mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Applying the shear-thinning effect with PLYSHLOG
This commit is contained in:
@@ -114,6 +114,15 @@ namespace Opm {
|
|||||||
/// \param[in] iteration current iteration number
|
/// \param[in] iteration current iteration number
|
||||||
bool getConvergence(const double dt, const int iteration);
|
bool getConvergence(const double dt, const int iteration);
|
||||||
|
|
||||||
|
/// Assemble the residual and Jacobian of the nonlinear system.
|
||||||
|
/// \param[in] reservoir_state reservoir state variables
|
||||||
|
/// \param[in, out] well_state well state variables
|
||||||
|
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
||||||
|
void assemble(const ReservoirState& reservoir_state,
|
||||||
|
WellState& well_state,
|
||||||
|
const bool initial_assembly);
|
||||||
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
// --------- Types and enums ---------
|
// --------- Types and enums ---------
|
||||||
@@ -188,6 +197,12 @@ namespace Opm {
|
|||||||
using Base::drMaxRel;
|
using Base::drMaxRel;
|
||||||
using Base::maxResidualAllowed;
|
using Base::maxResidualAllowed;
|
||||||
|
|
||||||
|
// using Base::addWellEq;
|
||||||
|
using Base::updateWellControls;
|
||||||
|
using Base::computeWellConnectionPressures;
|
||||||
|
using Base::addWellControlEq;
|
||||||
|
using Base::computeRelPerm;
|
||||||
|
|
||||||
|
|
||||||
void
|
void
|
||||||
makeConstantState(SolutionState& state) const;
|
makeConstantState(SolutionState& state) const;
|
||||||
@@ -211,6 +226,11 @@ namespace Opm {
|
|||||||
void
|
void
|
||||||
assembleMassBalanceEq(const SolutionState& state);
|
assembleMassBalanceEq(const SolutionState& state);
|
||||||
|
|
||||||
|
void
|
||||||
|
addWellEq(const SolutionState& state,
|
||||||
|
WellState& xw,
|
||||||
|
V& aliveWells);
|
||||||
|
|
||||||
void
|
void
|
||||||
extraAddWellEq(const SolutionState& state,
|
extraAddWellEq(const SolutionState& state,
|
||||||
const WellState& xw,
|
const WellState& xw,
|
||||||
@@ -284,9 +304,9 @@ namespace Opm {
|
|||||||
const std::vector<ADB>& phasePressure, const SolutionState& state,
|
const std::vector<ADB>& phasePressure, const SolutionState& state,
|
||||||
std::vector<double>& water_vel, std::vector<double>& visc_mult);
|
std::vector<double>& water_vel, std::vector<double>& visc_mult);
|
||||||
|
|
||||||
void computeWaterShearVelocityWells(const SolutionState& state, WellStateFullyImplicitBlackoil& xw,
|
void computeWaterShearVelocityWells(const SolutionState& state, WellState& well_state,
|
||||||
V& aliveWells, const std::vector<double>& polymer_inflow,
|
V& aliveWells, std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells);
|
||||||
std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells);
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
@@ -266,7 +266,65 @@ namespace Opm {
|
|||||||
BlackoilPolymerModel<Grid>::
|
BlackoilPolymerModel<Grid>::
|
||||||
assembleMassBalanceEq(const SolutionState& state)
|
assembleMassBalanceEq(const SolutionState& state)
|
||||||
{
|
{
|
||||||
Base::assembleMassBalanceEq(state);
|
// Base::assembleMassBalanceEq(state);
|
||||||
|
|
||||||
|
// Compute b_p and the accumulation term b_p*s_p for each phase,
|
||||||
|
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
|
||||||
|
// These quantities are stored in rq_[phase].accum[1].
|
||||||
|
// The corresponding accumulation terms from the start of
|
||||||
|
// the timestep (b^0_p*s^0_p etc.) were already computed
|
||||||
|
// on the initial call to assemble() and stored in rq_[phase].accum[0].
|
||||||
|
computeAccum(state, 1);
|
||||||
|
|
||||||
|
// Set up the common parts of the mass balance equations
|
||||||
|
// for each active phase.
|
||||||
|
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
|
||||||
|
const std::vector<ADB> kr = computeRelPerm(state);
|
||||||
|
|
||||||
|
|
||||||
|
if (has_plyshlog_) {
|
||||||
|
std::vector<double> water_vel;
|
||||||
|
std::vector<double> visc_mult;
|
||||||
|
|
||||||
|
computeWaterShearVelocityFaces(transi, kr, state.canonical_phase_pressures, state, water_vel, visc_mult);
|
||||||
|
if(!computeShearMultLog(water_vel, visc_mult, shear_mult_faces_)) {
|
||||||
|
// std::cerr << " failed in calculating the shear-multiplier " << std::endl;
|
||||||
|
OPM_THROW(std::runtime_error, " failed in calculating the shear-multiplier. ");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
|
||||||
|
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], state.canonical_phase_pressures[canph_[phaseIdx]], state);
|
||||||
|
|
||||||
|
residual_.material_balance_eq[ phaseIdx ] =
|
||||||
|
pvdt_ * (rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
|
||||||
|
+ ops_.div*rq_[phaseIdx].mflux;
|
||||||
|
}
|
||||||
|
|
||||||
|
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
|
||||||
|
|
||||||
|
// Add the extra (flux) terms to the mass balance equations
|
||||||
|
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
|
||||||
|
// The extra terms in the accumulation part of the equation are already handled.
|
||||||
|
if (active_[ Oil ] && active_[ Gas ]) {
|
||||||
|
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
|
||||||
|
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
|
||||||
|
|
||||||
|
const UpwindSelector<double> upwindOil(grid_, ops_,
|
||||||
|
rq_[po].dh.value());
|
||||||
|
const ADB rs_face = upwindOil.select(state.rs);
|
||||||
|
|
||||||
|
const UpwindSelector<double> upwindGas(grid_, ops_,
|
||||||
|
rq_[pg].dh.value());
|
||||||
|
const ADB rv_face = upwindGas.select(state.rv);
|
||||||
|
|
||||||
|
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux);
|
||||||
|
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux);
|
||||||
|
|
||||||
|
// OPM_AD_DUMP(residual_.material_balance_eq[ Gas ]);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
// Add polymer equation.
|
// Add polymer equation.
|
||||||
if (has_polymer_) {
|
if (has_polymer_) {
|
||||||
residual_.material_balance_eq[poly_pos_] = pvdt_ * (rq_[poly_pos_].accum[1] - rq_[poly_pos_].accum[0])
|
residual_.material_balance_eq[poly_pos_] = pvdt_ * (rq_[poly_pos_].accum[1] - rq_[poly_pos_].accum[0])
|
||||||
@@ -373,6 +431,14 @@ namespace Opm {
|
|||||||
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * (transi * rq_[poly_pos_].dh);
|
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * (transi * rq_[poly_pos_].dh);
|
||||||
// Must recompute water flux since we have to use modified mobilities.
|
// Must recompute water flux since we have to use modified mobilities.
|
||||||
rq_[ actph ].mflux = upwind.select(rq_[actph].b * rq_[actph].mob) * (transi * rq_[actph].dh);
|
rq_[ actph ].mflux = upwind.select(rq_[actph].b * rq_[actph].mob) * (transi * rq_[actph].dh);
|
||||||
|
|
||||||
|
// applying the shear-thinning factors
|
||||||
|
if (has_plyshlog_) {
|
||||||
|
V shear_mult_faces_v = Eigen::Map<V>(shear_mult_faces_.data(), shear_mult_faces_.size());
|
||||||
|
ADB shear_mult_faces_adb = ADB::constant(shear_mult_faces_v);
|
||||||
|
rq_[poly_pos_].mflux = rq_[poly_pos_].mflux / shear_mult_faces_adb;
|
||||||
|
rq_[actph].mflux = rq_[actph].mflux / shear_mult_faces_adb;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -465,6 +531,72 @@ namespace Opm {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <class Grid>
|
||||||
|
void
|
||||||
|
BlackoilPolymerModel<Grid>::assemble(const ReservoirState& reservoir_state,
|
||||||
|
WellState& well_state,
|
||||||
|
const bool initial_assembly)
|
||||||
|
{
|
||||||
|
using namespace Opm::AutoDiffGrid;
|
||||||
|
|
||||||
|
// Possibly switch well controls and updating well state to
|
||||||
|
// get reasonable initial conditions for the wells
|
||||||
|
updateWellControls(well_state);
|
||||||
|
|
||||||
|
// Create the primary variables.
|
||||||
|
SolutionState state = variableState(reservoir_state, well_state);
|
||||||
|
|
||||||
|
if (initial_assembly) {
|
||||||
|
// Create the (constant, derivativeless) initial state.
|
||||||
|
SolutionState state0 = state;
|
||||||
|
makeConstantState(state0);
|
||||||
|
// Compute initial accumulation contributions
|
||||||
|
// and well connection pressures.
|
||||||
|
computeAccum(state0, 0);
|
||||||
|
computeWellConnectionPressures(state0, well_state);
|
||||||
|
}
|
||||||
|
|
||||||
|
// OPM_AD_DISKVAL(state.pressure);
|
||||||
|
// OPM_AD_DISKVAL(state.saturation[0]);
|
||||||
|
// OPM_AD_DISKVAL(state.saturation[1]);
|
||||||
|
// OPM_AD_DISKVAL(state.saturation[2]);
|
||||||
|
// OPM_AD_DISKVAL(state.rs);
|
||||||
|
// OPM_AD_DISKVAL(state.rv);
|
||||||
|
// OPM_AD_DISKVAL(state.qs);
|
||||||
|
// OPM_AD_DISKVAL(state.bhp);
|
||||||
|
|
||||||
|
// -------- Mass balance equations --------
|
||||||
|
assembleMassBalanceEq(state);
|
||||||
|
|
||||||
|
// -------- Well equations ----------
|
||||||
|
V aliveWells;
|
||||||
|
|
||||||
|
if (has_plyshlog_) {
|
||||||
|
std::vector<double> water_vel_wells;
|
||||||
|
std::vector<double> visc_mult_wells;
|
||||||
|
|
||||||
|
computeWaterShearVelocityWells(state, well_state, aliveWells, water_vel_wells, visc_mult_wells);
|
||||||
|
|
||||||
|
if (!computeShearMultLog(water_vel_wells, visc_mult_wells, shear_mult_wells_)) {
|
||||||
|
// std::cout << " failed in calculating the shear factors for wells " << std::endl;
|
||||||
|
OPM_THROW(std::runtime_error, " failed in calculating the shear factors for wells ");
|
||||||
|
}
|
||||||
|
|
||||||
|
/* const int nw = wells().number_of_wells;
|
||||||
|
const int nperf = wells().well_connpos[nw];
|
||||||
|
|
||||||
|
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
|
||||||
|
|
||||||
|
// assuming the water phase is the first phase
|
||||||
|
const int nw = wells().number_of_wells;
|
||||||
|
mob_perfcells = subset(rq_[0].mob,well_cells); */
|
||||||
|
}
|
||||||
|
|
||||||
|
addWellEq(state, well_state, aliveWells);
|
||||||
|
addWellControlEq(state, well_state, aliveWells);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <class Grid>
|
template <class Grid>
|
||||||
@@ -587,6 +719,180 @@ namespace Opm {
|
|||||||
return polymer_props_ad_.polymerWaterVelocityRatio(state.concentration);
|
return polymer_props_ad_.polymerWaterVelocityRatio(state.concentration);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <class Grid>
|
||||||
|
void
|
||||||
|
BlackoilPolymerModel<Grid>::addWellEq(const SolutionState& state,
|
||||||
|
WellState& xw,
|
||||||
|
V& aliveWells)
|
||||||
|
{
|
||||||
|
if( ! wellsActive() ) return ;
|
||||||
|
|
||||||
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
||||||
|
const int np = wells().number_of_phases;
|
||||||
|
const int nw = wells().number_of_wells;
|
||||||
|
const int nperf = wells().well_connpos[nw];
|
||||||
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
||||||
|
V Tw = Eigen::Map<const V>(wells().WI, nperf);
|
||||||
|
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
|
||||||
|
|
||||||
|
// pressure diffs computed already (once per step, not changing per iteration)
|
||||||
|
const V& cdp = well_perforation_pressure_diffs_;
|
||||||
|
|
||||||
|
// Extract needed quantities for the perforation cells
|
||||||
|
const ADB& p_perfcells = subset(state.pressure, well_cells);
|
||||||
|
const ADB& rv_perfcells = subset(state.rv,well_cells);
|
||||||
|
const ADB& rs_perfcells = subset(state.rs,well_cells);
|
||||||
|
std::vector<ADB> mob_perfcells(np, ADB::null());
|
||||||
|
std::vector<ADB> b_perfcells(np, ADB::null());
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
mob_perfcells[phase] = subset(rq_[phase].mob,well_cells);
|
||||||
|
b_perfcells[phase] = subset(rq_[phase].b,well_cells);
|
||||||
|
}
|
||||||
|
|
||||||
|
// applying the shear-thinning to the water face
|
||||||
|
if (has_plyshlog_) {
|
||||||
|
V shear_mult_wells_v = Eigen::Map<V>(shear_mult_wells_.data(), shear_mult_wells_.size());
|
||||||
|
ADB shear_mult_wells_adb = ADB::constant(shear_mult_wells_v);
|
||||||
|
mob_perfcells[0] = mob_perfcells[0] / shear_mult_wells_adb;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Perforation pressure
|
||||||
|
const ADB perfpressure = (wops_.w2p * state.bhp) + cdp;
|
||||||
|
std::vector<double> perfpressure_d(perfpressure.value().data(), perfpressure.value().data() + nperf);
|
||||||
|
xw.perfPress() = perfpressure_d;
|
||||||
|
|
||||||
|
// Pressure drawdown (also used to determine direction of flow)
|
||||||
|
const ADB drawdown = p_perfcells - perfpressure;
|
||||||
|
|
||||||
|
// Compute vectors with zero and ones that
|
||||||
|
// selects the wanted quantities.
|
||||||
|
|
||||||
|
// selects injection perforations
|
||||||
|
V selectInjectingPerforations = V::Zero(nperf);
|
||||||
|
// selects producing perforations
|
||||||
|
V selectProducingPerforations = V::Zero(nperf);
|
||||||
|
for (int c = 0; c < nperf; ++c){
|
||||||
|
if (drawdown.value()[c] < 0)
|
||||||
|
selectInjectingPerforations[c] = 1;
|
||||||
|
else
|
||||||
|
selectProducingPerforations[c] = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// HANDLE FLOW INTO WELLBORE
|
||||||
|
|
||||||
|
// compute phase volumetric rates at standard conditions
|
||||||
|
std::vector<ADB> cq_ps(np, ADB::null());
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown);
|
||||||
|
cq_ps[phase] = b_perfcells[phase] * cq_p;
|
||||||
|
}
|
||||||
|
if (active_[Oil] && active_[Gas]) {
|
||||||
|
const int oilpos = pu.phase_pos[Oil];
|
||||||
|
const int gaspos = pu.phase_pos[Gas];
|
||||||
|
const ADB cq_psOil = cq_ps[oilpos];
|
||||||
|
const ADB cq_psGas = cq_ps[gaspos];
|
||||||
|
cq_ps[gaspos] += rs_perfcells * cq_psOil;
|
||||||
|
cq_ps[oilpos] += rv_perfcells * cq_psGas;
|
||||||
|
}
|
||||||
|
|
||||||
|
// HANDLE FLOW OUT FROM WELLBORE
|
||||||
|
|
||||||
|
// Using total mobilities
|
||||||
|
ADB total_mob = mob_perfcells[0];
|
||||||
|
for (int phase = 1; phase < np; ++phase) {
|
||||||
|
total_mob += mob_perfcells[phase];
|
||||||
|
}
|
||||||
|
// injection perforations total volume rates
|
||||||
|
const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown);
|
||||||
|
|
||||||
|
// compute wellbore mixture for injecting perforations
|
||||||
|
// The wellbore mixture depends on the inflow from the reservoar
|
||||||
|
// and the well injection rates.
|
||||||
|
|
||||||
|
// compute avg. and total wellbore phase volumetric rates at standard conds
|
||||||
|
const DataBlock compi = Eigen::Map<const DataBlock>(wells().comp_frac, nw, np);
|
||||||
|
std::vector<ADB> wbq(np, ADB::null());
|
||||||
|
ADB wbqt = ADB::constant(V::Zero(nw));
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
const ADB& q_ps = wops_.p2w * cq_ps[phase];
|
||||||
|
const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw));
|
||||||
|
Selector<double> injectingPhase_selector(q_s.value(), Selector<double>::GreaterZero);
|
||||||
|
const int pos = pu.phase_pos[phase];
|
||||||
|
wbq[phase] = (compi.col(pos) * injectingPhase_selector.select(q_s,ADB::constant(V::Zero(nw)))) - q_ps;
|
||||||
|
wbqt += wbq[phase];
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute wellbore mixture at standard conditions.
|
||||||
|
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
|
||||||
|
std::vector<ADB> cmix_s(np, ADB::null());
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
const int pos = pu.phase_pos[phase];
|
||||||
|
cmix_s[phase] = wops_.w2p * notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute volume ratio between connection at standard conditions
|
||||||
|
ADB volumeRatio = ADB::constant(V::Zero(nperf));
|
||||||
|
const ADB d = V::Constant(nperf,1.0) - rv_perfcells * rs_perfcells;
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
ADB tmp = cmix_s[phase];
|
||||||
|
|
||||||
|
if (phase == Oil && active_[Gas]) {
|
||||||
|
const int gaspos = pu.phase_pos[Gas];
|
||||||
|
tmp = tmp - rv_perfcells * cmix_s[gaspos] / d;
|
||||||
|
}
|
||||||
|
if (phase == Gas && active_[Oil]) {
|
||||||
|
const int oilpos = pu.phase_pos[Oil];
|
||||||
|
tmp = tmp - rs_perfcells * cmix_s[oilpos] / d;
|
||||||
|
}
|
||||||
|
volumeRatio += tmp / b_perfcells[phase];
|
||||||
|
}
|
||||||
|
|
||||||
|
// injecting connections total volumerates at standard conditions
|
||||||
|
ADB cqt_is = cqt_i/volumeRatio;
|
||||||
|
|
||||||
|
// connection phase volumerates at standard conditions
|
||||||
|
std::vector<ADB> cq_s(np, ADB::null());
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add well contributions to mass balance equations
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
residual_.material_balance_eq[phase] -= superset(cq_s[phase],well_cells,nc);
|
||||||
|
}
|
||||||
|
|
||||||
|
// WELL EQUATIONS
|
||||||
|
ADB qs = state.qs;
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// check for dead wells (used in the well controll equations)
|
||||||
|
aliveWells = V::Constant(nw, 1.0);
|
||||||
|
for (int w = 0; w < nw; ++w) {
|
||||||
|
if (wbqt.value()[w] == 0) {
|
||||||
|
aliveWells[w] = 0.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Update the perforation phase rates (used to calculate the pressure drop in the wellbore)
|
||||||
|
V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np);
|
||||||
|
for (int phase = 1; phase < np; ++phase) {
|
||||||
|
cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<double> cq_d(cq.data(), cq.data() + nperf*np);
|
||||||
|
xw.perfPhaseRates() = cq_d;
|
||||||
|
|
||||||
|
residual_.well_flux_eq = qs;
|
||||||
|
|
||||||
|
extraAddWellEq(state, xw, cq_ps, cmix_s, cqt_is, well_cells);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
template<class Grid>
|
template<class Grid>
|
||||||
bool
|
bool
|
||||||
BlackoilPolymerModel<Grid>::findIntersection (Point2D line_segment1[2], Point2D line2[2], Point2D& intersection_point)
|
BlackoilPolymerModel<Grid>::findIntersection (Point2D line_segment1[2], Point2D line2[2], Point2D& intersection_point)
|
||||||
@@ -725,64 +1031,53 @@ namespace Opm {
|
|||||||
|
|
||||||
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
|
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
|
||||||
const int canonicalPhaseIdx = canph_[phase];
|
const int canonicalPhaseIdx = canph_[phase];
|
||||||
|
|
||||||
|
// only compute the velocity of Water phase
|
||||||
|
if (canonicalPhaseIdx != Water) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
const std::vector<PhasePresence> cond = phaseCondition();
|
const std::vector<PhasePresence> cond = phaseCondition();
|
||||||
|
|
||||||
const ADB tr_mult = transMult(state.pressure);
|
const ADB tr_mult = transMult(state.pressure);
|
||||||
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
|
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
|
||||||
|
|
||||||
rq_[phase].mob = tr_mult * kr[canonicalPhaseIdx] / mu;
|
rq_[phase].mob = tr_mult * kr[canonicalPhaseIdx] / mu;
|
||||||
|
|
||||||
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
|
|
||||||
|
|
||||||
// some following parts only need to update for the water phase, TOBE FIXED later.
|
|
||||||
|
|
||||||
ADB& head = rq_[phase].head;
|
|
||||||
|
|
||||||
// compute gravity potensial using the face average as in eclipse and MRST
|
// compute gravity potensial using the face average as in eclipse and MRST
|
||||||
|
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
|
||||||
const ADB rhoavg = ops_.caver * rho;
|
const ADB rhoavg = ops_.caver * rho;
|
||||||
|
rq_[ phase ].dh = ops_.ngrad * phasePressure[ canonicalPhaseIdx ] - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
|
||||||
ADB dp = ops_.ngrad * phasePressure[canonicalPhaseIdx] - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
|
|
||||||
|
|
||||||
if (use_threshold_pressure_) {
|
if (use_threshold_pressure_) {
|
||||||
applyThresholdPressures(dp);
|
applyThresholdPressures(rq_[ phase ].dh);
|
||||||
}
|
}
|
||||||
|
|
||||||
head = transi*dp;
|
const ADB& b = rq_[ phase ].b;
|
||||||
|
const ADB& mob = rq_[ phase ].mob;
|
||||||
|
const ADB& dh = rq_[ phase ].dh;
|
||||||
|
UpwindSelector<double> upwind(grid_, ops_, dh.value());
|
||||||
|
|
||||||
if (canonicalPhaseIdx == Water) {
|
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
|
||||||
//head = transi*(ops_.ngrad * phasePressure) + gflux;
|
const ADB mc = computeMc(state);
|
||||||
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration,
|
||||||
|
cmax,
|
||||||
|
kr[canonicalPhaseIdx]);
|
||||||
|
ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data());
|
||||||
|
rq_[ phase ].mob = tr_mult * krw_eff * inv_wat_eff_visc;
|
||||||
|
|
||||||
if(has_polymer_) {
|
const V& polymer_conc = state.concentration.value();
|
||||||
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
|
V visc_mult_cells = polymer_props_ad_.viscMult(polymer_conc);
|
||||||
const ADB mc = computeMc(state);
|
V visc_mult_faces = upwind.select(visc_mult_cells);
|
||||||
ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration,
|
|
||||||
cmax,
|
|
||||||
kr[canonicalPhaseIdx],
|
|
||||||
state.saturation[canonicalPhaseIdx]);
|
|
||||||
ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data());
|
|
||||||
rq_[phase].mob = tr_mult * krw_eff * inv_wat_eff_visc;
|
|
||||||
rq_[poly_pos_].mob = tr_mult * mc * krw_eff * inv_wat_eff_visc;
|
|
||||||
rq_[poly_pos_].b = rq_[phase].b;
|
|
||||||
rq_[poly_pos_].head = rq_[phase].head;
|
|
||||||
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * rq_[poly_pos_].head;
|
|
||||||
|
|
||||||
const V& polymer_conc = state.concentration.value();
|
int nface = visc_mult_faces.size();
|
||||||
V visc_mult_cells = polymer_props_ad_.viscMult(polymer_conc);
|
visc_mult.resize(nface);
|
||||||
V visc_mult_faces = upwind.select(visc_mult_cells);
|
std::copy(&(visc_mult_faces[0]), &(visc_mult_faces[0]) + nface, visc_mult.begin());
|
||||||
|
|
||||||
int nface = visc_mult_faces.size();
|
rq_[ phase ].mflux = upwind.select(b * mob) * (transi * dh);
|
||||||
visc_mult.resize(nface);
|
|
||||||
std::copy(&(visc_mult_faces[0]), &(visc_mult_faces[0]) + nface, visc_mult.begin());
|
|
||||||
}
|
|
||||||
|
|
||||||
const ADB& b = rq_[phase].b;
|
const auto& tempb_faces = upwind.select(b);
|
||||||
const ADB& mob = rq_[phase].mob;
|
b_faces.resize(tempb_faces.size());
|
||||||
rq_[phase].mflux = upwind.select(b * mob) * head;
|
std::copy(&(tempb_faces.value()[0]), &(tempb_faces.value()[0]) + tempb_faces.size(), b_faces.begin());
|
||||||
const auto& tempb_faces = upwind.select(b);
|
|
||||||
b_faces.resize(tempb_faces.size());
|
|
||||||
std::copy(&(tempb_faces.value()[0]), &(tempb_faces.value()[0]) + tempb_faces.size(), b_faces.begin());
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto& internal_faces = ops_.internal_faces;
|
const auto& internal_faces = ops_.internal_faces;
|
||||||
@@ -795,7 +1090,6 @@ namespace Opm {
|
|||||||
}
|
}
|
||||||
|
|
||||||
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
|
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
|
||||||
|
|
||||||
const ADB temp_phiavg = ops_.caver * phi;
|
const ADB temp_phiavg = ops_.caver * phi;
|
||||||
|
|
||||||
std::vector<double> phiavg;
|
std::vector<double> phiavg;
|
||||||
@@ -813,9 +1107,8 @@ namespace Opm {
|
|||||||
|
|
||||||
template<class Grid>
|
template<class Grid>
|
||||||
void
|
void
|
||||||
BlackoilPolymerModel<Grid>::computeWaterShearVelocityWells(const SolutionState& state, WellStateFullyImplicitBlackoil& xw,
|
BlackoilPolymerModel<Grid>::computeWaterShearVelocityWells(const SolutionState& state, WellState& xw,
|
||||||
V& aliveWells, const std::vector<double>& polymer_inflow,
|
V& aliveWells, std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells)
|
||||||
std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells)
|
|
||||||
{
|
{
|
||||||
if( ! wellsActive() ) return ;
|
if( ! wellsActive() ) return ;
|
||||||
|
|
||||||
@@ -955,11 +1248,11 @@ namespace Opm {
|
|||||||
std::copy(&(temp_visc_mult_wells[0]), &(temp_visc_mult_wells[0]) + temp_visc_mult_wells.size(), visc_mult_wells.begin());
|
std::copy(&(temp_visc_mult_wells[0]), &(temp_visc_mult_wells[0]) + temp_visc_mult_wells.size(), visc_mult_wells.begin());
|
||||||
|
|
||||||
// for the injection wells
|
// for the injection wells
|
||||||
for (int i = 0; i < well_cells.size(); ++i) {
|
/* for (int i = 0; i < well_cells.size(); ++i) {
|
||||||
if (polymer_inflow[well_cells[i]] == 0. && selectInjectingPerforations[i] == 1.) { // maybe comparison with epsilon?
|
if (polymer_inflow[well_cells[i]] == 0. && selectInjectingPerforations[i] == 1.) { // maybe comparison with epsilon?
|
||||||
visc_mult_wells[i] = 1.;
|
visc_mult_wells[i] = 1.;
|
||||||
}
|
}
|
||||||
}
|
}*/
|
||||||
|
|
||||||
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
|
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user