mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
removing baseSolveWellEq from BlackoilMultiSegmentModel
to solve the different interfaces of computeWellConnectionPressures for StandardWells and MultisegmentWells, a function computeWellConnectionPressures was introduced for the models.
This commit is contained in:
parent
01328559e2
commit
a102e934ac
@ -491,6 +491,12 @@ namespace Opm {
|
||||
void
|
||||
updatePhaseCondFromPrimalVariable(const ReservoirState& state);
|
||||
|
||||
// TODO: added since the interfaces of the function are different
|
||||
// TODO: for StandardWells and MultisegmentWells
|
||||
void
|
||||
computeWellConnectionPressures(const SolutionState& state,
|
||||
const WellState& well_state);
|
||||
|
||||
/// \brief Compute the reduction within the convergence check.
|
||||
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
|
||||
/// as the number of cells of the grid. B.col(i) contains the values
|
||||
|
@ -773,8 +773,6 @@ namespace detail {
|
||||
SolutionState state = asImpl().variableState(reservoir_state, well_state);
|
||||
SolutionState state0 = state;
|
||||
asImpl().makeConstantState(state0);
|
||||
// asImpl().computeWellConnectionPressures(state0, well_state);
|
||||
// Extract well connection depths.
|
||||
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
|
||||
}
|
||||
|
||||
@ -794,7 +792,6 @@ namespace detail {
|
||||
// Compute initial accumulation contributions
|
||||
// and well connection pressures.
|
||||
asImpl().computeAccum(state0, 0);
|
||||
// asImpl().computeWellConnectionPressures(state0, well_state);
|
||||
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
|
||||
}
|
||||
|
||||
@ -1100,9 +1097,7 @@ namespace detail {
|
||||
std::vector<ADB::M> old_derivs = state.qs.derivative();
|
||||
state.qs = ADB::function(std::move(new_qs), std::move(old_derivs));
|
||||
}
|
||||
// asImpl().computeWellConnectionPressures(state, well_state);
|
||||
const ADB::V depth = Opm::AutoDiffGrid::cellCentroidsZToEigen(grid_);
|
||||
asImpl().wellModel().computeWellConnectionPressures(state, well_state);
|
||||
asImpl().computeWellConnectionPressures(state, well_state);
|
||||
}
|
||||
|
||||
if (!converged) {
|
||||
@ -2293,6 +2288,19 @@ namespace detail {
|
||||
|
||||
|
||||
|
||||
|
||||
template <class Grid, class WellModel, class Implementation>
|
||||
void
|
||||
BlackoilModelBase<Grid, WellModel, Implementation>::
|
||||
computeWellConnectionPressures(const SolutionState& state,
|
||||
const WellState& well_state)
|
||||
{
|
||||
asImpl().wellModel().computeWellConnectionPressures(state, well_state);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|
||||
|
@ -164,21 +164,10 @@ namespace Opm {
|
||||
|
||||
const MultisegmentWells::MultisegmentWellOps& msWellOps() const { return well_model_.wellOps(); }
|
||||
|
||||
// TODO: kept for now. to be removed soon.
|
||||
void updateWellState(const V& dwells,
|
||||
WellState& well_state);
|
||||
|
||||
std::vector<V>
|
||||
variableStateInitials(const ReservoirState& x,
|
||||
const WellState& xw) const;
|
||||
|
||||
/// added to fixing the flow_multisegment running
|
||||
bool
|
||||
baseSolveWellEq(const std::vector<ADB>& mob_perfcells,
|
||||
const std::vector<ADB>& b_perfcells,
|
||||
SolutionState& state,
|
||||
WellState& well_state);
|
||||
|
||||
bool
|
||||
solveWellEq(const std::vector<ADB>& mob_perfcells,
|
||||
const std::vector<ADB>& b_perfcells,
|
||||
@ -195,6 +184,11 @@ namespace Opm {
|
||||
std::vector<ADB>& vars,
|
||||
SolutionState& state) const;
|
||||
|
||||
// TODO: added since the interfaces of the function are different
|
||||
// TODO: for StandardWells and MultisegmentWells
|
||||
void
|
||||
computeWellConnectionPressures(const SolutionState& state,
|
||||
const WellState& well_state);
|
||||
|
||||
};
|
||||
|
||||
|
@ -216,15 +216,7 @@ namespace Opm {
|
||||
wellModel().segmentCompSurfVolumeInitial()[phase] = wellModel().segmentCompSurfVolumeCurrent()[phase].value();
|
||||
}
|
||||
|
||||
const std::vector<ADB> kr_adb = Base::computeRelPerm(state0);
|
||||
std::vector<ADB> fluid_density(numPhases(), ADB::null());
|
||||
// TODO: make sure the order of the density and the order of the kr are the same.
|
||||
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
|
||||
const int canonicalPhaseIdx = canph_[phaseIdx];
|
||||
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state0.rs, state0.rv);
|
||||
}
|
||||
wellModel().computeWellConnectionPressures(state0, well_state, kr_adb, fluid_density);
|
||||
// asImpl().computeWellConnectionPressures(state0, well_state);
|
||||
asImpl().computeWellConnectionPressures(state0, well_state);
|
||||
}
|
||||
|
||||
// OPM_AD_DISKVAL(state.pressure);
|
||||
@ -279,7 +271,7 @@ namespace Opm {
|
||||
SolutionState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
const bool converged = baseSolveWellEq(mob_perfcells, b_perfcells, state, well_state);
|
||||
const bool converged = Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
|
||||
|
||||
if (converged) {
|
||||
// We must now update the state.segp and state.segqs members,
|
||||
@ -307,130 +299,7 @@ namespace Opm {
|
||||
|
||||
// This is also called by the base version, but since we have updated
|
||||
// state.segp we must call it again.
|
||||
const std::vector<ADB> kr_adb = Base::computeRelPerm(state);
|
||||
std::vector<ADB> fluid_density(np, ADB::null());
|
||||
// TODO: make sure the order of the density and the order of the kr are the same.
|
||||
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
||||
const int canonicalPhaseIdx = canph_[phaseIdx];
|
||||
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv);
|
||||
}
|
||||
wellModel().computeWellConnectionPressures(state, well_state, kr_adb, fluid_density);
|
||||
}
|
||||
|
||||
return converged;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// added to fixing the flow_multisegment running
|
||||
template <class Grid>
|
||||
bool
|
||||
BlackoilMultiSegmentModel<Grid>::baseSolveWellEq(const std::vector<ADB>& mob_perfcells,
|
||||
const std::vector<ADB>& b_perfcells,
|
||||
SolutionState& state,
|
||||
WellState& well_state) {
|
||||
V aliveWells;
|
||||
const int np = wellModel().numPhases();
|
||||
std::vector<ADB> cq_s(np, ADB::null());
|
||||
std::vector<int> indices = wellModel().variableWellStateIndices();
|
||||
SolutionState state0 = state;
|
||||
WellState well_state0 = well_state;
|
||||
makeConstantState(state0);
|
||||
|
||||
std::vector<ADB> mob_perfcells_const(np, ADB::null());
|
||||
std::vector<ADB> b_perfcells_const(np, ADB::null());
|
||||
|
||||
if ( Base::localWellsActive() ){
|
||||
// If there are non well in the sudomain of the process
|
||||
// thene mob_perfcells_const and b_perfcells_const would be empty
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
mob_perfcells_const[phase] = ADB::constant(mob_perfcells[phase].value());
|
||||
b_perfcells_const[phase] = ADB::constant(b_perfcells[phase].value());
|
||||
}
|
||||
}
|
||||
|
||||
int it = 0;
|
||||
bool converged;
|
||||
do {
|
||||
// bhp and Q for the wells
|
||||
std::vector<V> vars0;
|
||||
vars0.reserve(2);
|
||||
wellModel().variableWellStateInitials(well_state, vars0);
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
|
||||
SolutionState wellSolutionState = state0;
|
||||
variableStateExtractWellsVars(indices, vars, wellSolutionState);
|
||||
|
||||
wellModel().computeWellFlux(wellSolutionState, mob_perfcells_const, b_perfcells_const, aliveWells, cq_s);
|
||||
|
||||
wellModel().updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
|
||||
wellModel().addWellFluxEq(cq_s, wellSolutionState, residual_);
|
||||
wellModel().addWellControlEq(wellSolutionState, well_state, aliveWells, residual_);
|
||||
converged = Base::getWellConvergence(it);
|
||||
|
||||
if (converged) {
|
||||
break;
|
||||
}
|
||||
|
||||
++it;
|
||||
if( Base::localWellsActive() )
|
||||
{
|
||||
std::vector<ADB> eqs;
|
||||
eqs.reserve(2);
|
||||
eqs.push_back(residual_.well_flux_eq);
|
||||
eqs.push_back(residual_.well_eq);
|
||||
ADB total_residual = vertcatCollapseJacs(eqs);
|
||||
const std::vector<M>& Jn = total_residual.derivative();
|
||||
typedef Eigen::SparseMatrix<double> Sp;
|
||||
Sp Jn0;
|
||||
Jn[0].toSparse(Jn0);
|
||||
const Eigen::SparseLU< Sp > solver(Jn0);
|
||||
ADB::V total_residual_v = total_residual.value();
|
||||
const Eigen::VectorXd& dx = solver.solve(total_residual_v.matrix());
|
||||
assert(dx.size() == total_residual_v.size());
|
||||
wellModel().updateWellState(dx.array(), dpMaxRel(), well_state);
|
||||
wellModel().updateWellControls(terminal_output_, well_state);
|
||||
}
|
||||
} while (it < 15);
|
||||
|
||||
if (converged) {
|
||||
if ( terminal_output_ ) {
|
||||
std::cout << "well converged iter: " << it << std::endl;
|
||||
}
|
||||
const int nw = wellModel().numWells();
|
||||
{
|
||||
// We will set the bhp primary variable to the new ones,
|
||||
// but we do not change the derivatives here.
|
||||
ADB::V new_bhp = Eigen::Map<ADB::V>(well_state.bhp().data(), nw);
|
||||
// Avoiding the copy below would require a value setter method
|
||||
// in AutoDiffBlock.
|
||||
std::vector<ADB::M> old_derivs = state.bhp.derivative();
|
||||
state.bhp = ADB::function(std::move(new_bhp), std::move(old_derivs));
|
||||
}
|
||||
{
|
||||
// Need to reshuffle well rates, from phase running fastest
|
||||
// to wells running fastest.
|
||||
// The transpose() below switches the ordering.
|
||||
const DataBlock wrates = Eigen::Map<const DataBlock>(well_state.wellRates().data(), nw, np).transpose();
|
||||
ADB::V new_qs = Eigen::Map<const V>(wrates.data(), nw*np);
|
||||
std::vector<ADB::M> old_derivs = state.qs.derivative();
|
||||
state.qs = ADB::function(std::move(new_qs), std::move(old_derivs));
|
||||
}
|
||||
|
||||
const std::vector<ADB> kr_adb = Base::computeRelPerm(state);
|
||||
std::vector<ADB> fluid_density(np, ADB::null());
|
||||
// TODO: make sure the order of the density and the order of the kr are the same.
|
||||
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
||||
const int canonicalPhaseIdx = canph_[phaseIdx];
|
||||
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv);
|
||||
}
|
||||
wellModel().computeWellConnectionPressures(state, well_state, kr_adb, fluid_density);
|
||||
}
|
||||
|
||||
if (!converged) {
|
||||
well_state = well_state0;
|
||||
asImpl().computeWellConnectionPressures(state, well_state);
|
||||
}
|
||||
|
||||
return converged;
|
||||
@ -459,6 +328,26 @@ namespace Opm {
|
||||
return vars0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <class Grid>
|
||||
void
|
||||
BlackoilMultiSegmentModel<Grid>::
|
||||
computeWellConnectionPressures(const SolutionState& state,
|
||||
const WellState& well_state)
|
||||
{
|
||||
const int np = numPhases();
|
||||
const std::vector<ADB> kr_adb = Base::computeRelPerm(state);
|
||||
std::vector<ADB> fluid_density(np, ADB::null());
|
||||
// TODO: make sure the order of the density and the order of the kr are the same.
|
||||
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
||||
const int canonicalPhaseIdx = canph_[phaseIdx];
|
||||
fluid_density[phaseIdx] = fluidDensity(canonicalPhaseIdx, rq_[phaseIdx].b, state.rs, state.rv);
|
||||
}
|
||||
wellModel().computeWellConnectionPressures(state, well_state, kr_adb, fluid_density);
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|
||||
|
Loading…
Reference in New Issue
Block a user