Merge pull request #1604 from andlaus/ebos_aquifers

let aquifers be managed by core ebos
This commit is contained in:
Atgeirr Flø Rasmussen 2018-11-02 10:33:13 +01:00 committed by GitHub
commit 9d6a9b4aa2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 168 additions and 176 deletions

View File

@ -43,8 +43,10 @@ namespace Opm
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
@ -61,65 +63,69 @@ namespace Opm
AquiferCarterTracy( const AquiferCT::AQUCT_data& aquct_data,
const Aquancon::AquanconOutput& connection,
Simulator& ebosSimulator )
: ebos_simulator_ (ebosSimulator),
aquct_data_ (aquct_data),
gravity_ (ebos_simulator_.problem().gravity()[2])
const Aquancon::AquanconOutput& connection,
const Simulator& ebosSimulator)
: ebos_simulator_ (ebosSimulator)
, aquct_data_ (aquct_data)
, connection_(connection)
{}
void initialSolutionApplied()
{
initQuantities(connection);
initQuantities(connection_);
}
inline void assembleAquiferEq(const SimulatorTimerInterface& timer)
void beginTimeStep()
{
auto& ebosJac = ebos_simulator_.model().linearizer().matrix();
auto& ebosResid = ebos_simulator_.model().linearizer().residual();
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin<0>();
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
size_t cellID;
for ( size_t idx = 0; idx < cell_idx_.size(); ++idx )
{
Eval qinflow = 0.0;
cellID = cell_idx_.at(idx);
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellID, /*timeIdx=*/ 0));
// This is the pressure at td + dt
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, timer);
qinflow = Qai_.at(idx);
ebosResid[cellID][waterCompIdx] -= qinflow.value();
elemCtx.updatePrimaryStencil(elem);
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx)
{
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cellID][cellID][waterCompIdx][pvIdx] -= qinflow.derivative(pvIdx);
}
int cellIdx = elemCtx.globalSpaceIndex(0, 0);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
}
}
inline void beforeTimeStep(const SimulatorTimerInterface& timer)
template <class Context>
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
{
auto cellID = cell_idx_.begin();
size_t idx;
for ( idx = 0; cellID != cell_idx_.end(); ++cellID, ++idx )
{
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
updateCellPressure(pressure_previous_ ,idx,intQuants);
}
unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
// This is the pressure at td + dt
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
}
inline void afterTimeStep(const SimulatorTimerInterface& timer)
void endTimeStep()
{
for (auto Qai = Qai_.begin(); Qai != Qai_.end(); ++Qai)
{
W_flux_ += (*Qai)*timer.currentStepLength();
for (const auto& Qai: Qai_) {
W_flux_ += Qai*ebos_simulator_.timeStepSize();
}
}
private:
Simulator& ebos_simulator_;
const Simulator& ebos_simulator_;
// Grid variables
std::vector<size_t> cell_idx_;
@ -136,15 +142,17 @@ namespace Opm
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar mu_w_ , //water viscosity
beta_ , // Influx constant
Tc_ , // Time constant
pa0_ , // initial aquifer pressure
gravity_ ; // gravitational acceleration
Scalar mu_w_; //water viscosity
Scalar beta_; // Influx constant
Scalar Tc_; // Time constant
Scalar pa0_; // initial aquifer pressure
Eval W_flux_;
Scalar gravity_() const
{ return ebos_simulator_.problem().gravity()[2]; }
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
{
// We use the opm-common numeric linear interpolator
@ -189,15 +197,15 @@ namespace Opm
inline Scalar dpai(int idx)
{
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0) - pressure_previous_.at(idx);
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_()*(cell_depth_.at(idx) - aquct_data_.d0) - pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const SimulatorTimerInterface& timer)
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator)
{
const Scalar td_plus_dt = (timer.currentStepLength() + timer.simulationTimeElapsed()) / Tc_;
const Scalar td = timer.simulationTimeElapsed() / Tc_;
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / Tc_;
const Scalar td = simulator.time() / Tc_;
Scalar PItdprime = 0.;
Scalar PItd = 0.;
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
@ -206,10 +214,10 @@ namespace Opm
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const SimulatorTimerInterface& timer)
inline void calculateInflowRate(int idx, const Simulator& simulator)
{
Scalar a, b;
calculateEqnConstants(a,b,idx,timer);
calculateEqnConstants(a,b,idx,simulator);
Qai_.at(idx) = alphai_.at(idx)*( a - b * ( pressure_current_.at(idx) - pressure_previous_.at(idx) ) );
}
@ -256,10 +264,12 @@ namespace Opm
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
cellToConnectionIdx_.resize(ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
auto cellFacesRange = cell2Faces[cell_idx_.at(idx)];
cellToConnectionIdx_[cell_idx_[idx]] = idx;
auto cellFacesRange = cell2Faces[cell_idx_.at(idx)];
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
// The index of the face in the compressed grid
@ -321,11 +331,19 @@ namespace Opm
pa0_ = aquct_data_.p0;
}
// use the thermodynamic state of the first active cell as a
// reference. there might be better ways to do this...
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin</*codim=*/0>();
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign( ebos_simulator_.model().cachedIntensiveQuantities(cell_idx_.at(0), /*timeIdx=*/ 0)->fluidState() );
fs_aquifer.assign( iq0.fluidState() );
Eval temperature_aq, pa0_mean;
temperature_aq = fs_aquifer.temperature(0);
pa0_mean = pa0_;
@ -343,15 +361,26 @@ namespace Opm
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
size_t cellIDx = cell_idx_.at(idx);
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellIDx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
ElementContext elemCtx(ebos_simulator_);
const auto& gridView = ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
rhow_.at(idx) = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0))*alphai_.at(idx) );
rhow_[idx] = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - rhow_[idx].value()*gravity_()*(cell_depth_[idx] - aquct_data_.d0))*alphai_[idx] );
}
// We take the average of the calculated equilibrium pressures.
@ -359,7 +388,8 @@ namespace Opm
return aquifer_pres_avg;
}
const Aquancon::AquanconOutput connection_;
std::vector<int> cellToConnectionIdx_;
}; // class AquiferCarterTracy

View File

@ -24,6 +24,8 @@
#ifndef OPM_BLACKOILAQUIFERMODEL_HEADER_INCLUDED
#define OPM_BLACKOILAQUIFERMODEL_HEADER_INCLUDED
#include <ebos/eclbaseaquifermodel.hh>
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
@ -34,45 +36,45 @@ namespace Opm {
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilAquiferModel {
class BlackoilAquiferModel
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
public:
explicit BlackoilAquiferModel(Simulator& simulator);
// --------- Types ---------
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef AquiferCarterTracy<TypeTag> Aquifer_object;
explicit BlackoilAquiferModel(Simulator& ebosSimulator);
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble( const SimulatorTimerInterface& timer,
const int iterationIdx );
// called at the end of a time step
void timeStepSucceeded(const SimulatorTimerInterface& timer);
void initialSolutionApplied();
void beginEpisode();
void beginTimeStep();
void beginIteration();
// add the water rate due to aquifers to the source term.
template <class Context>
void addToSource(RateVector& rates,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const;
void endIteration();
void endTimeStep();
void endEpisode();
protected:
// --------- Types ---------
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
Simulator& ebosSimulator_;
typedef AquiferCarterTracy<TypeTag> AquiferType;
std::vector<Aquifer_object> aquifers_;
// TODO: declaring this as mutable is a hack which should be fixed in the
// long term
mutable std::vector<AquiferType> aquifers_;
Simulator& simulator_;
// This initialization function is used to connect the parser objects with the ones needed by AquiferCarterTracy
void init();
void updateConnectionIntensiveQuantities() const;
void assembleAquiferEq(const SimulatorTimerInterface& timer);
// at the beginning of each time step (Not report step)
void prepareTimeStep(const SimulatorTimerInterface& timer);
bool aquiferActive() const;
};

View File

@ -3,104 +3,85 @@ namespace Opm {
template<typename TypeTag>
BlackoilAquiferModel<TypeTag>::
BlackoilAquiferModel(Simulator& ebosSimulator)
: ebosSimulator_(ebosSimulator)
BlackoilAquiferModel(Simulator& simulator)
: simulator_(simulator)
{
init();
}
// called at the end of a time step
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: timeStepSucceeded(const SimulatorTimerInterface& timer)
BlackoilAquiferModel<TypeTag>::initialSolutionApplied()
{
if ( !aquiferActive() ) {
return;
}
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->afterTimeStep(timer);
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer) {
aquifer->initialSolutionApplied();
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::
assemble( const SimulatorTimerInterface& timer,
const int iterationIdx )
{
if ( !aquiferActive() ) {
return;
}
// We need to update the reservoir pressures connected to the aquifer
updateConnectionIntensiveQuantities();
if (iterationIdx == 0) {
// We can do the Table check and coefficients update in this function
// For now, it does nothing!
prepareTimeStep(timer);
}
assembleAquiferEq(timer);
}
BlackoilAquiferModel<TypeTag>::beginEpisode()
{ }
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: updateConnectionIntensiveQuantities() const
BlackoilAquiferModel<TypeTag>::beginTimeStep()
{
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt;
++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer) {
aquifer->beginTimeStep();
}
}
// Protected function which calls the individual aquifer models
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: assembleAquiferEq(const SimulatorTimerInterface& timer)
BlackoilAquiferModel<TypeTag>::beginIteration()
{ }
template<typename TypeTag>
template <class Context>
void
BlackoilAquiferModel<TypeTag>::addToSource(RateVector& rates,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->assembleAquiferEq(timer);
for (auto& aquifer: aquifers_) {
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
}
}
// Protected function
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: prepareTimeStep(const SimulatorTimerInterface& timer)
void
BlackoilAquiferModel<TypeTag>::endIteration()
{ }
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endTimeStep()
{
// Here we can ask each carter tracy aquifers to get the current previous time step's pressure
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->beforeTimeStep(timer);
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer) {
aquifer->endTimeStep();
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endEpisode()
{ }
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init()
{
const auto& deck = ebosSimulator_.vanguard().deck();
const auto& deck = this->simulator_.vanguard().deck();
if ( !deck.hasKeyword("AQUCT") ) {
return ;
}
updateConnectionIntensiveQuantities();
const auto& eclState = ebosSimulator_.vanguard().eclState();
//updateConnectionIntensiveQuantities();
const auto& eclState = this->simulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
const AquiferCT aquiferct = AquiferCT(eclState,deck);
@ -115,7 +96,7 @@ namespace Opm {
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_.push_back(
AquiferCarterTracy<TypeTag> (aquifersData.at(i), aquifer_connection.at(i), ebosSimulator_)
AquiferCarterTracy<TypeTag> (aquifersData.at(i), aquifer_connection.at(i), this->simulator_)
);
}
}

View File

@ -78,6 +78,8 @@ SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
SET_BOOL_PROP(EclFlowProblem, BlackoilConserveSurfaceVolume, true);
SET_BOOL_PROP(EclFlowProblem, UseVolumetricResidual, false);
SET_TYPE_PROP(EclFlowProblem, EclAquiferModel, Opm::BlackoilAquiferModel<TypeTag>);
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
SET_BOOL_PROP(EclFlowProblem, EnablePolymer, false);
@ -145,7 +147,6 @@ namespace Opm {
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
BlackoilWellModel<TypeTag>& well_model,
BlackoilAquiferModel<TypeTag>& aquifer_model,
const NewtonIterationBlackoilInterface& linsolver,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
@ -159,7 +160,6 @@ namespace Opm {
, has_energy_(GET_PROP_VALUE(TypeTag, EnableEnergy))
, param_( param )
, well_model_ (well_model)
, aquifer_model_(aquifer_model)
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
, dx_old_(UgGridHelpers::numCells(grid_))
@ -342,7 +342,6 @@ namespace Opm {
void afterStep(const SimulatorTimerInterface& OPM_UNUSED timer)
{
wellModel().timeStepSucceeded(timer.simulationTimeElapsed());
aquiferModel().timeStepSucceeded(timer);
ebosSimulator_.problem().endTimeStep();
}
@ -360,17 +359,6 @@ namespace Opm {
ebosSimulator_.model().linearizer().linearize();
ebosSimulator_.problem().endIteration();
// -------- Aquifer models ----------
try
{
// Modify the Jacobian and residuals according to the aquifer models
aquiferModel().assemble(timer, iterationIdx);
}
catch( ... )
{
OPM_THROW(Opm::NumericalIssue,"Error when assembling aquifer models");
}
// -------- Current time step length ----------
const double dt = timer.currentStepLength();
@ -959,9 +947,6 @@ namespace Opm {
// Well Model
BlackoilWellModel<TypeTag>& well_model_;
// Aquifer Model
BlackoilAquiferModel<TypeTag>& aquifer_model_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
@ -981,9 +966,6 @@ namespace Opm {
const BlackoilWellModel<TypeTag>&
wellModel() const { return well_model_; }
BlackoilAquiferModel<TypeTag>&
aquiferModel() { return aquifer_model_; }
void beginReportStep()
{
ebosSimulator_.problem().beginEpisode();

View File

@ -201,8 +201,6 @@ public:
ebosSimulator_.model().addAuxiliaryModule(wellAuxMod_.get());
}
AquiferModel aquifer_model(ebosSimulator_);
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
@ -217,7 +215,7 @@ public:
wellModel.beginReportStep(timer.currentStepNum());
auto solver = createSolver(wellModel, aquifer_model);
auto solver = createSolver(wellModel);
// write the inital state at the report stage
if (timer.initialStep()) {
@ -343,12 +341,11 @@ public:
protected:
std::unique_ptr<Solver> createSolver(WellModel& wellModel, AquiferModel& aquifer_model)
std::unique_ptr<Solver> createSolver(WellModel& wellModel)
{
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
modelParam_,
wellModel,
aquifer_model,
linearSolver_,
terminalOutput_));