mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 16:51:00 -06:00
creating StandardWellV as the new well model
to employ dynamic-size Evalution, vectors and matrices.
This commit is contained in:
parent
b079c0a1e5
commit
a08216efd5
@ -138,6 +138,8 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/StandardWell_impl.hpp
|
||||
opm/autodiff/MultisegmentWell.hpp
|
||||
opm/autodiff/MultisegmentWell_impl.hpp
|
||||
opm/autodiff/StandardWellV.hpp
|
||||
opm/autodiff/StandardWellV_impl.hpp
|
||||
opm/autodiff/MSWellHelpers.hpp
|
||||
opm/autodiff/BlackoilWellModel.hpp
|
||||
opm/autodiff/BlackoilWellModel_impl.hpp
|
||||
|
@ -47,6 +47,7 @@
|
||||
#include <opm/autodiff/RateConverter.hpp>
|
||||
#include <opm/autodiff/WellInterface.hpp>
|
||||
#include <opm/autodiff/StandardWell.hpp>
|
||||
#include <opm/autodiff/StandardWellV.hpp>
|
||||
#include <opm/autodiff/MultisegmentWell.hpp>
|
||||
#include <opm/simulators/timestepping/gatherConvergenceReport.hpp>
|
||||
#include<opm/autodiff/SimFIBODetails.hpp>
|
||||
|
@ -295,7 +295,7 @@ namespace Opm {
|
||||
if (has_polymer_)
|
||||
{
|
||||
const Grid& grid = ebosSimulator_.vanguard().grid();
|
||||
if (PolymerModule::hasPlyshlog()) {
|
||||
if (PolymerModule::hasPlyshlog() || GET_PROP_VALUE(TypeTag, EnablePolymerMW) ) {
|
||||
computeRepRadiusPerfLength(grid);
|
||||
}
|
||||
}
|
||||
@ -534,8 +534,13 @@ namespace Opm {
|
||||
const int pvtreg = pvt_region_idx_[well_cell_top];
|
||||
|
||||
if ( !well_ecl->isMultiSegment(time_step) || !param_.use_multisegment_well_) {
|
||||
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, time_step, wells(),
|
||||
param_, *rateConverter_, pvtreg, numComponents() ) );
|
||||
if ( GET_PROP_VALUE(TypeTag, EnablePolymerMW) ) {
|
||||
well_container.emplace_back(new StandardWellV<TypeTag>(well_ecl, time_step, wells(),
|
||||
param_, *rateConverter_, pvtreg, numComponents() ) );
|
||||
} else {
|
||||
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, time_step, wells(),
|
||||
param_, *rateConverter_, pvtreg, numComponents() ) );
|
||||
}
|
||||
} else {
|
||||
well_container.emplace_back(new MultisegmentWell<TypeTag>(well_ecl, time_step, wells(),
|
||||
param_, *rateConverter_, pvtreg, numComponents() ) );
|
||||
|
@ -206,6 +206,16 @@ static inline void invertMatrix (FieldMatrix<K,n,n> &matrix)
|
||||
matrix.invert();
|
||||
}
|
||||
|
||||
//! invert matrix by calling matrix.invert
|
||||
template <typename K>
|
||||
static inline void invertMatrix (Dune::DynamicMatrix<K> &matrix)
|
||||
{
|
||||
#if ! DUNE_VERSION_NEWER( DUNE_COMMON, 2, 7 )
|
||||
Dune::FMatrixPrecision<K>::set_singular_limit(1.e-30);
|
||||
#endif
|
||||
matrix.invert();
|
||||
}
|
||||
|
||||
} // end ISTLUtility
|
||||
|
||||
template <class Scalar, int n, int m>
|
||||
|
418
opm/autodiff/StandardWellV.hpp
Normal file
418
opm/autodiff/StandardWellV.hpp
Normal file
@ -0,0 +1,418 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
Copyright 2016 - 2017 IRIS AS.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef OPM_STANDARDWELLV_HEADER_INCLUDED
|
||||
#define OPM_STANDARDWELLV_HEADER_INCLUDED
|
||||
|
||||
|
||||
#include <opm/autodiff/WellInterface.hpp>
|
||||
#include <opm/autodiff/ISTLSolverEbos.hpp>
|
||||
#include <opm/autodiff/RateConverter.hpp>
|
||||
|
||||
#include <opm/material/densead/DynamicEvaluation.hpp>
|
||||
|
||||
#include <dune/common/dynvector.hh>
|
||||
#include <dune/common/dynmatrix.hh>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
template<typename TypeTag>
|
||||
class StandardWellV: public WellInterface<TypeTag>
|
||||
{
|
||||
|
||||
public:
|
||||
typedef WellInterface<TypeTag> Base;
|
||||
|
||||
// TODO: some functions working with AD variables handles only with values (double) without
|
||||
// dealing with derivatives. It can be beneficial to make functions can work with either AD or scalar value.
|
||||
// And also, it can also be beneficial to make these functions hanle different types of AD variables.
|
||||
using typename Base::Simulator;
|
||||
using typename Base::WellState;
|
||||
using typename Base::IntensiveQuantities;
|
||||
using typename Base::FluidSystem;
|
||||
using typename Base::MaterialLaw;
|
||||
using typename Base::ModelParameters;
|
||||
using typename Base::Indices;
|
||||
using typename Base::PolymerModule;
|
||||
using typename Base::RateConverterType;
|
||||
|
||||
using Base::numEq;
|
||||
|
||||
using Base::has_solvent;
|
||||
using Base::has_polymer;
|
||||
using Base::has_energy;
|
||||
|
||||
// polymer concentration and temperature are already known by the well, so
|
||||
// polymer and energy conservation do not need to be considered explicitly
|
||||
static const int numPolymerEq = has_polymer ? 1 : 0;
|
||||
static const int numEnergyEq = has_energy ? 1 : 0;
|
||||
// number of the conservation equations
|
||||
static const int numWellConservationEq = numEq - numPolymerEq - numEnergyEq;
|
||||
// number of the well control equations
|
||||
static const int numWellControlEq = 1;
|
||||
int numWellEq = numWellConservationEq + numWellControlEq;
|
||||
|
||||
// the positions of the primary variables for StandardWell
|
||||
// the first one is the weighted total rate (WQ_t), the second and the third ones are F_w and F_g,
|
||||
// which represent the fraction of Water and Gas based on the weighted total rate, the last one is BHP.
|
||||
// correspondingly, we have four well equations for blackoil model, the first three are mass
|
||||
// converstation equations, and the last one is the well control equation.
|
||||
// primary variables related to other components, will be before the Bhp and after F_g.
|
||||
// well control equation is always the last well equation.
|
||||
// TODO: in the current implementation, we use the well rate as the first primary variables for injectors,
|
||||
// instead of G_t.
|
||||
static const bool gasoil = numEq == 2 && (Indices::compositionSwitchIdx >= 0);
|
||||
static const int WQTotal = 0;
|
||||
static const int WFrac = gasoil? -1000: 1;
|
||||
static const int GFrac = gasoil? 1: 2;
|
||||
static const int SFrac = !has_solvent ? -1000 : 3;
|
||||
// the index for Bhp in primary variables and also the index of well control equation
|
||||
// they both will be the last one in their respective system.
|
||||
// TODO: we should have indices for the well equations and well primary variables separately
|
||||
int Bhp = numWellEq - numWellControlEq;
|
||||
|
||||
using typename Base::Scalar;
|
||||
|
||||
|
||||
using Base::name;
|
||||
using Base::Water;
|
||||
using Base::Oil;
|
||||
using Base::Gas;
|
||||
|
||||
using typename Base::Mat;
|
||||
using typename Base::BVector;
|
||||
using typename Base::Eval;
|
||||
|
||||
// sparsity pattern for the matrices
|
||||
//[A C^T [x = [ res
|
||||
// B D ] x_well] res_well]
|
||||
|
||||
// the vector type for the res_well and x_well
|
||||
typedef Dune::DynamicVector<Scalar> VectorBlockWellType;
|
||||
typedef Dune::BlockVector<VectorBlockWellType> BVectorWell;
|
||||
|
||||
// the matrix type for the matrices
|
||||
// since we will resize all the matrices individually, one single type for the three
|
||||
// matrices will be plenty
|
||||
typedef Dune::DynamicMatrix<Scalar> MatrixBlockWellType;
|
||||
typedef Dune::BCRSMatrix <MatrixBlockWellType> MatWell;
|
||||
|
||||
typedef DenseAd::DynamicEvaluation<Scalar> EvalWell;
|
||||
|
||||
using Base::contiSolventEqIdx;
|
||||
using Base::contiPolymerEqIdx;
|
||||
static const int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
|
||||
|
||||
StandardWellV(const Well* well, const int time_step, const Wells* wells,
|
||||
const ModelParameters& param,
|
||||
const RateConverterType& rate_converter,
|
||||
const int pvtRegionIdx,
|
||||
const int num_components);
|
||||
|
||||
virtual void init(const PhaseUsage* phase_usage_arg,
|
||||
const std::vector<double>& depth_arg,
|
||||
const double gravity_arg,
|
||||
const int num_cells) override;
|
||||
|
||||
|
||||
virtual void initPrimaryVariablesEvaluation() const override;
|
||||
|
||||
virtual void assembleWellEq(const Simulator& ebosSimulator,
|
||||
const double dt,
|
||||
WellState& well_state) override;
|
||||
|
||||
virtual void updateWellStateWithTarget(const Simulator& ebos_simulator,
|
||||
WellState& well_state) const override;
|
||||
|
||||
/// check whether the well equations get converged for this well
|
||||
virtual ConvergenceReport getWellConvergence(const std::vector<double>& B_avg) const override;
|
||||
|
||||
/// Ax = Ax - C D^-1 B x
|
||||
virtual void apply(const BVector& x, BVector& Ax) const override;
|
||||
/// r = r - C D^-1 Rw
|
||||
virtual void apply(BVector& r) const override;
|
||||
|
||||
/// using the solution x to recover the solution xw for wells and applying
|
||||
/// xw to update Well State
|
||||
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
|
||||
WellState& well_state) const override;
|
||||
|
||||
/// computing the well potentials for group control
|
||||
virtual void computeWellPotentials(const Simulator& ebosSimulator,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& well_potentials) /* const */ override;
|
||||
|
||||
virtual void updatePrimaryVariables(const WellState& well_state) const override;
|
||||
|
||||
virtual void solveEqAndUpdateWellState(WellState& well_state) override;
|
||||
|
||||
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
|
||||
const WellState& well_state) override; // should be const?
|
||||
|
||||
virtual void addWellContributions(Mat& mat) const override;
|
||||
|
||||
/// \brief Wether the Jacobian will also have well contributions in it.
|
||||
virtual bool jacobianContainsWellContributions() const override
|
||||
{
|
||||
return param_.matrix_add_well_contributions_;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
// protected functions from the Base class
|
||||
using Base::getAllowCrossFlow;
|
||||
using Base::phaseUsage;
|
||||
using Base::flowPhaseToEbosCompIdx;
|
||||
using Base::ebosCompIdxToFlowCompIdx;
|
||||
using Base::wsolvent;
|
||||
using Base::wpolymer;
|
||||
using Base::wellHasTHPConstraints;
|
||||
using Base::mostStrictBhpFromBhpLimits;
|
||||
using Base::scalingFactor;
|
||||
using Base::scaleProductivityIndex;
|
||||
|
||||
// protected member variables from the Base class
|
||||
using Base::current_step_;
|
||||
using Base::well_ecl_;
|
||||
using Base::vfp_properties_;
|
||||
using Base::gravity_;
|
||||
using Base::param_;
|
||||
using Base::well_efficiency_factor_;
|
||||
using Base::first_perf_;
|
||||
using Base::ref_depth_;
|
||||
using Base::perf_depth_;
|
||||
using Base::well_cells_;
|
||||
using Base::number_of_perforations_;
|
||||
using Base::number_of_phases_;
|
||||
using Base::saturation_table_number_;
|
||||
using Base::comp_frac_;
|
||||
using Base::well_index_;
|
||||
using Base::index_of_well_;
|
||||
using Base::well_controls_;
|
||||
using Base::well_type_;
|
||||
using Base::num_components_;
|
||||
using Base::connectionRates_;
|
||||
|
||||
using Base::perf_rep_radius_;
|
||||
using Base::perf_length_;
|
||||
using Base::bore_diameters_;
|
||||
|
||||
// densities of the fluid in each perforation
|
||||
std::vector<double> perf_densities_;
|
||||
// pressure drop between different perforations
|
||||
std::vector<double> perf_pressure_diffs_;
|
||||
|
||||
// residuals of the well equations
|
||||
BVectorWell resWell_;
|
||||
|
||||
// two off-diagonal matrices
|
||||
MatWell duneB_;
|
||||
MatWell duneC_;
|
||||
// diagonal matrix for the well
|
||||
MatWell invDuneD_;
|
||||
|
||||
// several vector used in the matrix calculation
|
||||
mutable BVectorWell Bx_;
|
||||
mutable BVectorWell invDrw_;
|
||||
|
||||
// the values for the primary varibles
|
||||
// based on different solutioin strategies, the wells can have different primary variables
|
||||
mutable std::vector<double> primary_variables_;
|
||||
|
||||
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
|
||||
mutable std::vector<EvalWell> primary_variables_evaluation_;
|
||||
|
||||
// the saturations in the well bore under surface conditions at the beginning of the time step
|
||||
std::vector<double> F0_;
|
||||
|
||||
// the vectors used to describe the inflow performance relationship (IPR)
|
||||
// Q = IPR_A - BHP * IPR_B
|
||||
// TODO: it minght need to go to WellInterface, let us implement it in StandardWell first
|
||||
// it is only updated and used for producers for now
|
||||
mutable std::vector<double> ipr_a_;
|
||||
mutable std::vector<double> ipr_b_;
|
||||
|
||||
const EvalWell& getBhp() const;
|
||||
|
||||
EvalWell getQs(const int comp_idx) const;
|
||||
|
||||
const EvalWell& getWQTotal() const;
|
||||
|
||||
EvalWell wellVolumeFractionScaled(const int phase) const;
|
||||
|
||||
EvalWell wellVolumeFraction(const unsigned compIdx) const;
|
||||
|
||||
EvalWell wellSurfaceVolumeFraction(const int phase) const;
|
||||
|
||||
EvalWell extendEval(const Eval& in) const;
|
||||
|
||||
// xw = inv(D)*(rw - C*x)
|
||||
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
|
||||
|
||||
// updating the well_state based on well solution dwells
|
||||
void updateWellState(const BVectorWell& dwells,
|
||||
WellState& well_state) const;
|
||||
|
||||
// calculate the properties for the well connections
|
||||
// to calulate the pressure difference between well connections.
|
||||
void computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& b_perf,
|
||||
std::vector<double>& rsmax_perf,
|
||||
std::vector<double>& rvmax_perf,
|
||||
std::vector<double>& surf_dens_perf) const;
|
||||
|
||||
// TODO: not total sure whether it is a good idea to put this function here
|
||||
// the major reason to put here is to avoid the usage of Wells struct
|
||||
void computeConnectionDensities(const std::vector<double>& perfComponentRates,
|
||||
const std::vector<double>& b_perf,
|
||||
const std::vector<double>& rsmax_perf,
|
||||
const std::vector<double>& rvmax_perf,
|
||||
const std::vector<double>& surf_dens_perf);
|
||||
|
||||
void computeConnectionPressureDelta();
|
||||
|
||||
void computeWellConnectionDensitesPressures(const WellState& well_state,
|
||||
const std::vector<double>& b_perf,
|
||||
const std::vector<double>& rsmax_perf,
|
||||
const std::vector<double>& rvmax_perf,
|
||||
const std::vector<double>& surf_dens_perf);
|
||||
|
||||
// computing the accumulation term for later use in well mass equations
|
||||
void computeAccumWell();
|
||||
|
||||
void computeWellConnectionPressures(const Simulator& ebosSimulator,
|
||||
const WellState& well_state);
|
||||
|
||||
// TODO: to check whether all the paramters are required
|
||||
void computePerfRate(const IntensiveQuantities& intQuants,
|
||||
const std::vector<EvalWell>& mob_perfcells_dense,
|
||||
const double Tw, const EvalWell& bhp, const double& cdp,
|
||||
const bool& allow_cf, std::vector<EvalWell>& cq_s,
|
||||
double& perf_dis_gas_rate, double& perf_vap_oil_rate) const;
|
||||
|
||||
// TODO: maybe we should provide a light version of computePerfRate, which does not include the
|
||||
// calculation of the derivatives
|
||||
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
||||
const EvalWell& bhp,
|
||||
std::vector<double>& well_flux) const;
|
||||
|
||||
std::vector<double> computeWellPotentialWithTHP(const Simulator& ebosSimulator,
|
||||
const double initial_bhp, // bhp from BHP constraints
|
||||
const std::vector<double>& initial_potential) const;
|
||||
|
||||
template <class ValueType>
|
||||
ValueType calculateBhpFromThp(const std::vector<ValueType>& rates, const int control_index) const;
|
||||
|
||||
double calculateThpFromBhp(const std::vector<double>& rates, const double bhp) const;
|
||||
|
||||
// get the mobility for specific perforation
|
||||
void getMobility(const Simulator& ebosSimulator,
|
||||
const int perf,
|
||||
std::vector<EvalWell>& mob) const;
|
||||
|
||||
void updateWaterMobilityWithPolymer(const Simulator& ebos_simulator,
|
||||
const int perf,
|
||||
std::vector<EvalWell>& mob_water) const;
|
||||
|
||||
void updatePrimaryVariablesNewton(const BVectorWell& dwells,
|
||||
const WellState& well_state) const;
|
||||
|
||||
void updateWellStateFromPrimaryVariables(WellState& well_state) const;
|
||||
|
||||
void updateThp(WellState& well_state) const;
|
||||
|
||||
void assembleControlEq();
|
||||
|
||||
// handle the non reasonable fractions due to numerical overshoot
|
||||
void processFractions() const;
|
||||
|
||||
// updating the inflow based on the current reservoir condition
|
||||
void updateIPR(const Simulator& ebos_simulator) const;
|
||||
|
||||
// update the operability status of the well is operable under the current reservoir condition
|
||||
// mostly related to BHP limit and THP limit
|
||||
virtual void checkWellOperability(const Simulator& ebos_simulator,
|
||||
const WellState& well_state) override;
|
||||
|
||||
// check whether the well is operable under the current reservoir condition
|
||||
// mostly related to BHP limit and THP limit
|
||||
void updateWellOperability(const Simulator& ebos_simulator,
|
||||
const WellState& well_state);
|
||||
|
||||
// check whether the well is operable under BHP limit with current reservoir condition
|
||||
void checkOperabilityUnderBHPLimitProducer(const Simulator& ebos_simulator);
|
||||
|
||||
// check whether the well is operable under THP limit with current reservoir condition
|
||||
void checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator);
|
||||
|
||||
// update WellState based on IPR and associated VFP table
|
||||
void updateWellStateWithTHPTargetIPR(const Simulator& ebos_simulator,
|
||||
WellState& well_state) const;
|
||||
|
||||
void updateWellStateWithTHPTargetIPRProducer(const Simulator& ebos_simulator,
|
||||
WellState& well_state) const;
|
||||
|
||||
// for a well, when all drawdown are in the wrong direction, then this well will not
|
||||
// be able to produce/inject .
|
||||
bool allDrawDownWrongDirection(const Simulator& ebos_simulator) const;
|
||||
|
||||
// whether the well can produce / inject based on the current well state (bhp)
|
||||
bool canProduceInjectWithCurrentBhp(const Simulator& ebos_simulator,
|
||||
const WellState& well_state);
|
||||
|
||||
// turn on crossflow to avoid singular well equations
|
||||
// when the well is banned from cross-flow and the BHP is not properly initialized,
|
||||
// we turn on crossflow to avoid singular well equations. It can result in wrong-signed
|
||||
// well rates, it can cause problem for THP calculation
|
||||
// TODO: looking for better alternative to avoid wrong-signed well rates
|
||||
bool openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const;
|
||||
|
||||
// calculate the BHP from THP target based on IPR
|
||||
// TODO: we need to check the operablility here first, if not operable, then maybe there is
|
||||
// no point to do this
|
||||
double calculateBHPWithTHPTargetIPR() const;
|
||||
|
||||
// relaxation factor considering only one fraction value
|
||||
static double relaxationFactorFraction(const double old_value,
|
||||
const double dx);
|
||||
|
||||
// calculate a relaxation factor to avoid overshoot of the fractions for producers
|
||||
// which might result in negative rates
|
||||
static double relaxationFactorFractionsProducer(const std::vector<double>& primary_variables,
|
||||
const BVectorWell& dwells);
|
||||
|
||||
// calculate a relaxation factor to avoid overshoot of total rates
|
||||
static double relaxationFactorRate(const std::vector<double>& primary_variables,
|
||||
const BVectorWell& dwells);
|
||||
|
||||
virtual void wellTestingPhysical(Simulator& simulator, const std::vector<double>& B_avg,
|
||||
const double simulation_time, const int report_step, const bool terminal_output,
|
||||
WellState& well_state, WellTestState& welltest_state, wellhelpers::WellSwitchingLogger& logger) override;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#include "StandardWellV_impl.hpp"
|
||||
|
||||
#endif // OPM_STANDARDWELLV_HEADER_INCLUDED
|
2813
opm/autodiff/StandardWellV_impl.hpp
Normal file
2813
opm/autodiff/StandardWellV_impl.hpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -62,7 +62,7 @@ inline EvalWell zeroIfNanInf(const EvalWell& value) {
|
||||
OpmLog::warning("NAN_OR_INF_VFP_EVAL", "NAN or INF Evalution encountered during VFP calculation, the Evalution is set to zero");
|
||||
}
|
||||
|
||||
return nan_or_inf ? 0.0 : value;
|
||||
return nan_or_inf ? 0.0 * value : value;
|
||||
}
|
||||
|
||||
|
||||
|
@ -80,7 +80,7 @@ public:
|
||||
|
||||
//Get the table
|
||||
const VFPInjTable* table = detail::getTable(m_tables, table_id);
|
||||
EvalWell bhp = 0.0;
|
||||
EvalWell bhp = 0.0 * aqua;
|
||||
|
||||
//Find interpolation variables
|
||||
EvalWell flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
|
@ -86,7 +86,7 @@ public:
|
||||
|
||||
//Get the table
|
||||
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
||||
EvalWell bhp = 0.0;
|
||||
EvalWell bhp = 0.0 * aqua;
|
||||
|
||||
//Find interpolation variables
|
||||
EvalWell flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
|
@ -99,8 +99,12 @@ namespace Opm
|
||||
static const bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
|
||||
static const bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
|
||||
static const bool has_energy = GET_PROP_VALUE(TypeTag, EnableEnergy);
|
||||
// flag for polymer molecular weight related
|
||||
static const bool has_polymermw = GET_PROP_VALUE(TypeTag, EnablePolymerMW);
|
||||
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
|
||||
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
|
||||
// index for the polymer molecular weight continuity equation
|
||||
static const int contiPolymerMWEqIdx = Indices::contiPolymerMWEqIdx;
|
||||
|
||||
// For the conversion between the surface volume rate and resrevoir voidage rate
|
||||
using RateConverterType = RateConverter::
|
||||
|
Loading…
Reference in New Issue
Block a user