removing baseSolveWellEq from BlackoilMultiSegmentModel

to solve the different interfaces of computeWellConnectionPressures for
StandardWells and MultisegmentWells, a function
computeWellConnectionPressures was introduced for the models.
This commit is contained in:
Kai Bao 2016-05-10 14:58:45 +02:00
parent 01328559e2
commit a102e934ac
4 changed files with 48 additions and 151 deletions

View File

@ -491,6 +491,12 @@ namespace Opm {
void void
updatePhaseCondFromPrimalVariable(const ReservoirState& state); updatePhaseCondFromPrimalVariable(const ReservoirState& state);
// TODO: added since the interfaces of the function are different
// TODO: for StandardWells and MultisegmentWells
void
computeWellConnectionPressures(const SolutionState& state,
const WellState& well_state);
/// \brief Compute the reduction within the convergence check. /// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows /// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values /// as the number of cells of the grid. B.col(i) contains the values

View File

@ -773,8 +773,6 @@ namespace detail {
SolutionState state = asImpl().variableState(reservoir_state, well_state); SolutionState state = asImpl().variableState(reservoir_state, well_state);
SolutionState state0 = state; SolutionState state0 = state;
asImpl().makeConstantState(state0); asImpl().makeConstantState(state0);
// asImpl().computeWellConnectionPressures(state0, well_state);
// Extract well connection depths.
asImpl().wellModel().computeWellConnectionPressures(state0, well_state); asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
} }
@ -794,7 +792,6 @@ namespace detail {
// Compute initial accumulation contributions // Compute initial accumulation contributions
// and well connection pressures. // and well connection pressures.
asImpl().computeAccum(state0, 0); asImpl().computeAccum(state0, 0);
// asImpl().computeWellConnectionPressures(state0, well_state);
asImpl().wellModel().computeWellConnectionPressures(state0, well_state); asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
} }
@ -1100,9 +1097,7 @@ namespace detail {
std::vector<ADB::M> old_derivs = state.qs.derivative(); std::vector<ADB::M> old_derivs = state.qs.derivative();
state.qs = ADB::function(std::move(new_qs), std::move(old_derivs)); state.qs = ADB::function(std::move(new_qs), std::move(old_derivs));
} }
// asImpl().computeWellConnectionPressures(state, well_state); asImpl().computeWellConnectionPressures(state, well_state);
const ADB::V depth = Opm::AutoDiffGrid::cellCentroidsZToEigen(grid_);
asImpl().wellModel().computeWellConnectionPressures(state, well_state);
} }
if (!converged) { if (!converged) {
@ -2293,6 +2288,19 @@ namespace detail {
template <class Grid, class WellModel, class Implementation>
void
BlackoilModelBase<Grid, WellModel, Implementation>::
computeWellConnectionPressures(const SolutionState& state,
const WellState& well_state)
{
asImpl().wellModel().computeWellConnectionPressures(state, well_state);
}
} // namespace Opm } // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED #endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED

View File

@ -164,21 +164,10 @@ namespace Opm {
const MultisegmentWells::MultisegmentWellOps& msWellOps() const { return well_model_.wellOps(); } const MultisegmentWells::MultisegmentWellOps& msWellOps() const { return well_model_.wellOps(); }
// TODO: kept for now. to be removed soon.
void updateWellState(const V& dwells,
WellState& well_state);
std::vector<V> std::vector<V>
variableStateInitials(const ReservoirState& x, variableStateInitials(const ReservoirState& x,
const WellState& xw) const; const WellState& xw) const;
/// added to fixing the flow_multisegment running
bool
baseSolveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
SolutionState& state,
WellState& well_state);
bool bool
solveWellEq(const std::vector<ADB>& mob_perfcells, solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells, const std::vector<ADB>& b_perfcells,
@ -195,6 +184,11 @@ namespace Opm {
std::vector<ADB>& vars, std::vector<ADB>& vars,
SolutionState& state) const; SolutionState& state) const;
// TODO: added since the interfaces of the function are different
// TODO: for StandardWells and MultisegmentWells
void
computeWellConnectionPressures(const SolutionState& state,
const WellState& well_state);
}; };

View File

@ -216,15 +216,7 @@ namespace Opm {
wellModel().segmentCompSurfVolumeInitial()[phase] = wellModel().segmentCompSurfVolumeCurrent()[phase].value(); wellModel().segmentCompSurfVolumeInitial()[phase] = wellModel().segmentCompSurfVolumeCurrent()[phase].value();
} }
const std::vector<ADB> kr_adb = Base::computeRelPerm(state0); asImpl().computeWellConnectionPressures(state0, well_state);
std::vector<ADB> fluid_density(numPhases(), ADB::null());
// TODO: make sure the order of the density and the order of the kr are the same.
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
const int canonicalPhaseIdx = canph_[phaseIdx];
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state0.rs, state0.rv);
}
wellModel().computeWellConnectionPressures(state0, well_state, kr_adb, fluid_density);
// asImpl().computeWellConnectionPressures(state0, well_state);
} }
// OPM_AD_DISKVAL(state.pressure); // OPM_AD_DISKVAL(state.pressure);
@ -279,7 +271,7 @@ namespace Opm {
SolutionState& state, SolutionState& state,
WellState& well_state) WellState& well_state)
{ {
const bool converged = baseSolveWellEq(mob_perfcells, b_perfcells, state, well_state); const bool converged = Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
if (converged) { if (converged) {
// We must now update the state.segp and state.segqs members, // We must now update the state.segp and state.segqs members,
@ -307,130 +299,7 @@ namespace Opm {
// This is also called by the base version, but since we have updated // This is also called by the base version, but since we have updated
// state.segp we must call it again. // state.segp we must call it again.
const std::vector<ADB> kr_adb = Base::computeRelPerm(state); asImpl().computeWellConnectionPressures(state, well_state);
std::vector<ADB> fluid_density(np, ADB::null());
// TODO: make sure the order of the density and the order of the kr are the same.
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const int canonicalPhaseIdx = canph_[phaseIdx];
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv);
}
wellModel().computeWellConnectionPressures(state, well_state, kr_adb, fluid_density);
}
return converged;
}
/// added to fixing the flow_multisegment running
template <class Grid>
bool
BlackoilMultiSegmentModel<Grid>::baseSolveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
SolutionState& state,
WellState& well_state) {
V aliveWells;
const int np = wellModel().numPhases();
std::vector<ADB> cq_s(np, ADB::null());
std::vector<int> indices = wellModel().variableWellStateIndices();
SolutionState state0 = state;
WellState well_state0 = well_state;
makeConstantState(state0);
std::vector<ADB> mob_perfcells_const(np, ADB::null());
std::vector<ADB> b_perfcells_const(np, ADB::null());
if ( Base::localWellsActive() ){
// If there are non well in the sudomain of the process
// thene mob_perfcells_const and b_perfcells_const would be empty
for (int phase = 0; phase < np; ++phase) {
mob_perfcells_const[phase] = ADB::constant(mob_perfcells[phase].value());
b_perfcells_const[phase] = ADB::constant(b_perfcells[phase].value());
}
}
int it = 0;
bool converged;
do {
// bhp and Q for the wells
std::vector<V> vars0;
vars0.reserve(2);
wellModel().variableWellStateInitials(well_state, vars0);
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState wellSolutionState = state0;
variableStateExtractWellsVars(indices, vars, wellSolutionState);
wellModel().computeWellFlux(wellSolutionState, mob_perfcells_const, b_perfcells_const, aliveWells, cq_s);
wellModel().updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
wellModel().addWellFluxEq(cq_s, wellSolutionState, residual_);
wellModel().addWellControlEq(wellSolutionState, well_state, aliveWells, residual_);
converged = Base::getWellConvergence(it);
if (converged) {
break;
}
++it;
if( Base::localWellsActive() )
{
std::vector<ADB> eqs;
eqs.reserve(2);
eqs.push_back(residual_.well_flux_eq);
eqs.push_back(residual_.well_eq);
ADB total_residual = vertcatCollapseJacs(eqs);
const std::vector<M>& Jn = total_residual.derivative();
typedef Eigen::SparseMatrix<double> Sp;
Sp Jn0;
Jn[0].toSparse(Jn0);
const Eigen::SparseLU< Sp > solver(Jn0);
ADB::V total_residual_v = total_residual.value();
const Eigen::VectorXd& dx = solver.solve(total_residual_v.matrix());
assert(dx.size() == total_residual_v.size());
wellModel().updateWellState(dx.array(), dpMaxRel(), well_state);
wellModel().updateWellControls(terminal_output_, well_state);
}
} while (it < 15);
if (converged) {
if ( terminal_output_ ) {
std::cout << "well converged iter: " << it << std::endl;
}
const int nw = wellModel().numWells();
{
// We will set the bhp primary variable to the new ones,
// but we do not change the derivatives here.
ADB::V new_bhp = Eigen::Map<ADB::V>(well_state.bhp().data(), nw);
// Avoiding the copy below would require a value setter method
// in AutoDiffBlock.
std::vector<ADB::M> old_derivs = state.bhp.derivative();
state.bhp = ADB::function(std::move(new_bhp), std::move(old_derivs));
}
{
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(well_state.wellRates().data(), nw, np).transpose();
ADB::V new_qs = Eigen::Map<const V>(wrates.data(), nw*np);
std::vector<ADB::M> old_derivs = state.qs.derivative();
state.qs = ADB::function(std::move(new_qs), std::move(old_derivs));
}
const std::vector<ADB> kr_adb = Base::computeRelPerm(state);
std::vector<ADB> fluid_density(np, ADB::null());
// TODO: make sure the order of the density and the order of the kr are the same.
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const int canonicalPhaseIdx = canph_[phaseIdx];
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv);
}
wellModel().computeWellConnectionPressures(state, well_state, kr_adb, fluid_density);
}
if (!converged) {
well_state = well_state0;
} }
return converged; return converged;
@ -459,6 +328,26 @@ namespace Opm {
return vars0; return vars0;
} }
template <class Grid>
void
BlackoilMultiSegmentModel<Grid>::
computeWellConnectionPressures(const SolutionState& state,
const WellState& well_state)
{
const int np = numPhases();
const std::vector<ADB> kr_adb = Base::computeRelPerm(state);
std::vector<ADB> fluid_density(np, ADB::null());
// TODO: make sure the order of the density and the order of the kr are the same.
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const int canonicalPhaseIdx = canph_[phaseIdx];
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv);
}
wellModel().computeWellConnectionPressures(state, well_state, kr_adb, fluid_density);
}
} // namespace Opm } // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED #endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED