mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
some revision, time step control is now completly in the Simulator run method.
The solver simply returns a number of iterations.
This commit is contained in:
parent
fcf6cd5f90
commit
a723a01f72
@ -25,7 +25,6 @@
|
|||||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||||
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
|
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
|
||||||
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
||||||
#include <opm/autodiff/TimeStepControl.hpp>
|
|
||||||
|
|
||||||
struct UnstructuredGrid;
|
struct UnstructuredGrid;
|
||||||
struct Wells;
|
struct Wells;
|
||||||
@ -115,8 +114,8 @@ namespace Opm {
|
|||||||
/// \param[in] dt time step size
|
/// \param[in] dt time step size
|
||||||
/// \param[in] state reservoir state
|
/// \param[in] state reservoir state
|
||||||
/// \param[in] wstate well state
|
/// \param[in] wstate well state
|
||||||
/// \return suggested time step for next step call
|
/// \return number of iterations used
|
||||||
double
|
int
|
||||||
step(const double dt ,
|
step(const double dt ,
|
||||||
BlackoilState& state ,
|
BlackoilState& state ,
|
||||||
WellStateFullyImplicitBlackoil& wstate);
|
WellStateFullyImplicitBlackoil& wstate);
|
||||||
@ -191,9 +190,6 @@ namespace Opm {
|
|||||||
|
|
||||||
std::vector<int> primalVariable_;
|
std::vector<int> primalVariable_;
|
||||||
|
|
||||||
//IterationCountTimeStepControl timeStepControl_;
|
|
||||||
PIDTimeStepControl timeStepControl_;
|
|
||||||
|
|
||||||
// Private methods.
|
// Private methods.
|
||||||
SolutionState
|
SolutionState
|
||||||
constantState(const BlackoilState& x,
|
constantState(const BlackoilState& x,
|
||||||
|
@ -235,7 +235,6 @@ namespace {
|
|||||||
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
|
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
|
||||||
ADB::null(),
|
ADB::null(),
|
||||||
ADB::null() } )
|
ADB::null() } )
|
||||||
, timeStepControl_()
|
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -263,7 +262,7 @@ namespace {
|
|||||||
|
|
||||||
|
|
||||||
template<class T>
|
template<class T>
|
||||||
double
|
int
|
||||||
FullyImplicitBlackoilSolver<T>::
|
FullyImplicitBlackoilSolver<T>::
|
||||||
step(const double dt,
|
step(const double dt,
|
||||||
BlackoilState& x ,
|
BlackoilState& x ,
|
||||||
@ -279,9 +278,6 @@ namespace {
|
|||||||
computeWellConnectionPressures(state, xw);
|
computeWellConnectionPressures(state, xw);
|
||||||
}
|
}
|
||||||
|
|
||||||
// initialize time step control
|
|
||||||
timeStepControl_.initialize( x );
|
|
||||||
|
|
||||||
std::vector<std::vector<double>> residual_history;
|
std::vector<std::vector<double>> residual_history;
|
||||||
|
|
||||||
assemble(pvdt, x, xw);
|
assemble(pvdt, x, xw);
|
||||||
@ -335,18 +331,19 @@ namespace {
|
|||||||
|
|
||||||
converged = getConvergence(dt);
|
converged = getConvergence(dt);
|
||||||
|
|
||||||
it += 1;
|
// increase iteration counter
|
||||||
|
++it;
|
||||||
std::cout << std::setw(9) << it << std::setprecision(9)
|
std::cout << std::setw(9) << it << std::setprecision(9)
|
||||||
<< std::setw(18) << r << std::endl;
|
<< std::setw(18) << r << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!converged) {
|
if (!converged) {
|
||||||
std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n";
|
std::cerr << "ERROR: Failed to compute converged solution in " << it << " iterations." << std::endl;
|
||||||
// OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
|
// OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
|
||||||
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::cout << "Linear iterations: " << linearIterations << std::endl;
|
return linearIterations;
|
||||||
return timeStepControl_.computeTimeStepSize( dt, linearIterations, x );
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -1704,6 +1701,7 @@ namespace {
|
|||||||
for (; quantityIt != endQuantityIt; ++quantityIt) {
|
for (; quantityIt != endQuantityIt; ++quantityIt) {
|
||||||
const double quantityResid = (*quantityIt).value().matrix().norm();
|
const double quantityResid = (*quantityIt).value().matrix().norm();
|
||||||
if (!std::isfinite(quantityResid)) {
|
if (!std::isfinite(quantityResid)) {
|
||||||
|
//std::cout << quantityResid << " quantity" << std::endl;
|
||||||
const int trouble_phase = quantityIt - residual_.material_balance_eq.begin();
|
const int trouble_phase = quantityIt - residual_.material_balance_eq.begin();
|
||||||
OPM_THROW(Opm::NumericalProblem,
|
OPM_THROW(Opm::NumericalProblem,
|
||||||
"Encountered a non-finite residual in material balance equation "
|
"Encountered a non-finite residual in material balance equation "
|
||||||
|
@ -28,6 +28,7 @@
|
|||||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||||
#include <opm/autodiff/RateConverter.hpp>
|
#include <opm/autodiff/RateConverter.hpp>
|
||||||
|
#include <opm/autodiff/TimeStepControl.hpp>
|
||||||
|
|
||||||
#include <opm/core/grid.h>
|
#include <opm/core/grid.h>
|
||||||
#include <opm/core/wells.h>
|
#include <opm/core/wells.h>
|
||||||
@ -37,6 +38,7 @@
|
|||||||
#include <opm/core/io/eclipse/EclipseWriter.hpp>
|
#include <opm/core/io/eclipse/EclipseWriter.hpp>
|
||||||
#include <opm/core/simulator/SimulatorReport.hpp>
|
#include <opm/core/simulator/SimulatorReport.hpp>
|
||||||
#include <opm/core/simulator/SimulatorTimer.hpp>
|
#include <opm/core/simulator/SimulatorTimer.hpp>
|
||||||
|
#include <opm/core/simulator/AdaptiveSimulatorTimer.hpp>
|
||||||
#include <opm/core/utility/StopWatch.hpp>
|
#include <opm/core/utility/StopWatch.hpp>
|
||||||
#include <opm/core/io/vtk/writeVtkData.hpp>
|
#include <opm/core/io/vtk/writeVtkData.hpp>
|
||||||
#include <opm/core/utility/miscUtilities.hpp>
|
#include <opm/core/utility/miscUtilities.hpp>
|
||||||
@ -298,6 +300,9 @@ namespace Opm
|
|||||||
|
|
||||||
const bool subStepping = param_.getDefault("substepping", bool(false) );
|
const bool subStepping = param_.getDefault("substepping", bool(false) );
|
||||||
|
|
||||||
|
std::unique_ptr< TimeStepControlInterface >
|
||||||
|
timeStepControl( new PIDAndIterationCountTimeStepControl( 1e-3, 50 ) );
|
||||||
|
|
||||||
// Main simulation loop.
|
// Main simulation loop.
|
||||||
while (!timer.done()) {
|
while (!timer.done()) {
|
||||||
// Report timestep.
|
// Report timestep.
|
||||||
@ -353,31 +358,67 @@ namespace Opm
|
|||||||
solver.setThresholdPressures(threshold_pressures_by_face_);
|
solver.setThresholdPressures(threshold_pressures_by_face_);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// If sub stepping is enabled allow the solver to sub cycle
|
||||||
|
// in case the report steps are to large for the solver to converge
|
||||||
|
// \Note: The report steps are met in any case
|
||||||
if( subStepping )
|
if( subStepping )
|
||||||
{
|
{
|
||||||
// create sub step simulator timer with previously used sub step size
|
// create sub step simulator timer with previously used sub step size
|
||||||
SubStepSimulatorTimer subStepper( timer, lastSubStep );
|
const double start_time = timer.simulationTimeElapsed();
|
||||||
|
const double end_time = start_time + timer.currentStepLength();
|
||||||
|
AdaptiveSimulatorTimer subStepper( start_time, end_time, lastSubStep );
|
||||||
|
|
||||||
|
// copy states in case solver has to be restarted
|
||||||
|
//BlackoilState last_state( state );
|
||||||
|
//WellStateFullyImplicitBlackoil last_well_state( well_state );
|
||||||
|
|
||||||
|
// sub step time loop
|
||||||
while( ! subStepper.done() )
|
while( ! subStepper.done() )
|
||||||
{
|
{
|
||||||
const double dt_new = solver.step(subStepper.currentStepLength(), state, well_state);
|
// initialize time step control in case current state is needed later
|
||||||
subStepper.next( dt_new );
|
timeStepControl->initialize( state );
|
||||||
|
|
||||||
|
// keep last state for solver restart and time step control
|
||||||
|
// (linearIterations < 0 means on convergence in solver)
|
||||||
|
const int linearIterations = solver.step(subStepper.currentStepLength(), state, well_state);
|
||||||
|
|
||||||
|
// (linearIterations < 0 means on convergence in solver)
|
||||||
|
if( linearIterations >= 0 )
|
||||||
|
{
|
||||||
|
// advance by current dt
|
||||||
|
subStepper.advance();
|
||||||
|
|
||||||
|
// compute new time step estimate
|
||||||
|
const double dtEstimate =
|
||||||
|
timeStepControl->computeTimeStepSize( subStepper.currentStepLength(), linearIterations, state );
|
||||||
|
// set new time step length
|
||||||
|
subStepper.provideTimeStepEstimate( dtEstimate );
|
||||||
|
}
|
||||||
|
else // in case of no convergence
|
||||||
|
{
|
||||||
|
// we need to revise this
|
||||||
|
abort();
|
||||||
|
subStepper.halfTimeStep();
|
||||||
|
std::cerr << "Solver convergence failed, restarting solver with half time step ("<< subStepper.currentStepLength()<<" days)." << std::endl;
|
||||||
|
// reset states
|
||||||
|
// state = last_state;
|
||||||
|
// well_state = last_well_state;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
subStepper.report( std::cout );
|
subStepper.report( std::cout );
|
||||||
|
|
||||||
// store last small time step for next reportStep
|
// store last small time step for next reportStep
|
||||||
//lastSubStep = subStepper.maxStepLength();
|
|
||||||
//lastSubStep = subStepper.averageStepLength();
|
|
||||||
//lastSubStep = subStepper.suggestedMax();
|
|
||||||
lastSubStep = subStepper.suggestedAverage();
|
lastSubStep = subStepper.suggestedAverage();
|
||||||
|
std::cout << "Last suggested step size = " << lastSubStep/86400.0 << " (days)" << std::endl;
|
||||||
|
|
||||||
std::cout << "Last suggested step size = " << lastSubStep << std::endl;
|
if( ! std::isfinite( lastSubStep ) ) // check for NaN
|
||||||
if( lastSubStep != lastSubStep )
|
|
||||||
lastSubStep = timer.currentStepLength();
|
lastSubStep = timer.currentStepLength();
|
||||||
}
|
}
|
||||||
else
|
else {
|
||||||
|
// solve for complete report step
|
||||||
solver.step(timer.currentStepLength(), state, well_state);
|
solver.step(timer.currentStepLength(), state, well_state);
|
||||||
|
}
|
||||||
|
|
||||||
// take time that was used to solve system for this reportStep
|
// take time that was used to solve system for this reportStep
|
||||||
solver_timer.stop();
|
solver_timer.stop();
|
||||||
|
@ -22,117 +22,130 @@
|
|||||||
namespace Opm
|
namespace Opm
|
||||||
{
|
{
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
|
///
|
||||||
|
/// TimeStepControlInterface
|
||||||
|
///
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
class TimeStepControlInterface
|
class TimeStepControlInterface
|
||||||
{
|
{
|
||||||
protected:
|
protected:
|
||||||
TimeStepControlInterface() {}
|
TimeStepControlInterface() {}
|
||||||
public:
|
public:
|
||||||
|
/// \param state simulation state before computing update in the solver (default is empty)
|
||||||
virtual void initialize( const SimulatorState& state ) {}
|
virtual void initialize( const SimulatorState& state ) {}
|
||||||
|
|
||||||
|
/// compute new time step size suggestions based on the PID controller
|
||||||
|
/// \param dt time step size used in the current step
|
||||||
|
/// \param iterations number of iterations used (linear/nonlinear)
|
||||||
|
/// \param state new solution state
|
||||||
|
///
|
||||||
|
/// \return suggested time step size for the next step
|
||||||
virtual double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& ) const = 0;
|
virtual double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& ) const = 0;
|
||||||
|
|
||||||
|
/// virtual destructor (empty)
|
||||||
virtual ~TimeStepControlInterface () {}
|
virtual ~TimeStepControlInterface () {}
|
||||||
};
|
};
|
||||||
|
|
||||||
class IterationCountTimeStepControl : public TimeStepControlInterface
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
{
|
///
|
||||||
protected:
|
/// PID controller based adaptive time step control as suggested in:
|
||||||
mutable double prevDt_;
|
/// Turek and Kuzmin. Algebraic Flux Correction III. Incompressible Flow Problems. Uni Dortmund.
|
||||||
mutable int prevIterations_;
|
///
|
||||||
const int targetIterationCount_;
|
/// See also:
|
||||||
const double adjustmentFactor_;
|
/// D. Kuzmin and S.Turek. Numerical simulation of turbulent bubbly flows. Techreport Uni Dortmund. 2004
|
||||||
|
///
|
||||||
const int upperTargetIterationCount_;
|
/// and the original article:
|
||||||
const int lowerTargetIterationCount_;
|
/// Valli, Coutinho, and Carey. Adaptive Control for Time Step Selection in Finite Element
|
||||||
|
/// Simulation of Coupled Viscous Flow and Heat Transfer. Proc of the 10th
|
||||||
public:
|
/// International Conference on Numerical Methods in Fluids. 1998.
|
||||||
IterationCountTimeStepControl()
|
///
|
||||||
: prevDt_( 0.0 ), prevIterations_( 0 ),
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
targetIterationCount_( 100 ), adjustmentFactor_( 1.25 ),
|
|
||||||
upperTargetIterationCount_( 200 ), lowerTargetIterationCount_( 30 )
|
|
||||||
{}
|
|
||||||
|
|
||||||
double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& ) const
|
|
||||||
{
|
|
||||||
// make sure dt is somewhat reliable
|
|
||||||
assert( dt > 0 && dt == dt );
|
|
||||||
double newDt = dt;
|
|
||||||
double derivation = double(std::abs( iterations - targetIterationCount_ )) / double(targetIterationCount_);
|
|
||||||
|
|
||||||
if( derivation > 0.1 )
|
|
||||||
{
|
|
||||||
if( iterations < targetIterationCount_ )
|
|
||||||
{
|
|
||||||
newDt = dt * adjustmentFactor_;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
newDt = dt / adjustmentFactor_;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
if( prevDt_ > 0 && std::abs( dt - prevDt_ ) > 1e-12 ) {
|
|
||||||
const double dFdt = double(iterations - prevIterations_) / ( dt - prevDt_ );
|
|
||||||
if( std::abs( dFdt ) > 1e-12 )
|
|
||||||
newDt = dt + (targetIterationCount_ - iterations) / dFdt;
|
|
||||||
else
|
|
||||||
// if iterations was the same or dts were the same, do some magic
|
|
||||||
newDt = dt * double( targetIterationCount_ ) / double(targetIterationCount_ - iterations);
|
|
||||||
}
|
|
||||||
|
|
||||||
if( newDt < 0 || ! (prevDt_ > 0) || ( iterations == prevIterations_) )
|
|
||||||
{
|
|
||||||
if( iterations > upperTargetIterationCount_ )
|
|
||||||
newDt = dt / adjustmentFactor_;
|
|
||||||
else if( iterations < lowerTargetIterationCount_ )
|
|
||||||
newDt = dt * adjustmentFactor_;
|
|
||||||
else
|
|
||||||
newDt = dt;
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
assert( newDt == newDt );
|
|
||||||
|
|
||||||
//std::cout << "dt = " << dt << " " << prevDt_ << std::endl;
|
|
||||||
|
|
||||||
prevDt_ = dt;
|
|
||||||
prevIterations_ = iterations;
|
|
||||||
|
|
||||||
return newDt;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
class PIDTimeStepControl : public TimeStepControlInterface
|
class PIDTimeStepControl : public TimeStepControlInterface
|
||||||
{
|
{
|
||||||
protected:
|
protected:
|
||||||
mutable std::vector<double> p0_;
|
mutable std::vector<double> p0_;
|
||||||
mutable std::vector<double> sat0_;
|
mutable std::vector<double> sat0_;
|
||||||
|
|
||||||
mutable double prevDt_;
|
|
||||||
mutable int prevIterations_;
|
|
||||||
const int targetIterationCount_;
|
|
||||||
const double adjustmentFactor_;
|
|
||||||
|
|
||||||
const int upperTargetIterationCount_;
|
|
||||||
const int lowerTargetIterationCount_;
|
|
||||||
|
|
||||||
const double tol_;
|
const double tol_;
|
||||||
|
|
||||||
mutable std::vector< double > errors_;
|
mutable std::vector< double > errors_;
|
||||||
|
|
||||||
|
const bool verbose_;
|
||||||
public:
|
public:
|
||||||
PIDTimeStepControl( const double tol = 8e-4 )
|
/// \brief constructor
|
||||||
: p0_(), sat0_(), prevDt_( 0.0 ), prevIterations_( 0 ),
|
/// \param tol tolerance for the relative changes of the numerical solution to be accepted
|
||||||
targetIterationCount_( 100 ), adjustmentFactor_( 1.25 ),
|
/// in one time step (default is 1e-3)
|
||||||
upperTargetIterationCount_( 200 ), lowerTargetIterationCount_( 30 ),
|
PIDTimeStepControl( const double tol = 1e-3, const bool verbose = false )
|
||||||
tol_( tol ),
|
: p0_()
|
||||||
errors_( 3, tol_ )
|
, sat0_()
|
||||||
|
, tol_( tol )
|
||||||
|
, errors_( 3, tol_ )
|
||||||
|
, verbose_( verbose )
|
||||||
{}
|
{}
|
||||||
|
|
||||||
|
/// \brief \copydoc TimeStepControlInterface::initialize
|
||||||
void initialize( const SimulatorState& state )
|
void initialize( const SimulatorState& state )
|
||||||
{
|
{
|
||||||
// store current state
|
// store current state for later time step computation
|
||||||
p0_ = state.pressure();
|
p0_ = state.pressure();
|
||||||
sat0_ = state.saturation();
|
sat0_ = state.saturation();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
|
||||||
|
double computeTimeStepSize( const double dt, const int /* iterations */, const SimulatorState& state ) const
|
||||||
|
{
|
||||||
|
const size_t size = p0_.size();
|
||||||
|
assert( state.pressure().size() == size );
|
||||||
|
assert( state.saturation().size() == size );
|
||||||
|
assert( sat0_.size() == size );
|
||||||
|
|
||||||
|
// compute u^n - u^n+1
|
||||||
|
for( size_t i=0; i<size; ++i )
|
||||||
|
{
|
||||||
|
p0_[ i ] -= state.pressure()[ i ];
|
||||||
|
sat0_[ i ] -= state.saturation()[ i ];
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute || u^n - u^n+1 ||
|
||||||
|
const double stateOld = inner_product( p0_.begin(), p0_.end() ) +
|
||||||
|
inner_product( sat0_.begin(), sat0_.end() );
|
||||||
|
|
||||||
|
// compute || u^n+1 ||
|
||||||
|
const double stateNew = inner_product( state.pressure().begin(), state.pressure().end() ) +
|
||||||
|
inner_product( state.saturation().begin(), state.saturation().end() );
|
||||||
|
|
||||||
|
// shift errors
|
||||||
|
for( int i=0; i<2; ++i )
|
||||||
|
errors_[ i ] = errors_[i+1];
|
||||||
|
|
||||||
|
// store new error
|
||||||
|
const double error = stateOld / stateNew;
|
||||||
|
errors_[ 2 ] = error ;
|
||||||
|
|
||||||
|
if( error > tol_ )
|
||||||
|
{
|
||||||
|
// adjust dt by given tolerance
|
||||||
|
if( verbose_ )
|
||||||
|
std::cout << "Computed step size (tol): " << (dt * tol_ / error )/86400.0 << " (days)" << std::endl;
|
||||||
|
return (dt * tol_ / error );
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// values taking from turek time stepping paper
|
||||||
|
const double kP = 0.075 ;
|
||||||
|
const double kI = 0.175 ;
|
||||||
|
const double kD = 0.01 ;
|
||||||
|
double newDt = (dt * std::pow( errors_[ 1 ] / errors_[ 2 ], kP ) *
|
||||||
|
std::pow( tol_ / errors_[ 2 ], kI ) *
|
||||||
|
std::pow( (errors_[0]*errors_[0]/errors_[ 1 ]*errors_[ 2 ]), kD ));
|
||||||
|
if( verbose_ )
|
||||||
|
std::cout << "Computed step size (pow): " << newDt/86400.0 << " (days)" << std::endl;
|
||||||
|
return newDt;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
// return inner product for given container, here std::vector
|
||||||
template <class Iterator>
|
template <class Iterator>
|
||||||
double inner_product( Iterator it, const Iterator end ) const
|
double inner_product( Iterator it, const Iterator end ) const
|
||||||
{
|
{
|
||||||
@ -142,55 +155,37 @@ namespace Opm
|
|||||||
return product;
|
return product;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
class PIDAndIterationCountTimeStepControl : public PIDTimeStepControl
|
||||||
|
{
|
||||||
|
typedef PIDTimeStepControl BaseType;
|
||||||
|
protected:
|
||||||
|
const int targetIterationCount_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
PIDAndIterationCountTimeStepControl( const int target_iterations = 20,
|
||||||
|
const double tol = 1e-3,
|
||||||
|
const bool verbose = false)
|
||||||
|
: BaseType( tol, verbose )
|
||||||
|
, targetIterationCount_( target_iterations )
|
||||||
|
{}
|
||||||
|
|
||||||
double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& state ) const
|
double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& state ) const
|
||||||
{
|
{
|
||||||
const size_t size = p0_.size();
|
double dtEstimate = BaseType :: computeTimeStepSize( dt, iterations, state );
|
||||||
assert( state.pressure().size() == size );
|
|
||||||
// compute u^n - u^n+1
|
// further reduce step size if to many iterations were used
|
||||||
for( size_t i=0; i<size; ++i )
|
if( iterations > targetIterationCount_ )
|
||||||
{
|
{
|
||||||
p0_[ i ] -= state.pressure()[ i ];
|
// if iterations was the same or dts were the same, do some magic
|
||||||
sat0_[ i ] -= state.saturation()[ i ];
|
dtEstimate *= double( targetIterationCount_ ) / double(iterations);
|
||||||
}
|
}
|
||||||
|
|
||||||
// compute || u^n - u^n+1 ||
|
return dtEstimate;
|
||||||
double stateN0 = inner_product( p0_.begin(), p0_.end() ) +
|
|
||||||
inner_product( sat0_.begin(), sat0_.end() );
|
|
||||||
|
|
||||||
// compute || u^n+1 ||
|
|
||||||
double stateN = inner_product( state.pressure().begin(), state.pressure().end() ) +
|
|
||||||
inner_product( state.saturation().begin(), state.saturation().end() );
|
|
||||||
|
|
||||||
|
|
||||||
for( int i=0; i<2; ++i )
|
|
||||||
errors_[ i ] = errors_[i+1];
|
|
||||||
|
|
||||||
double error = stateN0 / stateN ;
|
|
||||||
errors_[ 2 ] = error ;
|
|
||||||
|
|
||||||
prevDt_ = dt;
|
|
||||||
prevIterations_ = iterations;
|
|
||||||
|
|
||||||
if( error > tol_ )
|
|
||||||
{
|
|
||||||
// adjust dt by given tolerance
|
|
||||||
std::cout << "Computed step size (tol): " << (dt * tol_ / error ) << std::endl;
|
|
||||||
return (dt * tol_ / error );
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
const double kP = 0.075 ;
|
|
||||||
const double kI = 0.175 ;
|
|
||||||
const double kD = 0.01 ;
|
|
||||||
double newDt = (dt * std::pow( errors_[ 1 ] / errors_[ 2 ], kP ) *
|
|
||||||
std::pow( tol_ / errors_[ 2 ], kI ) *
|
|
||||||
std::pow( (errors_[0]*errors_[0]/errors_[ 1 ]*errors_[ 2 ]), kD ));
|
|
||||||
std::cout << "Computed step size (pow): " << newDt << std::endl;
|
|
||||||
return newDt;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
} // end namespace OPM
|
|
||||||
|
|
||||||
|
} // end namespace OPM
|
||||||
#endif
|
#endif
|
||||||
|
Loading…
Reference in New Issue
Block a user