Merge pull request #3420 from totto82/removeDerivate

remove derivatives from well rate computations
This commit is contained in:
Tor Harald Sandve 2021-08-09 15:48:38 +02:00 committed by GitHub
commit a8fa2d74ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 391 additions and 234 deletions

View File

@ -343,13 +343,39 @@ namespace Opm
void computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& well_state);
void computePerfRate(const IntensiveQuantities& intQuants,
const std::vector<EvalWell>& mob,
const EvalWell& bhp,
void computePerfRateEval(const IntensiveQuantities& intQuants,
const std::vector<EvalWell>& mob,
const EvalWell& bhp,
const double Tw,
const int perf,
const bool allow_cf,
std::vector<EvalWell>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const;
void computePerfRateScalar(const IntensiveQuantities& intQuants,
const std::vector<Scalar>& mob,
const Scalar& bhp,
const double Tw,
const int perf,
const bool allow_cf,
std::vector<Scalar>& cq_s,
DeferredLogger& deferred_logger) const;
template<class Value>
void computePerfRate(const std::vector<Value>& mob,
const Value& pressure,
const Value& bhp,
const Value& rs,
const Value& rv,
std::vector<Value>& b_perfcells_dense,
const double Tw,
const int perf,
const bool allow_cf,
std::vector<EvalWell>& cq_s,
const Value& skin_pressure,
const std::vector<Value>& cmix_s,
std::vector<Value>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const;
@ -368,10 +394,17 @@ namespace Opm
virtual double getRefDensity() const override;
// get the mobility for specific perforation
void getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob,
DeferredLogger& deferred_logger) const;
void getMobilityEval(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob,
DeferredLogger& deferred_logger) const;
// get the mobility for specific perforation
void getMobilityScalar(const Simulator& ebosSimulator,
const int perf,
std::vector<Scalar>& mob,
DeferredLogger& deferred_logger) const;
void updateWaterMobilityWithPolymer(const Simulator& ebos_simulator,
const int perf,

View File

@ -961,160 +961,6 @@ computeConnectionDensities(const std::vector<double>& perfComponentRates,
}
}
template<class FluidSystem, class Indices, class Scalar>
void
StandardWellEval<FluidSystem,Indices,Scalar>::
computePerfRate(const std::vector<EvalWell>& mob,
const EvalWell& pressure,
const EvalWell& bhp,
const EvalWell& rs,
const EvalWell& rv,
std::vector<EvalWell>& b_perfcells_dense,
const double Tw,
const int perf,
const bool allow_cf,
const bool enable_polymermw,
std::vector<EvalWell>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
{
// Pressure drawdown (also used to determine direction of flow)
const EvalWell well_pressure = bhp + this->perf_pressure_diffs_[perf];
EvalWell drawdown = pressure - well_pressure;
if (enable_polymermw) {
if (baseif_.isInjector()) {
const int pskin_index = Bhp + 1 + baseif_.numPerfs() + perf;
const EvalWell& skin_pressure = primary_variables_evaluation_[pskin_index];
drawdown += skin_pressure;
}
}
// producing perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && baseif_.isInjector()) {
return;
}
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < baseif_.numComponents(); ++componentIdx) {
const EvalWell cq_p = - Tw * (mob[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell cq_sOil = cq_s[oilCompIdx];
const EvalWell cq_sGas = cq_s[gasCompIdx];
const EvalWell dis_gas = rs * cq_sOil;
const EvalWell vap_oil = rv * cq_sGas;
cq_s[gasCompIdx] += dis_gas;
cq_s[oilCompIdx] += vap_oil;
// recording the perforation solution gas rate and solution oil rates
if (baseif_.isProducer()) {
perf_dis_gas_rate = dis_gas.value();
perf_vap_oil_rate = vap_oil.value();
}
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && baseif_.isProducer()) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob[0];
for (int componentIdx = 1; componentIdx < baseif_.numComponents(); ++componentIdx) {
total_mob_dense += mob[componentIdx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// surface volume fraction of fluids within wellbore
std::vector<EvalWell> cmix_s(baseif_.numComponents(), EvalWell{numWellEq_ + Indices::numEq});
for (int componentIdx = 0; componentIdx < baseif_.numComponents(); ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
}
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio(numWellEq_ + Indices::numEq, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx];
}
if constexpr (Indices::enableSolvent) {
volumeRatio += cmix_s[Indices::contiSolventEqIdx] / b_perfcells_dense[Indices::contiSolventEqIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = EvalWell(numWellEq_ + Indices::numEq, 1.0) - rv * rs;
if (d.value() == 0.0) {
OPM_DEFLOG_THROW(NumericalIssue, "Zero d value obtained for well " << baseif_.name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv, deferred_logger);
}
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
volumeRatio += tmp_oil / b_perfcells_dense[oilCompIdx];
const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
volumeRatio += tmp_gas / b_perfcells_dense[gasCompIdx];
}
else {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
volumeRatio += cmix_s[oilCompIdx] / b_perfcells_dense[oilCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
volumeRatio += cmix_s[gasCompIdx] / b_perfcells_dense[gasCompIdx];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i/volumeRatio;
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
for (int componentIdx = 0; componentIdx < baseif_.numComponents(); ++componentIdx) {
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
}
// calculating the perforation solution gas rate and solution oil rates
if (baseif_.isProducer()) {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// TODO: the formulations here remain to be tested with cases with strong crossflow through production wells
// s means standard condition, r means reservoir condition
// q_os = q_or * b_o + rv * q_gr * b_g
// q_gs = q_gr * g_g + rs * q_or * b_o
// d = 1.0 - rs * rv
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
const double d = 1.0 - rv.value() * rs.value();
// vaporized oil into gas
// rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d
perf_vap_oil_rate = rv.value() * (cq_s[gasCompIdx].value() - rs.value() * cq_s[oilCompIdx].value()) / d;
// dissolved of gas in oil
// rs * q_or * b_o = rs * (q_os - rv * q_gs) / d
perf_dis_gas_rate = rs.value() * (cq_s[oilCompIdx].value() - rv.value() * cq_s[gasCompIdx].value()) / d;
}
}
}
}
template<class FluidSystem, class Indices, class Scalar>
void

View File

@ -146,21 +146,6 @@ protected:
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf);
void computePerfRate(const std::vector<EvalWell>& mob,
const EvalWell& pressure,
const EvalWell& bhp,
const EvalWell& rs,
const EvalWell& rv,
std::vector<EvalWell>& b_perfcells_dense,
const double Tw,
const int perf,
const bool allow_cf,
const bool enable_polymermw,
std::vector<EvalWell>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const;
ConvergenceReport getWellConvergence(const WellState& well_state,
const std::vector<double>& B_avg,
const double tol_wells,

View File

@ -60,6 +60,7 @@ StandardWellGeneric(int Bhp,
invDuneD_.setBuildMode(DiagMatWell::row_wise);
}
template<class Scalar>
double
StandardWellGeneric<Scalar>::

View File

@ -103,16 +103,16 @@ namespace Opm
template<typename TypeTag>
void
StandardWell<TypeTag>::
computePerfRate(const IntensiveQuantities& intQuants,
const std::vector<EvalWell>& mob,
const EvalWell& bhp,
const double Tw,
const int perf,
const bool allow_cf,
std::vector<EvalWell>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
computePerfRateEval(const IntensiveQuantities& intQuants,
const std::vector<EvalWell>& mob,
const EvalWell& bhp,
const double Tw,
const int perf,
const bool allow_cf,
std::vector<EvalWell>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
{
const auto& fs = intQuants.fluidState();
const EvalWell pressure = this->extendEval(getPerfCellPressure(fs));
@ -137,22 +137,251 @@ namespace Opm
b_perfcells_dense[gasCompIdx] += wsolvent()*intQuants.zPureInvFormationVolumeFactor().value();
}
}
this->StdWellEval::computePerfRate(mob,
pressure,
bhp,
rs,
rv,
b_perfcells_dense,
Tw,
perf,
allow_cf,
has_polymermw,
cq_s,
perf_dis_gas_rate,
perf_vap_oil_rate,
deferred_logger);
EvalWell skin_pressure = EvalWell{this->numWellEq_ + numEq, 0.0};
if (has_polymermw) {
if (this->isInjector()) {
const int pskin_index = Bhp + 1 + this->numPerfs() + perf;
skin_pressure = this->primary_variables_evaluation_[pskin_index];
}
}
// surface volume fraction of fluids within wellbore
std::vector<EvalWell> cmix_s(this->numComponents(), EvalWell{this->numWellEq_ + numEq});
for (int componentIdx = 0; componentIdx < this->numComponents(); ++componentIdx) {
cmix_s[componentIdx] = this->wellSurfaceVolumeFraction(componentIdx);
}
computePerfRate(mob,
pressure,
bhp,
rs,
rv,
b_perfcells_dense,
Tw,
perf,
allow_cf,
skin_pressure,
cmix_s,
cq_s,
perf_dis_gas_rate,
perf_vap_oil_rate,
deferred_logger);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computePerfRateScalar(const IntensiveQuantities& intQuants,
const std::vector<Scalar>& mob,
const Scalar& bhp,
const double Tw,
const int perf,
const bool allow_cf,
std::vector<Scalar>& cq_s,
DeferredLogger& deferred_logger) const
{
const auto& fs = intQuants.fluidState();
const Scalar pressure = getPerfCellPressure(fs).value();
const Scalar rs = fs.Rs().value();
const Scalar rv = fs.Rv().value();
std::vector<Scalar> b_perfcells_dense(num_components_, 0.0);
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
b_perfcells_dense[compIdx] = fs.invB(phaseIdx).value();
}
if constexpr (has_solvent) {
b_perfcells_dense[contiSolventEqIdx] = intQuants.solventInverseFormationVolumeFactor().value();
}
if constexpr (has_zFraction) {
if (this->isInjector()) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
b_perfcells_dense[gasCompIdx] *= (1.0 - wsolvent());
b_perfcells_dense[gasCompIdx] += wsolvent()*intQuants.zPureInvFormationVolumeFactor().value();
}
}
Scalar skin_pressure =0.0;
if (has_polymermw) {
if (this->isInjector()) {
const int pskin_index = Bhp + 1 + this->numPerfs() + perf;
skin_pressure = getValue(this->primary_variables_evaluation_[pskin_index]);
}
}
Scalar perf_dis_gas_rate = 0.0;
Scalar perf_vap_oil_rate = 0.0;
// surface volume fraction of fluids within wellbore
std::vector<Scalar> cmix_s(this->numComponents(), 0.0);
for (int componentIdx = 0; componentIdx < this->numComponents(); ++componentIdx) {
cmix_s[componentIdx] = getValue(this->wellSurfaceVolumeFraction(componentIdx));
}
computePerfRate(mob,
pressure,
bhp,
rs,
rv,
b_perfcells_dense,
Tw,
perf,
allow_cf,
skin_pressure,
cmix_s,
cq_s,
perf_dis_gas_rate,
perf_vap_oil_rate,
deferred_logger);
}
template<typename TypeTag>
template<class Value>
void
StandardWell<TypeTag>::
computePerfRate(const std::vector<Value>& mob,
const Value& pressure,
const Value& bhp,
const Value& rs,
const Value& rv,
std::vector<Value>& b_perfcells_dense,
const double Tw,
const int perf,
const bool allow_cf,
const Value& skin_pressure,
const std::vector<Value>& cmix_s,
std::vector<Value>& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
{
// Pressure drawdown (also used to determine direction of flow)
const Value well_pressure = bhp + this->perf_pressure_diffs_[perf];
Value drawdown = pressure - well_pressure;
if (this->isInjector()) {
drawdown += skin_pressure;
}
// producing perforations
if ( drawdown > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && this->isInjector()) {
return;
}
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < this->numComponents(); ++componentIdx) {
const Value cq_p = - Tw * (mob[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const Value cq_sOil = cq_s[oilCompIdx];
const Value cq_sGas = cq_s[gasCompIdx];
const Value dis_gas = rs * cq_sOil;
const Value vap_oil = rv * cq_sGas;
cq_s[gasCompIdx] += dis_gas;
cq_s[oilCompIdx] += vap_oil;
// recording the perforation solution gas rate and solution oil rates
if (this->isProducer()) {
perf_dis_gas_rate = getValue(dis_gas);
perf_vap_oil_rate = getValue(vap_oil);
}
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && this->isProducer()) {
return;
}
// Using total mobilities
Value total_mob_dense = mob[0];
for (int componentIdx = 1; componentIdx < this->numComponents(); ++componentIdx) {
total_mob_dense += mob[componentIdx];
}
// injection perforations total volume rates
const Value cqt_i = - Tw * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions
Value volumeRatio = bhp * 0.0; // initialize it with the correct type
;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx];
}
if constexpr (Indices::enableSolvent) {
volumeRatio += cmix_s[Indices::contiSolventEqIdx] / b_perfcells_dense[Indices::contiSolventEqIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
const Value d = 1.0 - rv * rs;
if (getValue(d) == 0.0) {
OPM_DEFLOG_THROW(NumericalIssue, "Zero d value obtained for well " << this->name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv, deferred_logger);
}
const Value tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
volumeRatio += tmp_oil / b_perfcells_dense[oilCompIdx];
const Value tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
volumeRatio += tmp_gas / b_perfcells_dense[gasCompIdx];
}
else {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
volumeRatio += cmix_s[oilCompIdx] / b_perfcells_dense[oilCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
volumeRatio += cmix_s[gasCompIdx] / b_perfcells_dense[gasCompIdx];
}
}
// injecting connections total volumerates at standard conditions
Value cqt_is = cqt_i/volumeRatio;
for (int componentIdx = 0; componentIdx < this->numComponents(); ++componentIdx) {
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is;
}
// calculating the perforation solution gas rate and solution oil rates
if (this->isProducer()) {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// TODO: the formulations here remain to be tested with cases with strong crossflow through production wells
// s means standard condition, r means reservoir condition
// q_os = q_or * b_o + rv * q_gr * b_g
// q_gs = q_gr * g_g + rs * q_or * b_o
// d = 1.0 - rs * rv
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
const double d = 1.0 - getValue(rv) * getValue(rs);
// vaporized oil into gas
// rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d
perf_vap_oil_rate = getValue(rv) * (getValue(cq_s[gasCompIdx]) - getValue(rs) * getValue(cq_s[oilCompIdx])) / d;
// dissolved of gas in oil
// rs * q_or * b_o = rs * (q_os - rv * q_gs) / d
perf_dis_gas_rate = getValue(rs) * (getValue(cq_s[oilCompIdx]) - getValue(rv) * getValue(cq_s[gasCompIdx])) / d;
}
}
}
}
template<typename TypeTag>
@ -308,14 +537,14 @@ namespace Opm
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<EvalWell> mob(num_components_, {this->numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob, deferred_logger);
getMobilityEval(ebosSimulator, perf, mob, deferred_logger);
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
computePerfRate(intQuants, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
computePerfRateEval(intQuants, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
auto& perf_data = well_state.perfData(this->index_of_well_);
if constexpr (has_polymer && Base::has_polymermw) {
@ -474,10 +703,10 @@ namespace Opm
template<typename TypeTag>
void
StandardWell<TypeTag>::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob,
DeferredLogger& deferred_logger) const
getMobilityEval(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob,
DeferredLogger& deferred_logger) const
{
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == num_components_);
@ -540,7 +769,78 @@ namespace Opm
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
getMobilityScalar(const Simulator& ebosSimulator,
const int perf,
std::vector<Scalar>& mob,
DeferredLogger& deferred_logger) const
{
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == num_components_);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = getValue(intQuants.mobility(phaseIdx));
}
if (has_solvent) {
mob[contiSolventEqIdx] = getValue(intQuants.solventMobility());
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = getValue(relativePerms[phaseIdx]) / getValue(intQuants.fluidState().viscosity(phaseIdx));
}
// this may not work if viscosity and relperms has been modified?
if constexpr (has_solvent) {
OPM_DEFLOG_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent", deferred_logger);
}
}
// modify the water mobility if polymer is present
if constexpr (has_polymer) {
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
OPM_DEFLOG_THROW(std::runtime_error, "Water is required when polymer is active", deferred_logger);
}
// for the cases related to polymer molecular weight, we assume fully mixing
// as a result, the polymer and water share the same viscosity
if constexpr (!Base::has_polymermw) {
std::vector<EvalWell> mob_eval(num_components_, {this->numWellEq_ + numEq, 0.});
updateWaterMobilityWithPolymer(ebosSimulator, perf, mob_eval, deferred_logger);
for (size_t i = 0; i < mob.size(); ++i) {
mob[i] = getValue(mob_eval[i]);
}
}
}
}
@ -639,7 +939,7 @@ namespace Opm
for (int perf = 0; perf < number_of_perforations_; ++perf) {
std::vector<EvalWell> mob(num_components_, {this->numWellEq_ + numEq, 0.0});
// TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration
getMobility(ebos_simulator, perf, mob, deferred_logger);
getMobilityEval(ebos_simulator, perf, mob, deferred_logger);
const int cell_idx = well_cells_[perf];
const auto& int_quantities = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
@ -1090,7 +1390,7 @@ namespace Opm
};
std::vector<EvalWell> mob(num_components_, {this->numWellEq_ + numEq, 0.0});
getMobility(ebosSimulator, static_cast<int>(subsetPerfID), mob, deferred_logger);
getMobilityEval(ebosSimulator, static_cast<int>(subsetPerfID), mob, deferred_logger);
const auto& fs = fluidState(subsetPerfID);
setToZero(connPI);
@ -1349,19 +1649,17 @@ namespace Opm
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
// flux for each perforation
std::vector<EvalWell> mob(num_components_, {this->numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob, deferred_logger);
std::vector<Scalar> mob(num_components_, 0.);
getMobilityScalar(ebosSimulator, perf, mob, deferred_logger);
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
std::vector<EvalWell> cq_s(num_components_, {this->numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(intQuants, mob, EvalWell(this->numWellEq_ + numEq, bhp), Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
std::vector<Scalar> cq_s(num_components_, 0.);
computePerfRateScalar(intQuants, mob, bhp, Tw, perf, allow_cf,
cq_s, deferred_logger);
for(int p = 0; p < np; ++p) {
well_flux[ebosCompIdxToFlowCompIdx(p)] += cq_s[p].value();
well_flux[ebosCompIdxToFlowCompIdx(p)] += cq_s[p];
}
}
this->parallel_well_info_.communication().sum(well_flux.data(), well_flux.size());
@ -1657,8 +1955,8 @@ namespace Opm
double perf_vap_oil_rate = 0.;
double trans_mult = ebos_simulator.problem().template rockCompTransMultiplier<double>(int_quant, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
computePerfRate(int_quant, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
computePerfRateEval(int_quant, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
// TODO: make area a member
const double area = 2 * M_PI * perf_rep_radius_[perf] * perf_length_[perf];
const auto& material_law_manager = ebos_simulator.problem().materialLawManager();
@ -2081,35 +2379,29 @@ namespace Opm
DeferredLogger& deferred_logger) const
{
// Calculate the rates that follow from the current primary variables.
std::vector<EvalWell> well_q_s(num_components_, {this->numWellEq_ + numEq, 0.});
std::vector<double> well_q_s(num_components_, 0.);
const EvalWell& bhp = this->getBhp();
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<EvalWell> mob(num_components_, {this->numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob, deferred_logger);
std::vector<EvalWell> cq_s(num_components_, {this->numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
std::vector<Scalar> mob(num_components_, 0.);
getMobilityScalar(ebosSimulator, perf, mob, deferred_logger);
std::vector<Scalar> cq_s(num_components_, 0.);
double trans_mult = ebosSimulator.problem().template rockCompTransMultiplier<double>(intQuants, cell_idx);
const double Tw = well_index_[perf] * trans_mult;
computePerfRate(intQuants, mob, bhp, Tw, perf, allow_cf,
cq_s, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
computePerfRateScalar(intQuants, mob, bhp.value(), Tw, perf, allow_cf,
cq_s, deferred_logger);
for (int comp = 0; comp < num_components_; ++comp) {
well_q_s[comp] += cq_s[comp];
}
}
std::vector<double> well_q_s_noderiv(well_q_s.size());
for (int comp = 0; comp < num_components_; ++comp) {
well_q_s_noderiv[comp] = well_q_s[comp].value();
}
const auto& comm = this->parallel_well_info_.communication();
if (comm.size() > 1)
{
comm.sum(well_q_s_noderiv.data(), well_q_s_noderiv.size());
comm.sum(well_q_s.data(), well_q_s.size());
}
return well_q_s_noderiv;
return well_q_s;
}