EclipseWriter: allow for writing of substeps in addition to report steps.

This commit is contained in:
Robert K 2014-12-10 11:20:29 +01:00
parent 1c5e4e9ef3
commit aa9fe2a631
2 changed files with 107 additions and 30 deletions

View File

@ -6,33 +6,66 @@
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/simulator/TimeStepControlInterface.hpp>
namespace Opm {
// AdaptiveTimeStepping
// AdaptiveTimeStepping
//---------------------
class AdaptiveTimeStepping
{
public:
public:
//! \brief contructor taking parameter object
AdaptiveTimeStepping( const parameter::ParameterGroup& param );
/** \brief step method that acts like the solver::step method
in a sub cycle of time steps
in a sub cycle of time steps
\param solver solver object that must implement a method step( dt, state, well_state )
\param state current state of the solution variables
\param state current state of the solution variables
\param well_state additional well state object
\param time current simulation time
\param timestep current time step length that is to be sub cycled
*/
\param timestep current time step length that is to be sub cycled
*/
template <class Solver, class State, class WellState>
void step( Solver& solver, State& state, WellState& well_state,
const double time, const double timestep );
/** \brief step method that acts like the solver::step method
in a sub cycle of time steps
\param timer simulator timer providing time and timestep
\param solver solver object that must implement a method step( dt, state, well_state )
\param state current state of the solution variables
\param well_state additional well state object
*/
template <class Solver, class State, class WellState>
void step( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state );
/** \brief step method that acts like the solver::step method
in a sub cycle of time steps
\param timer simulator timer providing time and timestep
\param solver solver object that must implement a method step( dt, state, well_state )
\param state current state of the solution variables
\param well_state additional well state object
\param outputWriter writer object to write sub steps
*/
template <class Solver, class State, class WellState>
void step( const SimulatorTimer& timer,
Solver& solver, State& state, WellState& well_state,
OutputWriter& outputWriter );
protected:
template <class Solver, class State, class WellState>
void stepImpl( Solver& solver, State& state, WellState& well_state,
const double time, const double timestep,
const SimulatorTimer* timer, OutputWriter* outputWriter);
typedef std::unique_ptr< TimeStepControlInterface > TimeStepControlType;
TimeStepControlType timeStepControl_; //!< time step control object
@ -40,8 +73,8 @@ namespace Opm {
const double restart_factor_; //!< factor to multiply time step with when solver fails to converge
const double growth_factor_; //!< factor to multiply time step when solver recovered from failed convergence
const int solver_restart_max_; //!< how many restart of solver are allowed
const bool solver_verbose_; //!< solver verbosity
const bool timestep_verbose_; //!< timestep verbosity
const bool solver_verbose_; //!< solver verbosity
const bool timestep_verbose_; //!< timestep verbosity
double last_timestep_; //!< size of last timestep
};
}

View File

@ -5,15 +5,16 @@
#include <string>
#include <utility>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/simulator/AdaptiveSimulatorTimer.hpp>
#include <opm/core/simulator/PIDTimeStepControl.hpp>
namespace Opm {
// AdaptiveTimeStepping
// AdaptiveTimeStepping
//---------------------
AdaptiveTimeStepping::AdaptiveTimeStepping( const parameter::ParameterGroup& param )
AdaptiveTimeStepping::AdaptiveTimeStepping( const parameter::ParameterGroup& param )
: timeStepControl_()
, initial_fraction_( param.getDefault("solver.initialfraction", double(0.25) ) )
, restart_factor_( param.getDefault("solver.restartfactor", double(0.1) ) )
@ -25,17 +26,17 @@ namespace Opm {
{
// valid are "pid" and "pid+iteration"
std::string control = param.getDefault("timestep.control", std::string("pid") );
const double tol = param.getDefault("timestep.control.tol", double(1e-3) );
if( control == "pid" ) {
timeStepControl_ = TimeStepControlType( new PIDTimeStepControl( tol ) );
}
else if ( control == "pid+iteration" )
else if ( control == "pid+iteration" )
{
const int iterations = param.getDefault("timestep.control.targetiteration", int(25) );
timeStepControl_ = TimeStepControlType( new PIDAndIterationCountTimeStepControl( iterations, tol ) );
}
else
else
OPM_THROW(std::runtime_error,"Unsupported time step control selected "<< control );
// make sure growth factor is something reasonable
@ -43,10 +44,44 @@ namespace Opm {
}
template <class Solver, class State, class WellState>
void AdaptiveTimeStepping::
step( const SimulatorTimer& simulatorTimer, Solver& solver, State& state, WellState& well_state )
{
const double time = simulatorTimer.simulationTimeElapsed();
const double timestep = simulatorTimer.currentStepLength();
step( solver, state, well_state, time, timestep );
}
template <class Solver, class State, class WellState>
void AdaptiveTimeStepping::
step( const SimulatorTimer& simulatorTimer, Solver& solver, State& state, WellState& well_state,
OutputWriter& outputWriter )
{
const double time = simulatorTimer.simulationTimeElapsed();
const double timestep = simulatorTimer.currentStepLength();
stepImpl( solver, state, well_state, time, timestep, &simulatorTimer, &outputWriter );
}
// implementation of the step method
template <class Solver, class State, class WellState>
void AdaptiveTimeStepping::
step( Solver& solver, State& state, WellState& well_state,
const double time, const double timestep )
{
stepImpl( solver, state, well_state, time, timestep,
(SimulatorTimer *) 0, (OutputWriter *) 0 );
}
// implementation of the step method
template <class Solver, class State, class WState>
void AdaptiveTimeStepping::
stepImpl( Solver& solver, State& state, WState& well_state,
const double time, const double timestep,
const SimulatorTimer* simulatorTimer,
OutputWriter* outputWriter )
{
// init last time step as a fraction of the given time step
if( last_timestep_ < 0 ) {
@ -54,26 +89,26 @@ namespace Opm {
}
// create adaptive step timer with previously used sub step size
AdaptiveSimulatorTimer timer( time, time+timestep, last_timestep_ );
AdaptiveSimulatorTimer substepTimer( time, time+timestep, last_timestep_ );
// copy states in case solver has to be restarted (to be revised)
State last_state( state );
WellState last_well_state( well_state );
State last_state( state );
WState last_well_state( well_state );
// counter for solver restarts
int restarts = 0;
// sub step time loop
while( ! timer.done() )
while( ! substepTimer.done() )
{
// get current delta t
const double dt = timer.currentStepLength() ;
const double dt = substepTimer.currentStepLength() ;
// initialize time step control in case current state is needed later
timeStepControl_->initialize( state );
int linearIterations = -1;
try {
try {
// (linearIterations < 0 means on convergence in solver)
linearIterations = solver.step( dt, state, well_state);
@ -95,7 +130,7 @@ namespace Opm {
if( linearIterations >= 0 )
{
// advance by current dt
++timer;
++substepTimer;
// compute new time step estimate
double dtEstimate =
@ -109,14 +144,23 @@ namespace Opm {
}
if( timestep_verbose_ )
{
std::cout << "Substep[ " << substepTimer.currentStepNum() << " ] " << unit::convert::to(substepTimer.simulationTimeElapsed(),unit::day) << std::endl;
std::cout << "Suggested time step size = " << unit::convert::to(dtEstimate, unit::day) << " (days)" << std::endl;
}
// set new time step length
timer.provideTimeStepEstimate( dtEstimate );
substepTimer.provideTimeStepEstimate( dtEstimate );
// update states
// update states
last_state = state ;
last_well_state = well_state;
// write data if outputWriter was provided
if( outputWriter ) {
assert( simulatorTimer );
outputWriter->writeTimeStep( *simulatorTimer, substepTimer, state, well_state );
}
}
else // in case of no convergence (linearIterations < 0)
{
@ -127,12 +171,12 @@ namespace Opm {
const double newTimeStep = restart_factor_ * dt;
// we need to revise this
timer.provideTimeStepEstimate( newTimeStep );
if( solver_verbose_ )
substepTimer.provideTimeStepEstimate( newTimeStep );
if( solver_verbose_ )
std::cerr << "Solver convergence failed, restarting solver with new time step ("
<< unit::convert::to( newTimeStep, unit::day ) <<" days)." << std::endl;
// reset states
// reset states
state = last_state;
well_state = last_well_state;
@ -142,10 +186,10 @@ namespace Opm {
// store last small time step for next reportStep
last_timestep_ = timer.suggestedAverage();
last_timestep_ = substepTimer.suggestedAverage();
if( timestep_verbose_ )
{
timer.report( std::cout );
substepTimer.report( std::cout );
std::cout << "Last suggested step size = " << unit::convert::to( last_timestep_, unit::day ) << " (days)" << std::endl;
}