Merge pull request #475 from andlaus/fix_ecl_restart

ebos: Fix restart from ECL files
This commit is contained in:
Tor Harald Sandve 2019-02-19 10:11:02 +01:00 committed by GitHub
commit 9de0e54b63
2 changed files with 115 additions and 83 deletions

View File

@ -357,7 +357,6 @@ class EclProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
enum { enablePolymer = GET_PROP_VALUE(TypeTag, EnablePolymer) };
enum { enablePolymerMolarWeight = GET_PROP_VALUE(TypeTag, EnablePolymerMW) };
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { enableThermalFluxBoundaries = GET_PROP_VALUE(TypeTag, EnableThermalFluxBoundaries) };
@ -556,11 +555,6 @@ public:
if (!deck.hasKeyword("NOGRAV") && EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
this->gravity_[dim - 1] = 9.80665;
// this is actually not fully correct: the latest occurence of VAPPARS and DRSDT
// or DRVDT up to the current time step in the schedule section counts, presence
// of VAPPARS alone is not sufficient to disable DR[SV]DT. TODO: implment support
// for this in opm-parser's Schedule object"
// deal with DRSDT
const auto& eclState = simulator.vanguard().eclState();
unsigned ntpvt = eclState.runspec().tabdims().getNumPVTTables();
@ -579,30 +573,19 @@ public:
readThermalParameters_();
transmissibilities_.finishInit();
const auto& initconfig = eclState.getInitConfig();
const auto& timeMap = simulator.vanguard().schedule().getTimeMap();
if(initconfig.restartRequested()) {
// Set the start time of the simulation
simulator.setStartTime( timeMap.getStartTime(/*timeStepIdx=*/initconfig.getRestartStep()) );
simulator.setEpisodeIndex(initconfig.getRestartStep());
simulator.setEpisodeLength(0.0);
simulator.setTimeStepSize(0.0);
readEclRestartSolution_();
}
else {
readInitialCondition_();
// Set the start time of the simulation
simulator.setStartTime( timeMap.getStartTime(/*timeStepIdx=*/0) );
readInitialCondition_();
// Set the start time of the simulation
simulator.setStartTime(timeMap.getStartTime(/*timeStepIdx=*/0));
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented inside beginEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
simulator.setTimeStepSize(0.0);
}
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented inside beginEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
simulator.setTimeStepSize(0.0);
updatePffDofData_();
@ -750,12 +733,12 @@ public:
const auto& oilVaporizationControl = this->simulator().vanguard().schedule().getOilVaporizationProperties(epsiodeIdx);
if (drsdtActive_())
// DRSDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRs_.size(); ++pvtRegionIdx )
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRs_.size(); ++pvtRegionIdx)
maxDRs_[pvtRegionIdx] = oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*this->simulator().timeStepSize();
if (drvdtActive_())
// DRVDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRv_.size(); ++pvtRegionIdx )
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRv_.size(); ++pvtRegionIdx)
maxDRv_[pvtRegionIdx] = oilVaporizationControl.getMaxDRVDT(pvtRegionIdx)*this->simulator().timeStepSize();
wellModel_.beginTimeStep();
@ -971,7 +954,6 @@ public:
Scalar thresholdPressure(unsigned elem1Idx, unsigned elem2Idx) const
{ return thresholdPressures_.thresholdPressure(elem1Idx, elem2Idx); }
const EclThresholdPressure<TypeTag>& thresholdPressure() const
{ return thresholdPressures_; }
@ -1077,7 +1059,6 @@ public:
return thermalLawManager_->solidEnergyLawParams(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
@ -1126,7 +1107,6 @@ public:
return polymerConcentration_[elemIdx];
}
/*!
* \brief Returns the polymer molecule weight for a given cell index
*/
@ -1204,7 +1184,7 @@ public:
{ return plmixnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \brief Returns the index the relevant PLMIXNUM ( for polymer module) region given a cell index
* \brief Returns the index the relevant PLMIXNUM (for polymer module) region given a cell index
*/
unsigned plmixnumRegionIndex(unsigned elemIdx) const
{
@ -1232,8 +1212,6 @@ public:
return maxPolymerAdsorption_[elemIdx];
}
/*!
* \copydoc FvBaseProblem::name
*/
@ -1279,17 +1257,15 @@ public:
}
if (hasFreeBoundaryConditions()) {
unsigned indexInInside = context.intersection(spaceIdx).indexInInside();
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
switch (indexInInside) {
case 0:
{
if (freebcXMinus_[globalDofIdx])
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
break;
}
case 1:
if (freebcX_[globalDofIdx])
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
@ -1353,10 +1329,12 @@ public:
*/
void initialSolutionApplied()
{
const auto& eclState = this->simulator().vanguard().eclState();
// initialize the wells. Note that this needs to be done after initializing the
// intrinsic permeabilities and the after applying the initial solution because
// the well model uses these...
wellModel_.init(this->simulator().vanguard().eclState(), this->simulator().vanguard().schedule());
wellModel_.init(eclState, this->simulator().vanguard().schedule());
// let the object for threshold pressures initialize itself. this is done only at
// this point, because determining the threshold pressures may require to access
@ -1369,6 +1347,10 @@ public:
updateCompositionChangeLimits_();
aquiferModel_.initialSolutionApplied();
const auto& initconfig = eclState.getInitConfig();
if (initconfig.restartRequested())
readEclRestartSolution_();
}
/*!
@ -1407,7 +1389,7 @@ public:
{
int pvtRegionIdx = pvtRegionIndex(globalDofIdx);
if (!drsdtActive_() || maxDRs_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2;
return std::numeric_limits<Scalar>::max()/2.0;
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
@ -1425,7 +1407,7 @@ public:
{
int pvtRegionIdx = pvtRegionIndex(globalDofIdx);
if (!drvdtActive_() || maxDRv_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2;
return std::numeric_limits<Scalar>::max()/2.0;
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
@ -1477,7 +1459,7 @@ public:
{ return wellModel_; }
// temporary solution to facilitate output of initial state from flow
const InitialFluidState& initialFluidState(unsigned globalDofIdx ) const
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
{ return initialFluidStates_[globalDofIdx]; }
const Opm::EclipseIO& eclIO() const
@ -1485,7 +1467,7 @@ public:
bool vapparsActive() const
{
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0 );
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0);
const auto& oilVaporizationControl = this->simulator().vanguard().schedule().getOilVaporizationProperties(epsiodeIdx);
return (oilVaporizationControl.getType() == Opm::OilVaporizationEnum::VAPPARS);
}
@ -1496,31 +1478,30 @@ public:
private:
bool drsdtActive_() const
{
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0 );
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0);
const auto& oilVaporizationControl = this->simulator().vanguard().schedule().getOilVaporizationProperties(epsiodeIdx);
return (oilVaporizationControl.drsdtActive());
}
bool drvdtActive_() const
{
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0 );
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0);
const auto& oilVaporizationControl = this->simulator().vanguard().schedule().getOilVaporizationProperties(epsiodeIdx);
return (oilVaporizationControl.drvdtActive());
}
Scalar cellCenterDepth( const Element& element ) const
Scalar cellCenterDepth(const Element& element) const
{
typedef typename Element :: Geometry Geometry;
static constexpr int zCoord = Element :: dimension - 1;
typedef typename Element::Geometry Geometry;
static constexpr int zCoord = Element::dimension - 1;
Scalar zz = 0.0;
const Geometry geometry = element.geometry();
const int corners = geometry.corners();
for (int i=0; i<corners; ++i)
{
zz += geometry.corner( i )[ zCoord ];
}
for (int i=0; i < corners; ++i)
zz += geometry.corner(i)[zCoord];
return zz/Scalar(corners);
}
@ -1539,7 +1520,7 @@ private:
const Element& element = *elemIt;
const unsigned int elemIdx = elemMapper.index(element);
elementCenterDepth_[elemIdx] = cellCenterDepth( element );
elementCenterDepth_[elemIdx] = cellCenterDepth(element);
}
}
@ -1548,7 +1529,7 @@ private:
{
// update the "last Rs" values for all elements, including the ones in the ghost
// and overlap regions
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0 );
int epsiodeIdx = std::max(this->simulator().episodeIndex(), 0);
const auto& oilVaporizationControl = this->simulator().vanguard().schedule().getOilVaporizationProperties(epsiodeIdx);
if (oilVaporizationControl.drsdtActive()) {
@ -1566,7 +1547,7 @@ private:
const auto& iq = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq.fluidState();
typedef typename std::decay<decltype(fs) >::type FluidState;
typedef typename std::decay<decltype(fs)>::type FluidState;
int pvtRegionIdx = pvtRegionIndex(compressedDofIdx);
if (oilVaporizationControl.getOption(pvtRegionIdx) || fs.saturation(gasPhaseIdx) > freeGasMinSaturation_)
@ -1596,7 +1577,7 @@ private:
const auto& iq = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq.fluidState();
typedef typename std::decay<decltype(fs) >::type FluidState;
typedef typename std::decay<decltype(fs)>::type FluidState;
lastRv_[compressedDofIdx] =
Opm::BlackOil::template getRv_<FluidSystem,
@ -1840,15 +1821,28 @@ private:
void readEclRestartSolution_()
{
eclWriter_->restartBegin();
// Set the start time of the simulation
const auto& schedule = this->simulator().vanguard().schedule();
const auto& eclState = this->simulator().vanguard().eclState();
const auto& timeMap = schedule.getTimeMap();
const auto& initconfig = eclState.getInitConfig();
int episodeIdx = initconfig.getRestartStep() - 1;
this->simulator().setStartTime(timeMap.getStartTime(/*timeStepIdx=*/0));
this->simulator().setTime(timeMap.getTimePassedUntil(episodeIdx));
this->simulator().setEpisodeIndex(episodeIdx);
this->simulator().setEpisodeLength(timeMap.getTimeStepLength(episodeIdx));
this->simulator().setTimeStepSize(eclWriter_->restartTimeStepSize());
eclWriter_->beginRestart();
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
if (enableSolvent)
solventSaturation_.resize(numElems,0.0);
solventSaturation_.resize(numElems, 0.0);
if (enablePolymer)
polymerConcentration_.resize(numElems,0.0);
polymerConcentration_.resize(numElems, 0.0);
if (enablePolymerMolarWeight) {
const std::string msg {"Support of the RESTART for polymer molecular weight "
@ -1858,6 +1852,9 @@ private:
polymerMoleWeight_.resize(numElems, 0.0);
}
// this is a hack to preserve the initial fluid states
auto tmpInitialFs = initialFluidStates_;
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.setPvtRegionIndex(pvtRegionIndex(elemIdx));
@ -1879,17 +1876,49 @@ private:
const auto& oilVaporizationControl = this->simulator().vanguard().schedule().getOilVaporizationProperties(epsiodeIdx);
if (drsdtActive_())
// DRSDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRs_.size(); ++pvtRegionIdx )
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRs_.size(); ++pvtRegionIdx)
maxDRs_[pvtRegionIdx] = oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*this->simulator().timeStepSize();
if (drvdtActive_())
// DRVDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRv_.size(); ++pvtRegionIdx )
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRv_.size(); ++pvtRegionIdx)
maxDRv_[pvtRegionIdx] = oilVaporizationControl.getMaxDRVDT(pvtRegionIdx)*this->simulator().timeStepSize();
if (tracerModel().numTracers() > 0)
std::cout << "Warning: Restart is not implemented for the tracer model, it will initialize with initial tracer concentration" << std::endl;
// assign the restart solution to the current solution. note that we still need
// to compute real initial solution after this because the initial fluid states
// need to be correct for stuff like boundary conditions.
auto& sol = this->model().solution(/*timeIdx=*/0);
const auto& gridView = this->gridView();
ElementContext elemCtx(this->simulator());
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
initial(sol[elemIdx], elemCtx, /*spaceIdx=*/0, /*timeIdx=*/0);
}
// make sure that the ghost and overlap entities exhibit the correct
// solution. alternatively, this could be done in the loop above by also
// considering non-interior elements. Since the initial() method might not work
// 100% correctly for such elements, let's play safe and explicitly synchronize
// using message passing.
this->model().syncOverlap();
// this is a hack to preserve the initial fluid states
initialFluidStates_ = tmpInitialFs;
// make sure that the stuff which needs to be done at the beginning of an episode
// is run.
this->beginEpisode(/*isOnRestart=*/true);
eclWriter_->endRestart();
}
void processRestartSaturations_(InitialFluidState& elemFluidState)
@ -1897,17 +1926,17 @@ private:
// each phase needs to be above certain value to be claimed to be existing
// this is used to recover some RESTART running with the defaulted single-precision format
const Scalar smallSaturationTolerance = 1.e-6;
Scalar sumSaturation = 0.;
Scalar sumSaturation = 0.0;
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
if (elemFluidState.saturation(phaseIdx) < smallSaturationTolerance)
elemFluidState.setSaturation(phaseIdx, 0.);
elemFluidState.setSaturation(phaseIdx, 0.0);
sumSaturation += elemFluidState.saturation(phaseIdx);
}
}
assert(sumSaturation > 0.);
assert(sumSaturation > 0.0);
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
@ -2022,7 +2051,7 @@ private:
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
Dune::FieldVector< Scalar, numPhases > pc( 0 );
Dune::FieldVector<Scalar, numPhases> pc(0.0);
const auto& matParams = materialLawParams(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Opm::Valgrind::CheckDefined(oilPressure);
@ -2069,7 +2098,7 @@ private:
if (enableSolvent) {
const std::vector<double>& solventSaturationData = eclState.get3DProperties().getDoubleGridProperty("SSOL").getData();
solventSaturation_.resize(numDof,0.0);
solventSaturation_.resize(numDof, 0.0);
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
size_t cartesianDofIdx = vanguard.cartesianIndex(dofIdx);
assert(0 <= cartesianDofIdx);
@ -2080,7 +2109,7 @@ private:
if (enablePolymer) {
const std::vector<double>& polyConcentrationData = eclState.get3DProperties().getDoubleGridProperty("SPOLY").getData();
polymerConcentration_.resize(numDof,0.0);
polymerConcentration_.resize(numDof, 0.0);
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
size_t cartesianDofIdx = vanguard.cartesianIndex(dofIdx);
assert(0 <= cartesianDofIdx);
@ -2091,7 +2120,7 @@ private:
if (enablePolymerMolarWeight) {
const std::vector<double>& polyMoleWeightData = eclState.get3DProperties().getDoubleGridProperty("SPOLYMW").getData();
polymerMoleWeight_.resize(numDof,0.0);
polymerMoleWeight_.resize(numDof, 0.0);
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
const size_t cartesianDofIdx = vanguard.cartesianIndex(dofIdx);
assert(0 <= cartesianDofIdx);
@ -2099,11 +2128,8 @@ private:
polymerMoleWeight_[dofIdx] = polyMoleWeightData[cartesianDofIdx];
}
}
}
// update the hysteresis parameters of the material laws for the whole grid
bool updateHysteresis_()
{
@ -2258,15 +2284,15 @@ private:
void readBoundaryConditions_()
{
hasFreeBoundaryConditions_ = false;
readBoundaryConditionKeyword_("FREEBCX", freebcX_ );
readBoundaryConditionKeyword_("FREEBCX-", freebcXMinus_ );
readBoundaryConditionKeyword_("FREEBCY", freebcY_ );
readBoundaryConditionKeyword_("FREEBCY-", freebcYMinus_ );
readBoundaryConditionKeyword_("FREEBCZ", freebcZ_ );
readBoundaryConditionKeyword_("FREEBCZ-", freebcZMinus_ );
readBoundaryConditionKeyword_("FREEBCX", freebcX_);
readBoundaryConditionKeyword_("FREEBCX-", freebcXMinus_);
readBoundaryConditionKeyword_("FREEBCY", freebcY_);
readBoundaryConditionKeyword_("FREEBCY-", freebcYMinus_);
readBoundaryConditionKeyword_("FREEBCZ", freebcZ_);
readBoundaryConditionKeyword_("FREEBCZ-", freebcZMinus_);
}
void readBoundaryConditionKeyword_(const std::string& name, std::vector<bool>& compressedData )
void readBoundaryConditionKeyword_(const std::string& name, std::vector<bool>& compressedData)
{
const auto& eclProps = this->simulator().vanguard().eclState().get3DProperties();
const auto& vanguard = this->simulator().vanguard();
@ -2335,8 +2361,6 @@ private:
std::vector<bool> freebcYMinus_;
std::vector<bool> freebcZ_;
std::vector<bool> freebcZMinus_;
};
template <class TypeTag>

View File

@ -238,7 +238,7 @@ public:
}
}
void restartBegin()
void beginRestart()
{
bool enableHysteresis = simulator_.problem().materialLawManager()->enableHysteresis();
bool enableSwatinit = simulator_.vanguard().eclState().get3DProperties().hasDeckDoubleGridProperty("SWATINIT");
@ -277,11 +277,18 @@ public:
const auto& thpresValues = restartValues.getExtra("THRESHPR");
thpres.setFromRestart(thpresValues);
}
restartTimeStepSize_ = restartValues.getExtra("OPMEXTRA")[0];
}
void endRestart()
{}
const EclOutputBlackOilModule<TypeTag>& eclOutputModule() const
{ return eclOutputModule_; }
Scalar restartTimeStepSize() const
{ return restartTimeStepSize_; }
private:
static bool enableEclOutput_()
@ -481,6 +488,7 @@ private:
std::unique_ptr<Opm::EclipseIO> eclIO_;
Grid globalGrid_;
std::unique_ptr<TaskletRunner> taskletRunner_;
Scalar restartTimeStepSize_;
};