Added Simulator for compressible polymer. Not tested.

This commit is contained in:
Xavier Raynaud 2012-08-31 10:38:50 +02:00
parent 8b40a4a68f
commit a335e1b149
9 changed files with 668 additions and 8 deletions

View File

@ -9,6 +9,7 @@ lib_LTLIBRARIES = libopmpolymer.la
libopmpolymer_la_SOURCES = \
opm/polymer/IncompTpfaPolymer.cpp \
opm/polymer/SimulatorPolymer.cpp \
opm/polymer/SimulatorCompressiblePolymer.cpp \
opm/polymer/TransportModelPolymer.cpp \
opm/polymer/TransportModelCompressiblePolymer.cpp \
opm/polymer/PolymerProperties.cpp \
@ -23,6 +24,7 @@ opm/polymer/PolymerProperties.hpp \
opm/polymer/PolymerState.hpp \
opm/polymer/SinglePointUpwindTwoPhasePolymer.hpp \
opm/polymer/SimulatorPolymer.hpp \
opm/polymer/SimulatorCompressiblePolymer.hpp \
opm/polymer/TransportModelPolymer.hpp \
opm/polymer/TransportModelCompressiblePolymer.hpp \
opm/polymer/polymerUtilities.hpp

View File

@ -37,7 +37,7 @@ namespace Opm
class RockCompressibility;
class PolymerProperties;
class LinearSolverInterface;
class PolymerState;
class PolymerBlackoilState;
class WellState;
/// Encapsulating a tpfa pressure solver for the compressible-fluid case with polymer.

View File

@ -52,6 +52,7 @@ namespace Opm
}
std::vector<double>& pressure () { return state_blackoil_.pressure(); }
std::vector<double>& surfacevol () { return state_blackoil_.surfacevol(); }
std::vector<double>& facepressure() { return state_blackoil_.facepressure(); }
std::vector<double>& faceflux () { return state_blackoil_.faceflux(); }
std::vector<double>& saturation () { return state_blackoil_.saturation(); }
@ -59,6 +60,7 @@ namespace Opm
std::vector<double>& maxconcentration() { return cmax_; }
const std::vector<double>& pressure () const { return state_blackoil_.pressure(); }
const std::vector<double>& surfacevol () const { return state_blackoil_.surfacevol(); }
const std::vector<double>& facepressure() const { return state_blackoil_.facepressure(); }
const std::vector<double>& faceflux () const { return state_blackoil_.faceflux(); }
const std::vector<double>& saturation () const { return state_blackoil_.saturation(); }

View File

@ -0,0 +1,507 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/polymer/SimulatorCompressiblePolymer.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/polymer/CompressibleTpfaPolymer.hpp>
#include <opm/core/grid.h>
#include <opm/core/newwells.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/fluid/BlackoilPropertiesInterface.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <opm/core/utility/ColumnExtract.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/TransportModelCompressiblePolymer.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/polymerUtilities.hpp>
#include <boost/filesystem/convenience.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <numeric>
#include <fstream>
namespace Opm
{
namespace
{
void outputState(const UnstructuredGrid& grid,
const Opm::PolymerBlackoilState& state,
const int step,
const std::string& output_dir);
void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir);
void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir);
} // anonymous namespace
class SimulatorCompressiblePolymer::Impl
{
public:
Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state);
private:
// Data.
// Parameters for output.
bool output_;
std::string output_dir_;
int output_interval_;
// Parameters for transport solver.
int num_transport_substeps_;
bool use_segregation_split_;
// Observed objects.
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
const PolymerProperties& poly_props_;
const RockCompressibility* rock_comp_props_;
const Wells* wells_;
const std::vector<double>& src_;
const FlowBoundaryConditions* bcs_;
const LinearSolverInterface& linsolver_;
const double* gravity_;
// Solvers
CompressibleTpfaPolymer psolver_;
TransportModelCompressiblePolymer tsolver_;
// Needed by column-based gravity segregation solver.
std::vector< std::vector<int> > columns_;
// Misc. data
std::vector<int> allcells_;
PolymerInflow poly_inflow_;
};
SimulatorCompressiblePolymer::SimulatorCompressiblePolymer(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, poly_props, rock_comp_props, wells, src, bcs, linsolver, gravity));
}
SimulatorReport SimulatorCompressiblePolymer::run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state)
{
return pimpl_->run(timer, state, well_state);
}
SimulatorCompressiblePolymer::Impl::Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
: grid_(grid),
props_(props),
poly_props_(poly_props),
rock_comp_props_(rock_comp_props),
wells_(wells),
src_(src),
bcs_(bcs),
linsolver_(linsolver),
gravity_(gravity),
psolver_(grid, props, rock_comp_props, poly_props, linsolver,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells),
tsolver_(grid, props, poly_props, *rock_comp_props,
TransportModelCompressiblePolymer::Bracketing,
param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30)),
poly_inflow_(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax()))
{
// For output.
output_ = param.getDefault("output", true);
if (output_) {
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir_);
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Transport related init.
TransportModelCompressiblePolymer::SingleCellMethod method;
std::string method_string = param.getDefault("single_cell_method", std::string("Bracketing"));
if (method_string == "Bracketing") {
method = Opm::TransportModelCompressiblePolymer::Bracketing;
} else if (method_string == "Newton") {
method = Opm::TransportModelCompressiblePolymer::Newton;
} else {
THROW("Unknown method: " << method_string);
}
tsolver_.setPreferredMethod(method);
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
use_segregation_split_ = param.getDefault("use_segregation_split", false);
if (gravity != 0 && use_segregation_split_){
tsolver_.initGravity(gravity);
extractColumn(grid_, columns_);
}
// Misc init.
const int num_cells = grid.number_of_cells;
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
SimulatorReport SimulatorCompressiblePolymer::Impl::run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> initial_pressure;
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_satvol[2] = { 0.0 };
double init_polymass = 0.0;
double satvol[2] = { 0.0 };
double polymass = 0.0;
double polymass_adsorbed = 0.0;
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
double tot_polyinj = 0.0;
double tot_polyprod = 0.0;
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
outputState(grid_, state, timer.currentStepNum(), output_dir_);
}
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_pressure = state.pressure();
}
// Solve pressure.
do {
pressure_timer.start();
psolver_.solve(timer.currentStepLength(), state, well_state);
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
} while (false);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Find inflow rate.
const double current_time = timer.currentTime();
double stepsize = timer.currentStepLength();
const double inflowc0 = poly_inflow_(current_time + 1e-5*stepsize);
const double inflowc1 = poly_inflow_(current_time + (1.0 - 1e-5)*stepsize);
if (inflowc0 != inflowc1) {
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
}
const double inflow_c = inflowc0;
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], initial_pressure,
state.pressure(), &transport_src[0], stepsize, inflow_c,
state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(props_,
state.pressure(), state.surfacevol(), state.saturation(),
transport_src, stepsize, injected, produced);
if (use_segregation_split_) {
tsolver_.solveGravity(columns_, stepsize,
state.saturation(), state.concentration(),
state.maxconcentration());
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), poly_props_.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(grid_, props_, poly_props_,
state, *rock_comp_props_);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nVolume and polymer mass balance: "
" water(pv) oil(pv) polymer(kg)\n";
std::cout << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed volumes: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init
<< std::setw(width) << tot_polyprod << std::endl;
std::cout << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init
<< std::setw(width) << (polymass + tot_polyprod - tot_polyinj + polymass_adsorbed) << std::endl;
std::cout << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::setw(width) << (init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed)
<< std::endl;
std::cout.precision(8);
watercut.push(timer.currentTime() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), timer.currentTime() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
}
if (output_) {
outputState(grid_, state, timer.currentStepNum(), output_dir_);
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = ptime;
report.transport_time = ttime;
report.total_time = total_timer.secsSinceStart();
return report;
}
namespace
{
void outputState(const UnstructuredGrid& grid,
const Opm::PolymerBlackoilState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
THROW("Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
dm["concentration"] = &state.concentration();
dm["cmax"] = &state.maxconcentration();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
watercut.write(os);
}
void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
wellreport.write(os);
}
} // anonymous namespace
} // namespace Opm

View File

@ -0,0 +1,100 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORCOMPRESSIBLEPOLYMER_HEADER_INCLUDED
#define OPM_SIMULATORCOMPRESSIBLEPOLYMER_HEADER_INCLUDED
#include <boost/shared_ptr.hpp>
#include <vector>
struct UnstructuredGrid;
struct Wells;
struct FlowBoundaryConditions;
namespace Opm
{
namespace parameter { class ParameterGroup; }
class BlackoilPropertiesInterface;
class PolymerProperties;
class RockCompressibility;
class LinearSolverInterface;
class SimulatorTimer;
class PolymerBlackoilState;
class WellState;
class SimulatorReport;
/// Class collecting all necessary components for a two-phase simulation.
class SimulatorCompressiblePolymer
{
public:
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] grid grid data structure
/// \param[in] props fluid and rock properties
/// \param[in] rock_comp if non-null, rock compressibility properties
/// \param[in] wells if non-null, wells data structure
/// \param[in] src source terms
/// \param[in] bcs boundary conditions, treat as all noflow if null
/// \param[in] linsolver linear solver
/// \param[in] gravity if non-null, gravity vector
SimulatorCompressiblePolymer(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \param[in,out] well_state state of wells: bhp, perforation rates
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state);
private:
class Impl;
// Using shared_ptr instead of scoped_ptr since scoped_ptr requires complete type for Impl.
boost::shared_ptr<Impl> pimpl_;
};
} // namespace Opm
#endif // OPM_SIMULATORCOMPRESSIBLEPOLYMER_HEADER_INCLUDED

View File

@ -202,7 +202,7 @@ namespace Opm
void TransportModelCompressiblePolymer::solve(const double* darcyflux,
const std::vector<double>& pressure0,
const std::vector<double>& initial_pressure,
const std::vector<double>& pressure,
const double* source,
const double dt,
@ -224,9 +224,9 @@ namespace Opm
#endif
props_.viscosity(grid_.number_of_cells, &pressure[0], NULL, &allcells_[0], &visc_[0], NULL);
props_.matrix(grid_.number_of_cells, &pressure0[0], NULL, &allcells_[0], &A0_[0], NULL);
props_.matrix(grid_.number_of_cells, &initial_pressure[0], NULL, &allcells_[0], &A0_[0], NULL);
props_.matrix(grid_.number_of_cells, &pressure[0], NULL, &allcells_[0], &A_[0], NULL);
computePorosity(grid_, porosity_standard_, rock_comp_, pressure0, porosity0_);
computePorosity(grid_, porosity_standard_, rock_comp_, initial_pressure, porosity0_);
computePorosity(grid_, porosity_standard_, rock_comp_, pressure, porosity_);
// Check immiscibility requirement (only done for first cell).

View File

@ -74,7 +74,7 @@ namespace Opm
/// Solve for saturation, concentration and cmax at next timestep.
/// Using implicit Euler scheme, reordered.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] pressure0 Array with pressure at start of timestep.
/// \param[in] initial_pressure Array with pressure at start of timestep.
/// \param[in] pressure Array with pressure.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
@ -83,7 +83,7 @@ namespace Opm
/// \param[in, out] concentration Polymer concentration.
/// \param[in, out] cmax Highest concentration that has occured in a given cell.
void solve(const double* darcyflux,
const std::vector<double>& pressure0,
const std::vector<double>& initial_pressure,
const std::vector<double>& pressure,
const double* source,
const double dt,
@ -206,4 +206,4 @@ namespace Opm
} // namespace Opm
#endif // OPM_TRANSPORTMODELCOMPRESSIBLEPOLYMER_HEADER_INCLUDED
#endif // OPM_TRANSPORTMODELCOMPRESSIBLEgPOLYMER_HEADER_INCLUDED

View File

@ -18,6 +18,7 @@
*/
#include <opm/polymer/polymerUtilities.hpp>
#include <opm/core/utility/miscUtilities.hpp>
namespace Opm
{
@ -201,6 +202,37 @@ namespace Opm
return abs_mass;
}
/// @brief Computes total absorbed polymer mass over all grid cells.
/// With compressibility
/// @param[in] grid grid
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] state fluid state variable
/// @param[in] rock_comp rock compressibility (depends on pressure)
/// @return total absorbed polymer mass.
double computePolymerAdsorbed(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const PolymerBlackoilState& state,
const RockCompressibility& rock_comp
)
{
const int num_cells = props.numCells();
const double rhor = polyprops.rockDensity();
std::vector<double> porevolume;
std::vector<double> porosity;
computePorevolume(grid, props.porosity(), rock_comp, state.pressure(), porevolume);
computePorosity(grid, props.porosity(), rock_comp, state.pressure(), porosity);
double abs_mass = 0.0;
const std::vector<double>& cmax = state.maxconcentration();
for (int cell = 0; cell < num_cells; ++cell) {
double c_ads;
polyprops.simpleAdsorption(cmax[cell], c_ads);
abs_mass += c_ads*porevolume[cell]*((1.0 - porosity[cell])/porosity[cell])*rhor;
}
return abs_mass;
}
} // namespace Opm

View File

@ -23,7 +23,10 @@
#include <opm/core/grid.h>
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
#include <opm/core/fluid/BlackoilPropertiesInterface.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <vector>
@ -116,6 +119,20 @@ namespace Opm
const std::vector<double>& pv,
const std::vector<double>& cmax);
/// @brief Computes total absorbed polymer mass over all grid cells.
/// With compressibility
/// @param[in] grid grid
/// @param[in] props fluid and rock properties.
/// @param[in] polyprops polymer properties
/// @param[in] state State variables
/// @param[in] rock_comp Rock compressibility
/// @return total absorbed polymer mass.
double computePolymerAdsorbed(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const Opm::PolymerProperties& polyprops,
const PolymerBlackoilState& state,
const RockCompressibility& rock_comp);
/// @brief Functor giving the injected amount of polymer as a function of time.
class PolymerInflow