diff --git a/sim_simple.cpp b/sim_simple.cpp
new file mode 100644
index 000000000..dc3a88528
--- /dev/null
+++ b/sim_simple.cpp
@@ -0,0 +1,174 @@
+/*
+ Copyright 2013 SINTEF ICT, Applied Mathematics.
+
+ This file is part of the Open Porous Media project (OPM).
+
+ OPM is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ OPM is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with OPM. If not, see .
+*/
+
+#include "AutoDiffBlock.hpp"
+#include
+#include
+#include
+#include
+#include
+#include
+
+/*
+ Equations for incompressible two-phase flow.
+
+ Using s and p as variables:
+
+ PV (s_i - s0_i) / dt + sum_{j \in U(i)} f(s_j) v_{ij} + sum_{j in D(i) f(s_i) v_{ij} = qw_i
+
+ where
+
+ v_{ij} = totmob_ij T_ij (p_i - p_j)
+
+
+ Pressure equation:
+
+ sum_{j \in N(i)} totmob_ij T_ij (p_i - p_j) = q_i
+
+*/
+
+
+int main()
+{
+ typedef AutoDiff::ForwardBlock ADB;
+ typedef ADB::V V;
+ typedef ADB::M M;
+
+ Opm::GridManager gm(100,100);
+ const UnstructuredGrid& grid = *gm.c_grid();
+ using namespace Opm::unit;
+ using namespace Opm::prefix;
+ Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Quadratic,
+ { 1000.0, 800.0 },
+ { 1.0*centi*Poise, 5.0*centi*Poise },
+ 0.2, 100*milli*darcy,
+ grid.dimensions, grid.number_of_cells);
+ std::vector htrans(grid.cell_facepos[grid.number_of_cells]);
+ tpfa_htrans_compute((UnstructuredGrid*)&grid, props.permeability(), htrans.data());
+ // std::vector trans(grid.number_of_faces);
+ V trans_all(grid.number_of_faces);
+ tpfa_trans_compute((UnstructuredGrid*)&grid, htrans.data(), trans_all.data());
+ const int nc = grid.number_of_cells;
+ const int nf = grid.number_of_faces;
+ std::vector allcells(nc);
+ for (int i = 0; i < nc; ++i) {
+ allcells[i] = i;
+ }
+ // Define neighbourhood-derived matrices.
+ typedef Eigen::Array OneColInt;
+ typedef Eigen::Array OneColBool;
+ typedef Eigen::Array TwoColInt;
+ typedef Eigen::Array TwoColBool;
+ TwoColInt nb = Eigen::Map(grid.face_cells, nf, 2);
+ // std::cout << "nb = \n" << nb << std::endl;
+ TwoColBool nbib = nb >= 0;
+ OneColBool ifaces = nbib.rowwise().all();
+ const int num_internal = ifaces.cast().sum();
+ // std::cout << num_internal << " internal faces." << std::endl;
+ TwoColInt nbi(num_internal, 2);
+ V transi(num_internal);
+ int fi = 0;
+ for (int f = 0; f < nf; ++f) {
+ if (ifaces[f]) {
+ transi[fi] = trans_all[f];
+ nbi.row(fi) = nb.row(f);
+ ++fi;
+ }
+ }
+ // std::cout << "nbi = \n" << nbi << std::endl;
+ // Create matrices:
+ // cdiff - a matrix for computing cell-cell differences per face.
+ // caver - a matrix for computing cell-cell averages per face.
+ // div - a matrix for computing divergence at a cell from face-given fluxes.
+ M cdiff(num_internal, nc);
+ M caver(num_internal, nc);
+ for (int i = 0; i < num_internal; ++i) {
+ cdiff.insert(i, nbi(i,0)) = 1.0;
+ cdiff.insert(i, nbi(i,1)) = -1.0;
+ caver.insert(i, nbi(i,0)) = 0.5;
+ caver.insert(i, nbi(i,1)) = 0.5;
+ }
+ M div = cdiff.transpose();
+
+ typedef AutoDiff::ForwardBlock ADB;
+ typedef ADB::V V;
+
+ // q
+ V q(nc);
+ q.setZero();
+ q[0] = 1.0;
+ q[nc-1] = -1.0;
+
+ // s - this is explicit now
+ typedef Eigen::Array TwoCol;
+ TwoCol s(nc, 2);
+ s.leftCols<1>().setZero();
+ s.rightCols<1>().setOnes();
+
+ // totmob - explicit as well
+ TwoCol kr(nc, 2);
+ props.relperm(nc, s.data(), allcells.data(), kr.data(), 0);
+ V krw = kr.leftCols<1>();
+ V kro = kr.rightCols<1>();
+ const double* mu = props.viscosity();
+ V totmob = krw/mu[0] + kro/mu[1];
+ V totmobf = (caver*totmob.matrix()).array();
+
+ // Mobility-weighted transmissibilities per internal face.
+ // Still explicit, and no upwinding!
+ V mobtransf = totmobf*transi;
+
+ // First actual AD usage: defining pressure.
+ std::vector block_pattern = { nc };
+ // Could actually write { nc } instead of block_pattern below,
+ // but we prefer a named variable since we will repeat it.
+ ADB p = ADB::variable(0, V::Zero(nc, 1), block_pattern);
+ ADB pdiff_face = cdiff*p;
+ // We want flux = totmob*trans*(p_i - p_j) for the ij-face.
+ // We only need to multiply mobtransf and pdiff_face,
+ // but currently multiplication with constants is not in,
+ // so we define an AD constant to multiply with.
+ ADB mobtransf_ad = ADB::constant(mobtransf, block_pattern);
+ ADB flux = mobtransf_ad*pdiff_face;
+ ADB residual = div*flux - ADB::constant(q, block_pattern);
+
+ // std::cout << div << pdiff_face;
+ // std::cout << div*pdiff_face;
+ // std::cout << q << std::endl;
+ // std::cout << residual << std::endl;
+
+ // It's the residual we want to be zero. We know it's linear in p,
+ // so we just need a single linear solve.
+
+ Eigen::UmfPackLU solver;
+ M matr = residual.derivative()[0];
+ matr.coeffRef(0,0) *= 2.0;
+ matr.makeCompressed();
+ solver.compute(residual.derivative()[0]);
+ // if (solver.info() != Eigen::Succeeded) {
+ // std::cerr << "Decomposition error!\n";
+ // return 1;
+ // }
+ Eigen::VectorXd x = solver.solve(residual.value().matrix());
+ // if (solver.info() != Eigen::Succeeded) {
+ // std::cerr << "Solve failure!\n";
+ // return 1;
+ // }
+ std::cout << x << std::endl;
+}