Merge pull request #4276 from akva2/stdwell_assemble

Added: StandardWellAssemble
This commit is contained in:
Bård Skaflestad 2022-11-22 13:09:46 +01:00 committed by GitHub
commit 9cde51cbc6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 492 additions and 135 deletions

View File

@ -96,6 +96,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/wells/PerfData.cpp
opm/simulators/wells/SegmentState.cpp
opm/simulators/wells/SingleWellState.cpp
opm/simulators/wells/StandardWellAssemble.cpp
opm/simulators/wells/StandardWellEquations.cpp
opm/simulators/wells/StandardWellEval.cpp
opm/simulators/wells/StandardWellGeneric.cpp
@ -381,8 +382,10 @@ list (APPEND PUBLIC_HEADER_FILES
opm/simulators/wells/SingleWellState.hpp
opm/simulators/wells/StandardWell.hpp
opm/simulators/wells/StandardWell_impl.hpp
opm/simulators/wells/StandardWellAssemble.hpp
opm/simulators/wells/StandardWellEquations.hpp
opm/simulators/wells/StandardWellEval.hpp
opm/simulators/wells/StandardWellGeneric.hpp
opm/simulators/wells/TargetCalculator.hpp
opm/simulators/wells/VFPHelpers.hpp
opm/simulators/wells/VFPInjProperties.hpp

View File

@ -0,0 +1,337 @@
/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellAssemble.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/densead/DynamicEvaluation.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/wells/StandardWellEquations.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
namespace Opm {
//! \brief Class administering assembler access to equation system.
template<class Scalar, int numEq>
class StandardWellEquationAccess {
public:
//! \brief Constructor initializes reference to the equation system.
StandardWellEquationAccess(StandardWellEquations<Scalar,numEq>& eqns)
: eqns_(eqns)
{}
using BVectorWell = typename StandardWellEquations<Scalar,numEq>::BVectorWell;
using DiagMatWell = typename StandardWellEquations<Scalar,numEq>::DiagMatWell;
using OffDiatMatWell = typename StandardWellEquations<Scalar,numEq>::OffDiagMatWell;
//! \brief Returns a reference to residual vector.
BVectorWell& residual()
{
return eqns_.resWell_;
}
//! \brief Returns a reference to B matrix.
OffDiatMatWell& B()
{
return eqns_.duneB_;
}
//! \brief Returns a reference to C matrix.
OffDiatMatWell& C()
{
return eqns_.duneC_;
}
//! \brief Returns a reference to D matrix.
DiagMatWell& D()
{
return eqns_.duneD_;
}
private:
StandardWellEquations<Scalar,numEq>& eqns_; //!< Reference to equation system
};
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void
StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const int numWellEq,
const EvalWell& wqTotal,
const EvalWell& bhp,
const std::function<EvalWell(int)>& getQs,
const double rho,
const int Bhp,
StandardWellEquations<Scalar,Indices::numEq>& eqns1,
DeferredLogger& deferred_logger) const
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
EvalWell control_eq(numWellEq + Indices::numEq, 0.0);
const auto& well = well_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, EvalWell(numWellEq + Indices::numEq, 0.0));
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (well_.wellIsStopped()) {
control_eq = wqTotal;
} else if (well_.isInjector()) {
// Find injection rate.
const EvalWell injection_rate = wqTotal;
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
const auto& inj_controls = well.injectionControls(summaryState);
WellAssemble(well_).
assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
bhp,
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
const auto& prod_controls = well.productionControls(summaryState);
WellAssemble(well_).
assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
bhp,
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
StandardWellEquationAccess eqns(eqns1);
eqns.residual()[0][Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.D()[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleInjectivityEq(const EvalWell& eq_pskin,
const EvalWell& eq_wat_vel,
const int pskin_index,
const int wat_vel_index,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
eqns.residual()[0][pskin_index] = eq_pskin.value();
eqns.residual()[0][wat_vel_index] = eq_wat_vel.value();
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
eqns.D()[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+Indices::numEq);
eqns.D()[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+Indices::numEq);
}
// the water velocity is impacted by the reservoir primary varaibles. It needs to enter matrix B
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
eqns.B()[0][cell_idx][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx);
}
}
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assemblePerforationEq(const EvalWell& cq_s_effective,
const int componentIdx,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
// subtract sum of phase fluxes in the well equations.
eqns.residual()[0][componentIdx] += cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
// also need to consider the efficiency factor when manipulating the jacobians.
eqns.C()[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+Indices::numEq); // intput in transformed matrix
eqns.D()[0][0][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx+Indices::numEq);
}
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
eqns.B()[0][cell_idx][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx);
}
}
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleSourceEq(const EvalWell& resWell_loc,
const int componentIdx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
eqns.D()[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+Indices::numEq);
}
eqns.residual()[0][componentIdx] += resWell_loc.value();
}
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleZFracEq(const EvalWell& cq_s_zfrac_effective,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
{
StandardWellEquationAccess eqns(eqns1);
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
eqns.C()[0][cell_idx][pvIdx][Indices::contiZfracEqIdx] -= cq_s_zfrac_effective.derivative(pvIdx+Indices::numEq);
}
}
#define INSTANCE(Dim,...) \
template class StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assembleControlEq(const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const int, \
const DenseAd::Evaluation<double,-1,Dim>&, \
const DenseAd::Evaluation<double,-1,Dim>&, \
const std::function<DenseAd::Evaluation<double,-1,Dim>(int)>&, \
const double, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&, \
DeferredLogger&) const; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assembleInjectivityEq(const DenseAd::Evaluation<double,-1,Dim>&, \
const DenseAd::Evaluation<double,-1,Dim>&, \
const int, \
const int, \
const int, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&) const; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assemblePerforationEq(const DenseAd::Evaluation<double,-1,Dim>&, \
const int, \
const int, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&) const; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assembleZFracEq(const DenseAd::Evaluation<double,-1,Dim>&, \
const int, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&) const; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assembleSourceEq(const DenseAd::Evaluation<double,-1,Dim>&, \
const int, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&) const;
// One phase
INSTANCE(4u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(5u, BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(9u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(8u, BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
// Blackoil
INSTANCE(8u, BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(10u, BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
}

View File

@ -0,0 +1,103 @@
/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_STANDARDWELL_ASSEMBLE_HEADER_INCLUDED
#define OPM_STANDARDWELL_ASSEMBLE_HEADER_INCLUDED
#include <functional>
namespace Opm
{
class DeferredLogger;
class GroupState;
class Schedule;
template<class Scalar, int numEq> class StandardWellEquations;
class SummaryState;
template<class FluidSystem> class WellInterfaceFluidSystem;
class WellState;
//! \brief Class handling assemble of the equation system for StandardWell.
template<class FluidSystem, class Indices, class Scalar>
class StandardWellAssemble
{
public:
//! \brief Constructor initializes reference to well.
StandardWellAssemble(const WellInterfaceFluidSystem<FluidSystem>& well)
: well_(well)
{}
//! \brief Assemble control equation.
template<class EvalWell>
void assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const int numWellEq,
const EvalWell& wqTotal,
const EvalWell& bhp,
const std::function<EvalWell(int)>& getQs,
const double rho,
const int Bhp,
StandardWellEquations<Scalar,Indices::numEq>& eqns,
DeferredLogger& deferred_logger) const;
//! \brief Assemble injectivity equation.
template<class EvalWell>
void assembleInjectivityEq(const EvalWell& eq_pskin,
const EvalWell& eq_wat_vel,
const int pskin_index,
const int wat_vel_index,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns) const;
//! \brief Assemble equation for a perforation.
template<class EvalWell>
void assemblePerforationEq(const EvalWell& cq_s_effective,
const int componentIdx,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns) const;
//! \brief Assemble equation for Z fraction.
template<class EvalWell>
void assembleZFracEq(const EvalWell& cq_s_zfrac_effective,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns) const;
//! \brief Assemble a source term.
template<class EvalWell>
void assembleSourceEq(const EvalWell& resWell_loc,
const int componentIdx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns) const;
private:
const WellInterfaceFluidSystem<FluidSystem>& well_; //!< Reference to well
};
}
#endif // OPM_STANDARDWELL_ASSEMBLE_HEADER_INCLUDED

View File

@ -35,6 +35,7 @@ namespace Opm
{
class ParallelWellInfo;
template<class Scalar, int numEq> class StandardWellEquationAccess;
class WellContributions;
class WellInterfaceGeneric;
class WellState;
@ -117,6 +118,15 @@ public:
//! \brief Sum with off-process contribution.
void sumDistributed(Parallel::Communication comm);
//! \brief Returns a const reference to the residual.
const BVectorWell& residual() const
{
return resWell_;
}
private:
friend class StandardWellEquationAccess<Scalar,numEq>;
// two off-diagonal matrices
OffDiagMatWell duneB_;
OffDiagMatWell duneC_;

View File

@ -32,7 +32,6 @@
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellConvergence.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
@ -358,100 +357,6 @@ updatePrimaryVariables(const WellState& well_state, DeferredLogger& deferred_log
primary_variables_[Bhp] = ws.bhp;
}
template<class FluidSystem, class Indices, class Scalar>
void
StandardWellEval<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger)
{
static constexpr int Gas = WellInterfaceIndices<FluidSystem,Indices,Scalar>::Gas;
static constexpr int Oil = WellInterfaceIndices<FluidSystem,Indices,Scalar>::Oil;
static constexpr int Water = WellInterfaceIndices<FluidSystem,Indices,Scalar>::Water;
EvalWell control_eq(numWellEq_ + Indices::numEq, 0.0);
const auto& well = baseif_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, EvalWell(numWellEq_ + Indices::numEq, 0.0));
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (baseif_.wellIsStopped()) {
control_eq = getWQTotal();
} else if (baseif_.isInjector()) {
// Find injection rate.
const EvalWell injection_rate = getWQTotal();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
this->getRho(),
deferred_logger);
};
// Call generic implementation.
const auto& inj_controls = well.injectionControls(summaryState);
WellAssemble(baseif_).
assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
getBhp(),
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
this->getRho(),
deferred_logger);
};
// Call generic implementation.
const auto& prod_controls = well.productionControls(summaryState);
WellAssemble(baseif_).
assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
getBhp(),
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
this->linSys_.resWell_[0][Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq_; ++pv_idx) {
this->linSys_.duneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void
StandardWellEval<FluidSystem,Indices,Scalar>::
@ -774,7 +679,7 @@ getWellConvergence(const WellState& well_state,
res.resize(numWellEq_);
for (int eq_idx = 0; eq_idx < numWellEq_; ++eq_idx) {
// magnitude of the residual matters
res[eq_idx] = std::abs(this->linSys_.resWell_[0][eq_idx]);
res[eq_idx] = std::abs(this->linSys_.residual()[0][eq_idx]);
}
std::vector<double> well_flux_residual(baseif_.numComponents());
@ -811,7 +716,7 @@ getWellConvergence(const WellState& well_state,
WellConvergence(baseif_).
checkConvergenceControlEq(well_state,
{1.e3, 1.e4, 1.e-4, 1.e-6, maxResidualAllowed},
std::abs(this->linSys_.resWell_[0][Bhp]),
std::abs(this->linSys_.residual()[0][Bhp]),
report,
deferred_logger);

View File

@ -133,12 +133,6 @@ protected:
static double relaxationFactorFractionsProducer(const std::vector<double>& primary_variables,
const BVectorWell& dwells);
void assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger);
// computing the accumulation term for later use in well mass equations
void computeAccumWell();

View File

@ -20,6 +20,7 @@
*/
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/StandardWellAssemble.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellConvergence.hpp>
@ -482,19 +483,12 @@ namespace Opm
connectionRates[perf][componentIdx] = Base::restrictEval(cq_s_effective);
// subtract sum of phase fluxes in the well equations.
this->linSys_.resWell_[0][componentIdx] += cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < this->numWellEq_; ++pvIdx) {
// also need to consider the efficiency factor when manipulating the jacobians.
this->linSys_.duneC_[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+Indices::numEq); // intput in transformed matrix
this->linSys_.duneD_[0][0][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx+Indices::numEq);
}
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
this->linSys_.duneB_[0][cell_idx][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx);
}
StandardWellAssemble<FluidSystem,Indices,Scalar>(*this).
assemblePerforationEq(cq_s_effective,
componentIdx,
cell_idx,
this->numWellEq_,
this->linSys_);
// Store the perforation phase flux for later usage.
if (has_solvent && componentIdx == Indices::contiSolventEqIdx) {
@ -506,9 +500,11 @@ namespace Opm
}
if constexpr (has_zFraction) {
for (int pvIdx = 0; pvIdx < this->numWellEq_; ++pvIdx) {
this->linSys_.duneC_[0][cell_idx][pvIdx][Indices::contiZfracEqIdx] -= cq_s_zfrac_effective.derivative(pvIdx+Indices::numEq);
}
StandardWellAssemble<FluidSystem,Indices,Scalar>(*this).
assembleZFracEq(cq_s_zfrac_effective,
cell_idx,
this->numWellEq_,
this->linSys_);
}
}
// Update the connection
@ -536,15 +532,27 @@ namespace Opm
resWell_loc += (this->wellSurfaceVolumeFraction(componentIdx) - this->F0_[componentIdx]) * volume / dt;
}
resWell_loc -= this->getQs(componentIdx) * this->well_efficiency_factor_;
for (int pvIdx = 0; pvIdx < this->numWellEq_; ++pvIdx) {
this->linSys_.duneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+Indices::numEq);
}
this->linSys_.resWell_[0][componentIdx] += resWell_loc.value();
StandardWellAssemble<FluidSystem,Indices,Scalar>(*this).
assembleSourceEq(resWell_loc,
componentIdx,
this->numWellEq_,
this->linSys_);
}
const auto& summaryState = ebosSimulator.vanguard().summaryState();
const Schedule& schedule = ebosSimulator.vanguard().schedule();
this->assembleControlEq(well_state, group_state, schedule, summaryState, deferred_logger);
std::function<EvalWell(int)> gQ = [this](int a) { return this->getQs(a); };
StandardWellAssemble<FluidSystem,Indices,Scalar>(*this).
assembleControlEq(well_state, group_state,
schedule, summaryState,
this->numWellEq_,
this->getWQTotal(),
this->getBhp(),
gQ,
this->getRho(),
Bhp,
this->linSys_,
deferred_logger);
// do the local inversion of D.
@ -2313,7 +2321,6 @@ namespace Opm
// equation for the water velocity
const EvalWell eq_wat_vel = this->primary_variables_evaluation_[wat_vel_index] - water_velocity;
this->linSys_.resWell_[0][wat_vel_index] = eq_wat_vel.value();
const auto& ws = well_state.well(this->index_of_well_);
const auto& perf_data = ws.perf_data;
@ -2328,16 +2335,14 @@ namespace Opm
const EvalWell eq_pskin = this->primary_variables_evaluation_[pskin_index]
- pskin(throughput, this->primary_variables_evaluation_[wat_vel_index], poly_conc, deferred_logger);
this->linSys_.resWell_[0][pskin_index] = eq_pskin.value();
for (int pvIdx = 0; pvIdx < this->numWellEq_; ++pvIdx) {
this->linSys_.duneD_[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+Indices::numEq);
this->linSys_.duneD_[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+Indices::numEq);
}
// the water velocity is impacted by the reservoir primary varaibles. It needs to enter matrix B
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
this->linSys_.duneB_[0][cell_idx][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx);
}
StandardWellAssemble<FluidSystem,Indices,Scalar>(*this).
assembleInjectivityEq(eq_pskin,
eq_wat_vel,
pskin_index,
wat_vel_index,
cell_idx,
this->numWellEq_,
this->linSys_);
}