Can now solve with bhp-controlled wells.

Simple initial code. Assumes that well_state.bhp() contains
well bhp targets, does not check control structures.
This commit is contained in:
Atgeirr Flø Rasmussen 2013-05-21 09:33:52 +02:00
parent 4d794b79dc
commit a147ff93d0

View File

@ -33,6 +33,7 @@
#include <algorithm>
#include <cassert>
#include <vector>
#include <iterator>
#include <boost/shared_ptr.hpp>
@ -129,9 +130,24 @@ namespace Opm {
{
const int nc = grid_.number_of_cells;
const int np = state.numPhases();
// Compute relperms once and for all (since saturations are explicit).
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
ASSERT(np == 2);
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
// Compute relperms for wells. This must be revisited for crossflow.
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
DataBlock well_s(nperf, np);
for (int w = 0; w < nw; ++w) {
const double* comp_frac = &wells_.comp_frac[np*w];
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
}
}
const std::vector<int> well_cells(wells_.well_cells,
wells_.well_cells + nperf);
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
const double atol = 1.0e-15;
const double rtol = 5.0e-10;
@ -182,17 +198,21 @@ namespace Opm {
const GeoProps& geo_ ;
const Wells& wells_;
const LinearSolverInterface& linsolver_;
// PDepFData pdepfdata_;
HelperOps ops_;
const M grav_;
ADB cell_residual_;
ADB well_residual_;
std::vector<V> kr_;
std::vector<V> well_kr_;
enum { Water = BOFluid::Water,
Oil = BOFluid::Oil,
Gas = BOFluid::Gas };
void
assemble(const double dt,
const BlackoilState& state,
@ -203,8 +223,7 @@ namespace Opm {
const int nc = grid_.number_of_cells;
const int np = state.numPhases();
const int nw = wells_.number_of_wells;
// pdepfdata_.computePressQuant(state);
const int nperf = wells_.well_connpos[nw];
const std::vector<int> cells = buildAllCells(nc);
@ -213,10 +232,9 @@ namespace Opm {
const V delta_t = dt * V::Ones(nc, 1);
const V transi = subset(geo_.transmissibility(),
ops_.internal_faces);
const int num_perf = wells_.well_connpos[nw];
const std::vector<int> well_cells(wells_.well_cells,
wells_.well_cells + num_perf);
const V transw = Eigen::Map<const V>(wells_.WI, num_perf, 1);
wells_.well_cells + nperf);
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
// Initialize AD variables: p (cell pressures) and bhp (well bhp).
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
@ -246,10 +264,10 @@ namespace Opm {
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
// Construct pressure difference vector for wells.
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
// Finally construct well perforation pressures.
// Finally construct well perforation pressures and well flows.
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp;
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
const Selector<double> cell_to_well_selector(nkgradp_well.value());
cell_residual_ = ADB::constant(pv, bpat);
#define COMPENSATE_FLOAT_PRECISION 0
@ -259,22 +277,35 @@ namespace Opm {
for (int phase = 0; phase < np; ++phase) {
const ADB cell_b = fluidFvf(phase, p, cells);
const ADB cell_rho = fluidRho(phase, p, cells);
const ADB well_b = fluidFvf(phase, p_perfwell, well_cells);
const V kr = fluidKr(phase);
// Explicitly not asking for derivatives of viscosity,
// since they are not available yet.
const V mu = fluidMu(phase, p.value(), cells);
const V mf = upwind.select(kr / mu);
const ADB flux = mf * (nkgradp + (grav_ * cell_rho));
const V cell_mob = kr / mu;
const V face_mob = upwind.select(cell_mob);
const V well_kr = fluidKrWell(phase);
const V well_mu = fluidMu(phase, p_perfwell.value(), well_cells);
const V well_mob = well_kr / well_mu;
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
const ADB flux = face_mob * (nkgradp + (grav_ * cell_rho));
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
const ADB face_b = upwind.select(cell_b);
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
const V z0 = z0all.block(0, phase, nc, 1);
const V q = qall .block(0, phase, nc, 1);
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
#if COMPENSATE_FLOAT_PRECISION
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b));
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b)
+ well_contrib);
const V qcontrib = delta_t * q;
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
const ADB component_contrib = pvcontrib + qcontrib;
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
#else
const ADB component_contrib = pv*z0 + delta_t*(q - (ops_.div * (flux * face_b)));
const ADB component_contrib = pv*z0
+ delta_t*(q - (ops_.div * (flux * face_b) + well_contrib));
cell_residual_ = cell_residual_ - (component_contrib / cell_b);
#endif
}
@ -283,6 +314,10 @@ namespace Opm {
#endif
}
void
solveJacobianSystem(BlackoilState& state) const
{
@ -306,12 +341,20 @@ namespace Opm {
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
}
double
residualNorm() const
{
return cell_residual_.value().matrix().norm();
}
void
computeFluxes(BlackoilState& state) const
{
@ -344,6 +387,9 @@ namespace Opm {
}
V fluidMu(const int phase, const V& p, const std::vector<int>& cells) const
{
switch (phase) {
@ -359,6 +405,11 @@ namespace Opm {
THROW("Unknown phase index " << phase);
}
}
ADB fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const
{
switch (phase) {
@ -375,6 +426,10 @@ namespace Opm {
}
}
ADB fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const
{
switch (phase) {
@ -391,6 +446,10 @@ namespace Opm {
}
}
ADB fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
@ -400,10 +459,23 @@ namespace Opm {
}
V fluidKr(const int phase) const
{
return kr_[phase];
}
V fluidKrWell(const int phase) const
{
return well_kr_[phase];
}
};
} // namespace Opm