a draft version for the linear geomery WINJDAM

This commit is contained in:
Kai Bao 2023-01-01 23:51:41 +01:00
parent 5e4cb8aeed
commit aa5062683d
6 changed files with 58 additions and 11 deletions

View File

@ -310,6 +310,14 @@ namespace Opm {
well->setGuideRate(&guideRate_); well->setGuideRate(&guideRate_);
} }
for (auto& well : well_container_) {
if (well->isInjector()) {
const auto& ws = this->wellState().well(well->indexOfWell());
const auto& water_inj_volume = ws.perf_data.water_injection_volume;
well->updateInjFCMult(water_inj_volume);
}
}
// Close completions due to economic reasons // Close completions due to economic reasons
for (auto& well : well_container_) { for (auto& well : well_container_) {
well->closeCompletions(wellTestState()); well->closeCompletions(wellTestState());

View File

@ -239,6 +239,10 @@ namespace Opm
if (this->isInjector()) { if (this->isInjector()) {
drawdown += skin_pressure; drawdown += skin_pressure;
} }
const double effectiveTw = this->isInjector() ? this->inj_fc_multiplier_[perf] * Tw : Tw;
if (this->isInjector()) {
std::cout << " well " << this->name() << " perf " << perf << " Tw " << Tw << " scaling " << this->inj_fc_multiplier_[perf] << " effectiveTw " << effectiveTw << std::endl;
}
// producing perforations // producing perforations
if (drawdown > 0) { if (drawdown > 0) {
@ -249,7 +253,7 @@ namespace Opm
// compute component volumetric rates at standard conditions // compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < this->numComponents(); ++componentIdx) { for (int componentIdx = 0; componentIdx < this->numComponents(); ++componentIdx) {
const Value cq_p = - Tw * (mob[componentIdx] * drawdown); const Value cq_p = - effectiveTw * (mob[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p; cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
} }
@ -271,7 +275,7 @@ namespace Opm
} }
// injection perforations total volume rates // injection perforations total volume rates
const Value cqt_i = - Tw * (total_mob_dense * drawdown); const Value cqt_i = - effectiveTw * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions // compute volume ratio between connection at standard conditions
Value volumeRatio = bhp * 0.0; // initialize it with the correct type Value volumeRatio = bhp * 0.0; // initialize it with the correct type

View File

@ -304,6 +304,7 @@ public:
virtual void updateWaterThroughput(const double dt, WellState& well_state) const = 0; virtual void updateWaterThroughput(const double dt, WellState& well_state) const = 0;
void updateWaterInjectionVolume(const double dt, WellState& well_state) const; void updateWaterInjectionVolume(const double dt, WellState& well_state) const;
void updateInjFCMult(const std::vector<double>& water_inj_volume);
/// Compute well rates based on current reservoir conditions and well variables. /// Compute well rates based on current reservoir conditions and well variables.
/// Used in updateWellStateRates(). /// Used in updateWellStateRates().

View File

@ -97,6 +97,11 @@ WellInterfaceGeneric::WellInterfaceGeneric(const Well& well,
saturation_table_number_[perf] = pd.satnum_id; saturation_table_number_[perf] = pd.satnum_id;
++perf; ++perf;
} }
if (this->isInjector()) {
inj_fc_multiplier_.resize(number_of_perforations_, 1.0);
// TODO: if the injection concentration changes, the filter cake thickness can be different, need to find a general way
// can apply to the a few different ways of handling the modeling of filter cake
}
} }
// initialization of the completions mapping // initialization of the completions mapping

View File

@ -369,6 +369,12 @@ protected:
// which intends to keep the fracturing open // which intends to keep the fracturing open
std::vector<double> prev_inj_multiplier_; std::vector<double> prev_inj_multiplier_;
// TODO: remove the mutable
// the multiplier due to injection filtration cake
mutable std::vector<double> inj_fc_multiplier_;
// TODO: currently, the water_injection_volume is in PerfData, maybe we should move it here
double well_efficiency_factor_; double well_efficiency_factor_;
const VFPProperties* vfp_properties_; const VFPProperties* vfp_properties_;
const GuideRate* guide_rate_; const GuideRate* guide_rate_;

View File

@ -1372,12 +1372,16 @@ namespace Opm
// TODO: this function does not need to be in the WellInterface class?
template<typename TypeTag> template<typename TypeTag>
void WellInterface<TypeTag>::updateWaterInjectionVolume(const double dt, WellState& well_state) const void WellInterface<TypeTag>::updateWaterInjectionVolume(const double dt, WellState& well_state) const
{ {
if (!this->isInjector()) {
return;
}
// TODO: gonna abuse this function for calculation the skin factors // TODO: gonna abuse this function for calculation the skin factors
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
return; return;
} }
// it is currently used for the filter cake modeling related to formation damage study // it is currently used for the filter cake modeling related to formation damage study
auto& ws = well_state.well(this->index_of_well_); auto& ws = well_state.well(this->index_of_well_);
@ -1392,13 +1396,13 @@ namespace Opm
// not considering the production water // not considering the production water
const double water_rates = std::max(0., connection_rates[perf * np + water_index]); const double water_rates = std::max(0., connection_rates[perf * np + water_index]);
water_injection_volume[perf] += water_rates * dt; water_injection_volume[perf] += water_rates * dt;
std::cout << " well " << this->name() << " perf " << perf << " injection volume " << water_injection_volume[perf] << std::endl; std::cout << " well " << this->name() << " perf " << perf << " injection volume "
<< water_injection_volume[perf] << std::endl;
} }
}
// TODO: if the injection concentration changes, the filter cake thickness can be different, need to find a general way template<typename TypeTag>
// can apply to the a few different ways of handling the modeling of filter cake void WellInterface<TypeTag>::updateInjFCMult(const std::vector<double>& water_inj_volume) {
// the filter injecting concentration, the porosity, the area size // the filter injecting concentration, the porosity, the area size
// we also need the permeability of the formation, and rw and some other information // we also need the permeability of the formation, and rw and some other information
for (int perf = 0; perf < this->number_of_perforations_; ++perf) { for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
@ -1410,16 +1414,35 @@ namespace Opm
if (filter_cake.geometry == Connection::FilterCakeGeometry::LINEAR) { if (filter_cake.geometry == Connection::FilterCakeGeometry::LINEAR) {
const double poro = filter_cake.poro; const double poro = filter_cake.poro;
const double perm = filter_cake.perm; const double perm = filter_cake.perm;
// TODO: do we want to use this rw?
const double rw = connection.getFilterCakeRadius(); const double rw = connection.getFilterCakeRadius();
const double area = connection.getFilterCakeArea(); const double area = connection.getFilterCakeArea();
const double conc = this->well_ecl_.getFilterConc(); const double conc = this->well_ecl_.getFilterConc();
const double thickness = water_injection_volume[perf] * conc / (area*(1.-poro)); const double thickness = water_inj_volume[perf] * conc / (area*(1.-poro));
std::cout << " perf " << perf << " water_injection_volume " << water_injection_volume[perf] << " conc " << conc std::cout << " perf " << perf << " water_injection_volume " << water_inj_volume[perf] << " conc " << conc
<< " area " << area << " poro " << poro << " thickness " << thickness << std::endl; << " area " << area << " poro " << poro << " thickness " << thickness << std::endl;
double skin_factor = 0.; // TODO: this formulation might not apply for different situation
// but we are using this form just for first prototype
const double K = connection.Kh() / connection.connectionLength();
const double skin_factor = thickness / rw * K / perm;
std::cout << " K " << K << " skin_factor " << skin_factor << std::endl;
const auto cr0 = connection.r0();
const auto crw = connection.rw();
const auto cskinfactor = connection.skinFactor();
const auto denom = std::log(cr0 / std::min(crw, cr0)) + cskinfactor;
const auto denom2 = std::log(cr0 / std::min(crw, cr0)) + cskinfactor + skin_factor;
const auto scaling = denom / denom2;
std::cout << " scaling will be " << scaling << std::endl;
this->inj_fc_multiplier_[perf] = scaling;
std::cout << " well " << this->name() << " perf " << perf << " inj_fc_scaling " << this->inj_fc_multiplier_[perf] << std::endl;
// TODO: basically, rescale the well connectivity index with the following formulation
// CF = angle * Kh / (std::log(r0 / std::min(rw, r0)) + skin_factor);
} }
} else {
this->inj_fc_multiplier_[perf] = 1.0;
} }
} }
} }
} // namespace Opm } // namespace Opm