Applying the shear-thinning effect with PLYSHLOG

This commit is contained in:
Kai Bao
2015-06-03 16:07:50 +02:00
parent 9b93579d00
commit a897501521
2 changed files with 364 additions and 51 deletions

View File

@@ -114,6 +114,15 @@ namespace Opm {
/// \param[in] iteration current iteration number
bool getConvergence(const double dt, const int iteration);
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
void assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly);
protected:
// --------- Types and enums ---------
@@ -188,6 +197,12 @@ namespace Opm {
using Base::drMaxRel;
using Base::maxResidualAllowed;
// using Base::addWellEq;
using Base::updateWellControls;
using Base::computeWellConnectionPressures;
using Base::addWellControlEq;
using Base::computeRelPerm;
void
makeConstantState(SolutionState& state) const;
@@ -211,6 +226,11 @@ namespace Opm {
void
assembleMassBalanceEq(const SolutionState& state);
void
addWellEq(const SolutionState& state,
WellState& xw,
V& aliveWells);
void
extraAddWellEq(const SolutionState& state,
const WellState& xw,
@@ -284,9 +304,9 @@ namespace Opm {
const std::vector<ADB>& phasePressure, const SolutionState& state,
std::vector<double>& water_vel, std::vector<double>& visc_mult);
void computeWaterShearVelocityWells(const SolutionState& state, WellStateFullyImplicitBlackoil& xw,
V& aliveWells, const std::vector<double>& polymer_inflow,
std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells);
void computeWaterShearVelocityWells(const SolutionState& state, WellState& well_state,
V& aliveWells, std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells);
};

View File

@@ -266,7 +266,65 @@ namespace Opm {
BlackoilPolymerModel<Grid>::
assembleMassBalanceEq(const SolutionState& state)
{
Base::assembleMassBalanceEq(state);
// Base::assembleMassBalanceEq(state);
// Compute b_p and the accumulation term b_p*s_p for each phase,
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
// These quantities are stored in rq_[phase].accum[1].
// The corresponding accumulation terms from the start of
// the timestep (b^0_p*s^0_p etc.) were already computed
// on the initial call to assemble() and stored in rq_[phase].accum[0].
computeAccum(state, 1);
// Set up the common parts of the mass balance equations
// for each active phase.
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
const std::vector<ADB> kr = computeRelPerm(state);
if (has_plyshlog_) {
std::vector<double> water_vel;
std::vector<double> visc_mult;
computeWaterShearVelocityFaces(transi, kr, state.canonical_phase_pressures, state, water_vel, visc_mult);
if(!computeShearMultLog(water_vel, visc_mult, shear_mult_faces_)) {
// std::cerr << " failed in calculating the shear-multiplier " << std::endl;
OPM_THROW(std::runtime_error, " failed in calculating the shear-multiplier. ");
}
}
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], state.canonical_phase_pressures[canph_[phaseIdx]], state);
residual_.material_balance_eq[ phaseIdx ] =
pvdt_ * (rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
+ ops_.div*rq_[phaseIdx].mflux;
}
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
// Add the extra (flux) terms to the mass balance equations
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
// The extra terms in the accumulation part of the equation are already handled.
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
const UpwindSelector<double> upwindOil(grid_, ops_,
rq_[po].dh.value());
const ADB rs_face = upwindOil.select(state.rs);
const UpwindSelector<double> upwindGas(grid_, ops_,
rq_[pg].dh.value());
const ADB rv_face = upwindGas.select(state.rv);
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * rq_[po].mflux);
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * rq_[pg].mflux);
// OPM_AD_DUMP(residual_.material_balance_eq[ Gas ]);
}
// Add polymer equation.
if (has_polymer_) {
residual_.material_balance_eq[poly_pos_] = pvdt_ * (rq_[poly_pos_].accum[1] - rq_[poly_pos_].accum[0])
@@ -373,6 +431,14 @@ namespace Opm {
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * (transi * rq_[poly_pos_].dh);
// Must recompute water flux since we have to use modified mobilities.
rq_[ actph ].mflux = upwind.select(rq_[actph].b * rq_[actph].mob) * (transi * rq_[actph].dh);
// applying the shear-thinning factors
if (has_plyshlog_) {
V shear_mult_faces_v = Eigen::Map<V>(shear_mult_faces_.data(), shear_mult_faces_.size());
ADB shear_mult_faces_adb = ADB::constant(shear_mult_faces_v);
rq_[poly_pos_].mflux = rq_[poly_pos_].mflux / shear_mult_faces_adb;
rq_[actph].mflux = rq_[actph].mflux / shear_mult_faces_adb;
}
}
}
}
@@ -465,6 +531,72 @@ namespace Opm {
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
updateWellControls(well_state);
// Create the primary variables.
SolutionState state = variableState(reservoir_state, well_state);
if (initial_assembly) {
// Create the (constant, derivativeless) initial state.
SolutionState state0 = state;
makeConstantState(state0);
// Compute initial accumulation contributions
// and well connection pressures.
computeAccum(state0, 0);
computeWellConnectionPressures(state0, well_state);
}
// OPM_AD_DISKVAL(state.pressure);
// OPM_AD_DISKVAL(state.saturation[0]);
// OPM_AD_DISKVAL(state.saturation[1]);
// OPM_AD_DISKVAL(state.saturation[2]);
// OPM_AD_DISKVAL(state.rs);
// OPM_AD_DISKVAL(state.rv);
// OPM_AD_DISKVAL(state.qs);
// OPM_AD_DISKVAL(state.bhp);
// -------- Mass balance equations --------
assembleMassBalanceEq(state);
// -------- Well equations ----------
V aliveWells;
if (has_plyshlog_) {
std::vector<double> water_vel_wells;
std::vector<double> visc_mult_wells;
computeWaterShearVelocityWells(state, well_state, aliveWells, water_vel_wells, visc_mult_wells);
if (!computeShearMultLog(water_vel_wells, visc_mult_wells, shear_mult_wells_)) {
// std::cout << " failed in calculating the shear factors for wells " << std::endl;
OPM_THROW(std::runtime_error, " failed in calculating the shear factors for wells ");
}
/* const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
// assuming the water phase is the first phase
const int nw = wells().number_of_wells;
mob_perfcells = subset(rq_[0].mob,well_cells); */
}
addWellEq(state, well_state, aliveWells);
addWellControlEq(state, well_state, aliveWells);
}
template <class Grid>
@@ -587,6 +719,180 @@ namespace Opm {
return polymer_props_ad_.polymerWaterVelocityRatio(state.concentration);
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::addWellEq(const SolutionState& state,
WellState& xw,
V& aliveWells)
{
if( ! wellsActive() ) return ;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
V Tw = Eigen::Map<const V>(wells().WI, nperf);
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
// pressure diffs computed already (once per step, not changing per iteration)
const V& cdp = well_perforation_pressure_diffs_;
// Extract needed quantities for the perforation cells
const ADB& p_perfcells = subset(state.pressure, well_cells);
const ADB& rv_perfcells = subset(state.rv,well_cells);
const ADB& rs_perfcells = subset(state.rs,well_cells);
std::vector<ADB> mob_perfcells(np, ADB::null());
std::vector<ADB> b_perfcells(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
mob_perfcells[phase] = subset(rq_[phase].mob,well_cells);
b_perfcells[phase] = subset(rq_[phase].b,well_cells);
}
// applying the shear-thinning to the water face
if (has_plyshlog_) {
V shear_mult_wells_v = Eigen::Map<V>(shear_mult_wells_.data(), shear_mult_wells_.size());
ADB shear_mult_wells_adb = ADB::constant(shear_mult_wells_v);
mob_perfcells[0] = mob_perfcells[0] / shear_mult_wells_adb;
}
// Perforation pressure
const ADB perfpressure = (wops_.w2p * state.bhp) + cdp;
std::vector<double> perfpressure_d(perfpressure.value().data(), perfpressure.value().data() + nperf);
xw.perfPress() = perfpressure_d;
// Pressure drawdown (also used to determine direction of flow)
const ADB drawdown = p_perfcells - perfpressure;
// Compute vectors with zero and ones that
// selects the wanted quantities.
// selects injection perforations
V selectInjectingPerforations = V::Zero(nperf);
// selects producing perforations
V selectProducingPerforations = V::Zero(nperf);
for (int c = 0; c < nperf; ++c){
if (drawdown.value()[c] < 0)
selectInjectingPerforations[c] = 1;
else
selectProducingPerforations[c] = 1;
}
// HANDLE FLOW INTO WELLBORE
// compute phase volumetric rates at standard conditions
std::vector<ADB> cq_ps(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown);
cq_ps[phase] = b_perfcells[phase] * cq_p;
}
if (active_[Oil] && active_[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const ADB cq_psOil = cq_ps[oilpos];
const ADB cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += rs_perfcells * cq_psOil;
cq_ps[oilpos] += rv_perfcells * cq_psGas;
}
// HANDLE FLOW OUT FROM WELLBORE
// Using total mobilities
ADB total_mob = mob_perfcells[0];
for (int phase = 1; phase < np; ++phase) {
total_mob += mob_perfcells[phase];
}
// injection perforations total volume rates
const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown);
// compute wellbore mixture for injecting perforations
// The wellbore mixture depends on the inflow from the reservoar
// and the well injection rates.
// compute avg. and total wellbore phase volumetric rates at standard conds
const DataBlock compi = Eigen::Map<const DataBlock>(wells().comp_frac, nw, np);
std::vector<ADB> wbq(np, ADB::null());
ADB wbqt = ADB::constant(V::Zero(nw));
for (int phase = 0; phase < np; ++phase) {
const ADB& q_ps = wops_.p2w * cq_ps[phase];
const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw));
Selector<double> injectingPhase_selector(q_s.value(), Selector<double>::GreaterZero);
const int pos = pu.phase_pos[phase];
wbq[phase] = (compi.col(pos) * injectingPhase_selector.select(q_s,ADB::constant(V::Zero(nw)))) - q_ps;
wbqt += wbq[phase];
}
// compute wellbore mixture at standard conditions.
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
std::vector<ADB> cmix_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
cmix_s[phase] = wops_.w2p * notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
}
// compute volume ratio between connection at standard conditions
ADB volumeRatio = ADB::constant(V::Zero(nperf));
const ADB d = V::Constant(nperf,1.0) - rv_perfcells * rs_perfcells;
for (int phase = 0; phase < np; ++phase) {
ADB tmp = cmix_s[phase];
if (phase == Oil && active_[Gas]) {
const int gaspos = pu.phase_pos[Gas];
tmp = tmp - rv_perfcells * cmix_s[gaspos] / d;
}
if (phase == Gas && active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
tmp = tmp - rs_perfcells * cmix_s[oilpos] / d;
}
volumeRatio += tmp / b_perfcells[phase];
}
// injecting connections total volumerates at standard conditions
ADB cqt_is = cqt_i/volumeRatio;
// connection phase volumerates at standard conditions
std::vector<ADB> cq_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is;
}
// Add well contributions to mass balance equations
for (int phase = 0; phase < np; ++phase) {
residual_.material_balance_eq[phase] -= superset(cq_s[phase],well_cells,nc);
}
// WELL EQUATIONS
ADB qs = state.qs;
for (int phase = 0; phase < np; ++phase) {
qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np);
}
// check for dead wells (used in the well controll equations)
aliveWells = V::Constant(nw, 1.0);
for (int w = 0; w < nw; ++w) {
if (wbqt.value()[w] == 0) {
aliveWells[w] = 0.0;
}
}
// Update the perforation phase rates (used to calculate the pressure drop in the wellbore)
V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np);
}
std::vector<double> cq_d(cq.data(), cq.data() + nperf*np);
xw.perfPhaseRates() = cq_d;
residual_.well_flux_eq = qs;
extraAddWellEq(state, xw, cq_ps, cmix_s, cqt_is, well_cells);
}
template<class Grid>
bool
BlackoilPolymerModel<Grid>::findIntersection (Point2D line_segment1[2], Point2D line2[2], Point2D& intersection_point)
@@ -725,47 +1031,39 @@ namespace Opm {
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
const int canonicalPhaseIdx = canph_[phase];
// only compute the velocity of Water phase
if (canonicalPhaseIdx != Water) {
continue;
}
const std::vector<PhasePresence> cond = phaseCondition();
const ADB tr_mult = transMult(state.pressure);
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
rq_[phase].mob = tr_mult * kr[canonicalPhaseIdx] / mu;
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
// some following parts only need to update for the water phase, TOBE FIXED later.
ADB& head = rq_[phase].head;
// compute gravity potensial using the face average as in eclipse and MRST
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure[canonicalPhaseIdx], state.temperature, state.rs, state.rv,cond, cells_);
const ADB rhoavg = ops_.caver * rho;
ADB dp = ops_.ngrad * phasePressure[canonicalPhaseIdx] - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
rq_[ phase ].dh = ops_.ngrad * phasePressure[ canonicalPhaseIdx ] - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
if (use_threshold_pressure_) {
applyThresholdPressures(dp);
applyThresholdPressures(rq_[ phase ].dh);
}
head = transi*dp;
const ADB& b = rq_[ phase ].b;
const ADB& mob = rq_[ phase ].mob;
const ADB& dh = rq_[ phase ].dh;
UpwindSelector<double> upwind(grid_, ops_, dh.value());
if (canonicalPhaseIdx == Water) {
//head = transi*(ops_.ngrad * phasePressure) + gflux;
UpwindSelector<double> upwind(grid_, ops_, head.value());
if(has_polymer_) {
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
const ADB mc = computeMc(state);
ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration,
cmax,
kr[canonicalPhaseIdx],
state.saturation[canonicalPhaseIdx]);
kr[canonicalPhaseIdx]);
ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data());
rq_[phase].mob = tr_mult * krw_eff * inv_wat_eff_visc;
rq_[poly_pos_].mob = tr_mult * mc * krw_eff * inv_wat_eff_visc;
rq_[poly_pos_].b = rq_[phase].b;
rq_[poly_pos_].head = rq_[phase].head;
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * rq_[poly_pos_].head;
rq_[ phase ].mob = tr_mult * krw_eff * inv_wat_eff_visc;
const V& polymer_conc = state.concentration.value();
V visc_mult_cells = polymer_props_ad_.viscMult(polymer_conc);
@@ -774,16 +1072,13 @@ namespace Opm {
int nface = visc_mult_faces.size();
visc_mult.resize(nface);
std::copy(&(visc_mult_faces[0]), &(visc_mult_faces[0]) + nface, visc_mult.begin());
}
const ADB& b = rq_[phase].b;
const ADB& mob = rq_[phase].mob;
rq_[phase].mflux = upwind.select(b * mob) * head;
rq_[ phase ].mflux = upwind.select(b * mob) * (transi * dh);
const auto& tempb_faces = upwind.select(b);
b_faces.resize(tempb_faces.size());
std::copy(&(tempb_faces.value()[0]), &(tempb_faces.value()[0]) + tempb_faces.size(), b_faces.begin());
}
}
const auto& internal_faces = ops_.internal_faces;
@@ -795,7 +1090,6 @@ namespace Opm {
}
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));
const ADB temp_phiavg = ops_.caver * phi;
std::vector<double> phiavg;
@@ -813,9 +1107,8 @@ namespace Opm {
template<class Grid>
void
BlackoilPolymerModel<Grid>::computeWaterShearVelocityWells(const SolutionState& state, WellStateFullyImplicitBlackoil& xw,
V& aliveWells, const std::vector<double>& polymer_inflow,
std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells)
BlackoilPolymerModel<Grid>::computeWaterShearVelocityWells(const SolutionState& state, WellState& xw,
V& aliveWells, std::vector<double>& water_vel_wells, std::vector<double>& visc_mult_wells)
{
if( ! wellsActive() ) return ;
@@ -955,11 +1248,11 @@ namespace Opm {
std::copy(&(temp_visc_mult_wells[0]), &(temp_visc_mult_wells[0]) + temp_visc_mult_wells.size(), visc_mult_wells.begin());
// for the injection wells
for (int i = 0; i < well_cells.size(); ++i) {
/* for (int i = 0; i < well_cells.size(); ++i) {
if (polymer_inflow[well_cells[i]] == 0. && selectInjectingPerforations[i] == 1.) { // maybe comparison with epsilon?
visc_mult_wells[i] = 1.;
}
}
}*/
const ADB phi = Opm::AutoDiffBlock<double>::constant(Eigen::Map<const V>(& fluid_.porosity()[0], AutoDiffGrid::numCells(grid_), 1));