocessing step from saturation and A_
computeSurfacevol(grid_.number_of_cells, props_.numPhases(), &A_[0], &saturation[0], &surfacevol[0]);
}
} // namespace Opm

View File

@ -30,6 +30,8 @@ namespace Opm
class BlackoilPropertiesInterface;
/// Implements a reordering transport solver for compressible,
/// non-miscible two-phase flow.
class TransportModelCompressibleTwophase : public TransportModelInterface
{
public:
@ -47,20 +49,23 @@ namespace Opm
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] pressure Array of cell pressures
/// \param[in] surfacevol0 Array of surface volumes at start of timestep
/// \param[in] porevolume Array of pore volumes.
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
/// \param[in] porevolume Array of pore volumes at end of timestep.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
/// \param[in, out] surfacevol Surface volume densities for each phase.
void solve(const double* darcyflux,
const double* pressure,
const double* surfacevol0,
const double* porevolume0,
const double* porevolume,
const double* source,
const double dt,
std::vector<double>& saturation);
std::vector<double>& saturation,
std::vector<double>& surfacevol);
/// Initialise quantities needed by gravity solver.
/// \param[in] grav gravity vector
/// \param[in] grav Gravity vector
void initGravity(const double* grav);
/// Solve for gravity segregation.
@ -68,12 +73,17 @@ namespace Opm
/// It assumes that the input columns contain cells in a single
/// vertical stack, that do not interact with other columns (for
/// gravity segregation.
/// \TODO: Implement this.
/// \param[in] columns Vector of cell-columns.
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
/// \param[in, out] surfacevol Surface volume densities for each phase.
void solveGravity(const std::vector<std::vector<int> >& columns,
const double* pressure,
const double* porevolume,
const double* porevolume0,
const double dt,
std::vector<double>& saturation);
std::vector<double>& saturation,
std::vector<double>& surfacevol);
private:
virtual void solveSingleCell(const int cell);
@ -82,6 +92,7 @@ namespace Opm
const int pos,
const double* gravflux);
int solveGravityColumn(const std::vector<int>& cells);
void initGravityDynamic();
private:
const UnstructuredGrid& grid_;
@ -96,12 +107,16 @@ namespace Opm
const double* darcyflux_; // one flux per grid face
const double* surfacevol0_; // one per phase per cell
const double* porevolume0_; // one volume per cell
const double* porevolume_; // one volume per cell
const double* source_; // one source per cell
double dt_;
std::vector<double> saturation_; // P (= num. phases) per cell
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
// For gravity segregation.
const double* gravity_;
std::vector<double> trans_;
std::vector<double> density_;
std::vector<double> gravflux_;
std::vector<double> mob_;
std::vector<double> s0_;

View File

@ -53,6 +53,7 @@ namespace Opm
dt_(0.0),
saturation_(grid.number_of_cells, -1.0),
fractionalflow_(grid.number_of_cells, -1.0),
reorder_iterations_(grid.number_of_cells, 0),
mob_(2*grid.number_of_cells, -1.0)
#ifdef EXPERIMENT_GAUSS_SEIDEL
, ia_upw_(grid.number_of_cells + 1, -1),
@ -101,11 +102,18 @@ namespace Opm
&seq[0], &comp[0], &ncomp,
&ia_downw_[0], &ja_downw_[0]);
#endif
std::fill(reorder_iterations_.begin(),reorder_iterations_.end(),0);
reorderAndTransport(grid_, darcyflux);
toBothSat(saturation_, saturation);
}
const std::vector<int>& TransportModelTwophase::getReorderIterations() const
{
return reorder_iterations_;
}
// Residual function r(s) for a single-cell implicit Euler transport
//
// r(s) = s - s0 + dt/pv*( influx + outflux*f(s) )
@ -170,9 +178,11 @@ namespace Opm
// if (std::fabs(r0) < tol_) {
// return;
// }
int iters_used;
int iters_used = 0;
// saturation_[cell] = modifiedRegulaFalsi(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
// add if it is iteration on an out loop
reorder_iterations_[cell] = reorder_iterations_[cell] + iters_used;
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
}
@ -544,8 +554,9 @@ namespace Opm
const int cell = cells[pos];
GravityResidual res(*this, cells, pos, gravflux);
if (std::fabs(res(saturation_[cell])) > tol_) {
int iters_used;
int iters_used = 0;
saturation_[cell] = RootFinder::solve(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
reorder_iterations_[cell] = reorder_iterations_[cell] + iters_used;
}
saturation_[cell] = std::min(std::max(saturation_[cell], smin_[2*cell]), smax_[2*cell]);
mobility(saturation_[cell], cell, &mob_[2*cell]);

View File

@ -23,7 +23,7 @@
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <vector>
#include <map>
#include <ostream>
struct UnstructuredGrid;
namespace Opm
@ -75,6 +75,10 @@ namespace Opm
const double dt,
std::vector<double>& saturation);
//// Return the number of iterations used by the reordering solver.
//// \return vector of iteration per cell
const std::vector<int>& getReorderIterations() const;
private:
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
@ -83,7 +87,6 @@ namespace Opm
const int pos,
const double* gravflux);
int solveGravityColumn(const std::vector<int>& cells);
private:
const UnstructuredGrid& grid_;
const IncompPropertiesInterface& props_;
@ -99,6 +102,8 @@ namespace Opm
double dt_;
std::vector<double> saturation_; // one per cell, only water saturation!
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
std::vector<int> reorder_iterations_;
//std::vector<double> reorder_fval_;
// For gravity segregation.
std::vector<double> gravflux_;
std::vector<double> mob_;

View File

@ -512,11 +512,11 @@ namespace Opm
State& state)
{
const int num_phases = props.numPhases();
if (num_phases != 2) {
THROW("initStateFromDeck(): currently handling only two-phase scenarios.");
}
state.init(grid, num_phases);
if (deck.hasField("EQUIL")) {
if (num_phases != 2) {
THROW("initStateFromDeck(): EQUIL-based init currently handling only two-phase scenarios.");
}
// Set saturations depending on oil-water contact.
const EQUIL& equil= deck.getEQUIL();
if (equil.equil.size() != 1) {
@ -535,12 +535,28 @@ namespace Opm
const std::vector<double>& sw_deck = deck.getFloatingPointValue("SWAT");
const std::vector<double>& p_deck = deck.getFloatingPointValue("PRESSURE");
const int num_cells = grid.number_of_cells;
if (num_phases == 2) {
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[2*c] = sw_deck[c_deck];
s[2*c + 1] = 1.0 - s[2*c];
p[c] = p_deck[c_deck];
}
} else if (num_phases == 3) {
if (!deck.hasField("SGAS")) {
THROW("initStateFromDeck(): missing SGAS keyword in 3-phase init (only SWAT and PRESSURE found).");
}
const std::vector<double>& sg_deck = deck.getFloatingPointValue("SGAS");
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[3*c] = sw_deck[c_deck];
s[3*c + 1] = 1.0 - (sw_deck[c_deck] + sg_deck[c_deck]);
s[3*c + 2] = sg_deck[c_deck];
p[c] = p_deck[c_deck];
}
} else {
THROW("initStateFromDeck(): init with SWAT etc. only available with 2 or 3 phases.");
}
} else {
THROW("initStateFromDeck(): we must either have EQUIL, or both SWAT and PRESSURE.");
}

View File

@ -70,6 +70,25 @@ namespace Opm
}
}
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at standard conditions)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity)
{
int num_cells = grid.number_of_cells;
porosity.resize(num_cells);
for (int i = 0; i < num_cells; ++i) {
porosity[i] = porosity_standard[i]*rock_comp.poroMult(pressure[i]);
}
}
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.
@ -574,8 +593,10 @@ namespace Opm
{
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
const double* visc = props.viscosity();
std::vector<double> data_now;
@ -586,7 +607,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@ -594,11 +616,14 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
double mob[max_np];
props.relperm(1, &saturation[2*cell], &cell, mob, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/tmob;
well_rate_water += perf_rate*fracflow;
}
}
@ -627,8 +652,10 @@ namespace Opm
// TODO: refactor, since this is almost identical to the other push().
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
std::vector<double> data_now;
data_now.reserve(1 + 3*nw);
@ -638,7 +665,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@ -646,13 +674,16 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
props.relperm(1, &s[2*cell], &cell, mob, 0);
double visc[2];
props.viscosity(1, &p[cell], &z[2*cell], &cell, visc, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double mob[max_np];
props.relperm(1, &s[np*cell], &cell, mob, 0);
double visc[max_np];
props.viscosity(1, &p[cell], &z[np*cell], &cell, visc, 0);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/(tmob);
well_rate_water += perf_rate*fracflow;
}
}

View File

@ -44,7 +44,7 @@ namespace Opm
/// @brief Computes pore volume of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity array of grid.number_of_cells porosity values
/// @param[in] porosity array of grid.number_of_cells porosity values (at reference pressure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porevol the pore volume by cell.
@ -54,6 +54,17 @@ namespace Opm
const std::vector<double>& pressure,
std::vector<double>& porevol);
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at reference presure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity);
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.

View File

@ -220,5 +220,35 @@ namespace Opm
}
}
/// Computes the surface volume densities from saturations by the formula
/// z = A s
/// for a number of data points, where z is the surface volume density,
/// s is the saturation (both as column vectors) and A is the
/// phase-to-component relation matrix.
/// @param[in] n number of data points
/// @param[in] np number of phases, must be 2 or 3
/// @param[in] A array containing n square matrices of size num_phases^2,
/// in Fortran ordering, typically the output of a call
/// to the matrix() method of a BlackoilProperties* class.
/// @param[in] saturation concatenated saturation values (for all P phases)
/// @param[out] surfacevol concatenated surface-volume values (for all P phases)
void computeSurfacevol(const int n,
const int np,
const double* A,
const double* saturation,
double* surfacevol)
{
// Note: since this is a simple matrix-vector product, it can
// be done by a BLAS call, but then we have to reorder the A
// matrix data.
std::fill(surfacevol, surfacevol + n*np, 0.0);
for (int i = 0; i < n; ++i) {
for (int col = 0; col < np; ++col) {
for (int row = 0; row < np; ++row) {
surfacevol[i*np + row] += A[i*np*np + row + col*np] * saturation[i*np + col];
}
}
}
}
} // namespace Opm

View File

@ -112,6 +112,25 @@ namespace Opm
const std::vector<double>& s,
std::vector<double>& fractional_flows);
/// Computes the surface volume densities from saturations by the formula
/// z = A s
/// for a number of data points, where z is the surface volume density,
/// s is the saturation (both as column vectors) and A is the
/// phase-to-component relation matrix.
/// @param[in] n number of data points
/// @param[in] np number of phases, must be 2 or 3
/// @param[in] A array containing n square matrices of size num_phases,
/// in Fortran ordering, typically the output of a call
/// to the matrix() method of a BlackoilProperties* class.
/// @param[in] saturation concatenated saturation values (for all P phases)
/// @param[out] surfacevol concatenated surface-volume values (for all P phases)
void computeSurfacevol(const int n,
const int np,
const double* A,
const double* saturation,
double* surfacevol);
} // namespace Opm
#endif // OPM_MISCUTILITIESBLACKOIL_HEADER_INCLUDED