mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge branch 'master' into gravity-in-wells
This commit is contained in:
commit
ab71ea4780
177
examples/compute_tof_from_files.cpp
Normal file
177
examples/compute_tof_from_files.cpp
Normal file
@ -0,0 +1,177 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#if HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif // HAVE_CONFIG_H
|
||||
|
||||
#include <opm/core/pressure/FlowBCManager.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/GridManager.hpp>
|
||||
#include <opm/core/newwells.h>
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/initState.hpp>
|
||||
#include <opm/core/utility/StopWatch.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
|
||||
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
|
||||
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/pressure/IncompTpfa.hpp>
|
||||
#include <opm/core/transport/reorder/TransportModelTracerTof.hpp>
|
||||
#include <opm/core/transport/reorder/TransportModelTracerTofDiscGal.hpp>
|
||||
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
#include <boost/filesystem.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
#include <iterator>
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
|
||||
{
|
||||
if (param.anyUnused()) {
|
||||
std::cout << "-------------------- Warning: unused parameters: --------------------\n";
|
||||
param.displayUsage();
|
||||
std::cout << "-------------------------------------------------------------------------" << std::endl;
|
||||
}
|
||||
}
|
||||
} // anon namespace
|
||||
|
||||
|
||||
|
||||
// ----------------- Main program -----------------
|
||||
int
|
||||
main(int argc, char** argv)
|
||||
{
|
||||
using namespace Opm;
|
||||
|
||||
parameter::ParameterGroup param(argc, argv, false);
|
||||
|
||||
// Read grid.
|
||||
GridManager grid_manager(param.get<std::string>("grid_filename"));
|
||||
const UnstructuredGrid& grid = *grid_manager.c_grid();
|
||||
|
||||
// Read porosity, compute pore volume.
|
||||
std::vector<double> porevol;
|
||||
{
|
||||
std::ifstream poro_stream(param.get<std::string>("poro_filename").c_str());
|
||||
std::istream_iterator<double> beg(poro_stream);
|
||||
std::istream_iterator<double> end;
|
||||
porevol.assign(beg, end); // Now contains poro.
|
||||
if (int(porevol.size()) != grid.number_of_cells) {
|
||||
THROW("Size of porosity field differs from number of cells.");
|
||||
}
|
||||
for (int i = 0; i < grid.number_of_cells; ++i) {
|
||||
porevol[i] *= grid.cell_volumes[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Read flux.
|
||||
std::vector<double> flux;
|
||||
{
|
||||
std::ifstream flux_stream(param.get<std::string>("flux_filename").c_str());
|
||||
std::istream_iterator<double> beg(flux_stream);
|
||||
std::istream_iterator<double> end;
|
||||
flux.assign(beg, end);
|
||||
if (int(flux.size()) != grid.number_of_faces) {
|
||||
THROW("Size of flux field differs from number of faces.");
|
||||
}
|
||||
}
|
||||
|
||||
// Read source terms.
|
||||
std::vector<double> src;
|
||||
{
|
||||
std::ifstream src_stream(param.get<std::string>("src_filename").c_str());
|
||||
std::istream_iterator<double> beg(src_stream);
|
||||
std::istream_iterator<double> end;
|
||||
src.assign(beg, end);
|
||||
if (int(src.size()) != grid.number_of_cells) {
|
||||
THROW("Size of source term field differs from number of cells.");
|
||||
}
|
||||
}
|
||||
|
||||
// Choice of tof solver.
|
||||
bool use_dg = param.getDefault("use_dg", false);
|
||||
int dg_degree = -1;
|
||||
bool use_cvi = false;
|
||||
bool use_multidim_upwind = false;
|
||||
if (use_dg) {
|
||||
dg_degree = param.getDefault("dg_degree", 0);
|
||||
use_cvi = param.getDefault("use_cvi", false);
|
||||
} else {
|
||||
use_multidim_upwind = param.getDefault("use_multidim_upwind", false);
|
||||
}
|
||||
|
||||
// Write parameters used for later reference.
|
||||
bool output = param.getDefault("output", true);
|
||||
std::ofstream epoch_os;
|
||||
std::string output_dir;
|
||||
if (output) {
|
||||
output_dir =
|
||||
param.getDefault("output_dir", std::string("output"));
|
||||
boost::filesystem::path fpath(output_dir);
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
param.writeParam(output_dir + "/simulation.param");
|
||||
}
|
||||
|
||||
// Issue a warning if any parameters were unused.
|
||||
warnIfUnusedParams(param);
|
||||
|
||||
// Solve time-of-flight.
|
||||
Opm::time::StopWatch transport_timer;
|
||||
transport_timer.start();
|
||||
std::vector<double> tof;
|
||||
if (use_dg) {
|
||||
Opm::TransportModelTracerTofDiscGal tofsolver(grid, use_cvi);
|
||||
tofsolver.solveTof(&flux[0], &porevol[0], &src[0], dg_degree, tof);
|
||||
} else {
|
||||
Opm::TransportModelTracerTof tofsolver(grid, use_multidim_upwind);
|
||||
tofsolver.solveTof(&flux[0], &porevol[0], &src[0], tof);
|
||||
}
|
||||
transport_timer.stop();
|
||||
double tt = transport_timer.secsSinceStart();
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
|
||||
// Output.
|
||||
if (output) {
|
||||
std::string tof_filename = output_dir + "/tof.txt";
|
||||
std::ofstream tof_stream(tof_filename.c_str());
|
||||
tof_stream.precision(16);
|
||||
std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tof_stream, "\n"));
|
||||
}
|
||||
}
|
@ -30,8 +30,9 @@ namespace Opm
|
||||
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
TransportModelTracerTof::TransportModelTracerTof(const UnstructuredGrid& grid)
|
||||
: grid_(grid)
|
||||
TransportModelTracerTof::TransportModelTracerTof(const UnstructuredGrid& grid,
|
||||
const bool use_multidim_upwind)
|
||||
: grid_(grid), use_multidim_upwind_(use_multidim_upwind)
|
||||
{
|
||||
}
|
||||
|
||||
@ -63,6 +64,10 @@ namespace Opm
|
||||
tof.resize(grid_.number_of_cells);
|
||||
std::fill(tof.begin(), tof.end(), 0.0);
|
||||
tof_ = &tof[0];
|
||||
if (use_multidim_upwind_) {
|
||||
face_tof_.resize(grid_.number_of_faces);
|
||||
std::fill(face_tof_.begin(), face_tof_.end(), 0.0);
|
||||
}
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
}
|
||||
|
||||
@ -71,6 +76,10 @@ namespace Opm
|
||||
|
||||
void TransportModelTracerTof::solveSingleCell(const int cell)
|
||||
{
|
||||
if (use_multidim_upwind_) {
|
||||
solveSingleCellMultidimUpwind(cell);
|
||||
return;
|
||||
}
|
||||
// Compute flux terms.
|
||||
// Sources have zero tof, and therefore do not contribute
|
||||
// to upwind_term. Sinks on the other hand, must be added
|
||||
@ -94,7 +103,7 @@ namespace Opm
|
||||
// Add flux to upwind_term or downwind_flux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
upwind_term += flux*tof_[other];
|
||||
upwind_term += flux*tof_[other];
|
||||
} else {
|
||||
downwind_flux += flux;
|
||||
}
|
||||
@ -108,6 +117,60 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTof::solveSingleCellMultidimUpwind(const int cell)
|
||||
{
|
||||
// Compute flux terms.
|
||||
// Sources have zero tof, and therefore do not contribute
|
||||
// to upwind_term. Sinks on the other hand, must be added
|
||||
// to the downwind terms (note sign change resulting from
|
||||
// different sign conventions: pos. source is injection,
|
||||
// pos. flux is outflow).
|
||||
double upwind_term = 0.0;
|
||||
double downwind_term_cell_factor = std::max(-source_[cell], 0.0);
|
||||
double downwind_term_face = 0.0;
|
||||
for (int i = grid_.cell_facepos[cell]; i < grid_.cell_facepos[cell+1]; ++i) {
|
||||
int f = grid_.cell_faces[i];
|
||||
double flux;
|
||||
int other;
|
||||
// Compute cell flux
|
||||
if (cell == grid_.face_cells[2*f]) {
|
||||
flux = darcyflux_[f];
|
||||
other = grid_.face_cells[2*f+1];
|
||||
} else {
|
||||
flux =-darcyflux_[f];
|
||||
other = grid_.face_cells[2*f];
|
||||
}
|
||||
// Add flux to upwind_term or downwind_flux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
upwind_term += flux*face_tof_[f];
|
||||
} else {
|
||||
double fterm, cterm_factor;
|
||||
multidimUpwindTerms(f, cell, fterm, cterm_factor);
|
||||
downwind_term_face += fterm*flux;
|
||||
downwind_term_cell_factor += cterm_factor*flux;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute tof for cell.
|
||||
tof_[cell] = (porevolume_[cell] - upwind_term - downwind_term_face)/downwind_term_cell_factor; // }
|
||||
|
||||
// Compute tof for downwind faces.
|
||||
for (int i = grid_.cell_facepos[cell]; i < grid_.cell_facepos[cell+1]; ++i) {
|
||||
int f = grid_.cell_faces[i];
|
||||
const double outflux_f = (grid_.face_cells[2*f] == cell) ? darcyflux_[f] : -darcyflux_[f];
|
||||
if (outflux_f > 0.0) {
|
||||
double fterm, cterm_factor;
|
||||
multidimUpwindTerms(f, cell, fterm, cterm_factor);
|
||||
face_tof_[f] = fterm + cterm_factor*tof_[cell];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTof::solveMultiCell(const int num_cells, const int* cells)
|
||||
{
|
||||
std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl;
|
||||
@ -119,4 +182,77 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
// Assumes that face_tof_[f] is known for all upstream faces f of upwind_cell.
|
||||
// Assumes that darcyflux_[face] is != 0.0.
|
||||
// This function returns factors to compute the tof for 'face':
|
||||
// tof(face) = face_term + cell_term_factor*tof(upwind_cell).
|
||||
// It is not computed here, since these factors are needed to
|
||||
// compute the tof(upwind_cell) itself.
|
||||
void TransportModelTracerTof::multidimUpwindTerms(const int face,
|
||||
const int upwind_cell,
|
||||
double& face_term,
|
||||
double& cell_term_factor) const
|
||||
{
|
||||
// Implements multidim upwind according to
|
||||
// "Multidimensional upstream weighting for multiphase transport on general grids"
|
||||
// by Keilegavlen, Kozdon, Mallison.
|
||||
// However, that article does not give a 3d extension other than noting that using
|
||||
// multidimensional upwinding in the XY-plane and not in the Z-direction may be
|
||||
// a good idea. We have here attempted some generalization, by looking at all
|
||||
// face-neighbours across edges as upwind candidates, and giving them all uniform weight.
|
||||
// This will over-weight the immediate upstream cell value in an extruded 2d grid with
|
||||
// one layer (top and bottom no-flow faces will enter the computation) compared to the
|
||||
// original 2d case. Improvements are welcome.
|
||||
|
||||
// Identify the adjacent faces of the upwind cell.
|
||||
const int* face_nodes_beg = grid_.face_nodes + grid_.face_nodepos[face];
|
||||
const int* face_nodes_end = grid_.face_nodes + grid_.face_nodepos[face + 1];
|
||||
ASSERT(face_nodes_end - face_nodes_beg == 2 || grid_.dimensions != 2);
|
||||
adj_faces_.clear();
|
||||
for (int hf = grid_.cell_facepos[upwind_cell]; hf < grid_.cell_facepos[upwind_cell + 1]; ++hf) {
|
||||
const int f = grid_.cell_faces[hf];
|
||||
if (f != face) {
|
||||
const int* f_nodes_beg = grid_.face_nodes + grid_.face_nodepos[f];
|
||||
const int* f_nodes_end = grid_.face_nodes + grid_.face_nodepos[f + 1];
|
||||
// Find out how many vertices they have in common.
|
||||
// Using simple linear searches since sets are small.
|
||||
int num_common = 0;
|
||||
for (const int* f_iter = f_nodes_beg; f_iter < f_nodes_end; ++f_iter) {
|
||||
num_common += std::count(face_nodes_beg, face_nodes_end, *f_iter);
|
||||
}
|
||||
if (num_common == grid_.dimensions - 1) {
|
||||
// Neighbours over an edge (3d) or vertex (2d).
|
||||
adj_faces_.push_back(f);
|
||||
} else {
|
||||
ASSERT(num_common == 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Indentify adjacent faces with inflows, compute omega_star, omega,
|
||||
// add up contributions.
|
||||
const int num_adj = adj_faces_.size();
|
||||
ASSERT(num_adj == face_nodes_end - face_nodes_beg);
|
||||
const double flux_face = std::fabs(darcyflux_[face]);
|
||||
face_term = 0.0;
|
||||
cell_term_factor = 0.0;
|
||||
for (int ii = 0; ii < num_adj; ++ii) {
|
||||
const int f = adj_faces_[ii];
|
||||
const double influx_f = (grid_.face_cells[2*f] == upwind_cell) ? -darcyflux_[f] : darcyflux_[f];
|
||||
const double omega_star = influx_f/flux_face;
|
||||
// SPU
|
||||
// const double omega = 0.0;
|
||||
// TMU
|
||||
// const double omega = omega_star > 0.0 ? std::min(omega_star, 1.0) : 0.0;
|
||||
// SMU
|
||||
const double omega = omega_star > 0.0 ? omega_star/(1.0 + omega_star) : 0.0;
|
||||
face_term += omega*face_tof_[f];
|
||||
cell_term_factor += (1.0 - omega);
|
||||
}
|
||||
face_term /= double(num_adj);
|
||||
cell_term_factor /= double(num_adj);
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -43,7 +43,9 @@ namespace Opm
|
||||
public:
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
TransportModelTracerTof(const UnstructuredGrid& grid);
|
||||
/// \param[in] use_multidim_upwind If true, use multidimensional tof upwinding.
|
||||
TransportModelTracerTof(const UnstructuredGrid& grid,
|
||||
const bool use_multidim_upwind = false);
|
||||
|
||||
/// Solve for time-of-flight.
|
||||
/// \param[in] darcyflux Array of signed face fluxes.
|
||||
@ -59,14 +61,21 @@ namespace Opm
|
||||
|
||||
private:
|
||||
virtual void solveSingleCell(const int cell);
|
||||
void solveSingleCellMultidimUpwind(const int cell);
|
||||
virtual void solveMultiCell(const int num_cells, const int* cells);
|
||||
|
||||
void multidimUpwindTerms(const int face, const int upwind_cell,
|
||||
double& face_term, double& cell_term_factor) const;
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const double* darcyflux_; // one flux per grid face
|
||||
const double* porevolume_; // one volume per cell
|
||||
const double* source_; // one volumetric source term per cell
|
||||
double* tof_;
|
||||
bool use_multidim_upwind_;
|
||||
std::vector<double> face_tof_; // For multidim upwind face tofs.
|
||||
mutable std::vector<int> adj_faces_; // For multidim upwind logic.
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user