Merge branch 'OPM:master' into update-well-state-with-target-modifications

This commit is contained in:
Stein Krogstad 2025-02-14 16:36:29 +01:00 committed by GitHub
commit ad0c6c4c53
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
69 changed files with 1631 additions and 549 deletions

View File

@ -634,6 +634,7 @@ opm_add_test(flowexp_blackoil
set(FLOWEXP_COMPONENTS_SOURCES)
foreach(component IN LISTS OPM_COMPILE_COMPONENTS)
list(APPEND FLOWEXP_COMPONENTS_SOURCES flowexperimental/comp/flowexp_comp${component}.cpp)
list(APPEND FLOWEXP_COMPONENTS_SOURCES flowexperimental/comp/flowexp_comp${component}_2p.cpp)
endforeach()
opm_add_test(flowexp_comp

View File

@ -90,6 +90,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/flow/BlackoilModelParameters.cpp
opm/simulators/flow/BlackoilModelConvergenceMonitor.cpp
opm/simulators/flow/CollectDataOnIORank.cpp
opm/simulators/flow/CompositionalContainer.cpp
opm/simulators/flow/ConvergenceOutputConfiguration.cpp
opm/simulators/flow/EclGenericWriter.cpp
opm/simulators/flow/ExtboContainer.cpp
@ -119,6 +120,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/flow/SimulatorReportBanners.cpp
opm/simulators/flow/SimulatorSerializer.cpp
opm/simulators/flow/SolutionContainers.cpp
opm/simulators/flow/TracerContainer.cpp
opm/simulators/flow/Transmissibility.cpp
opm/simulators/flow/ValidationFunctions.cpp
opm/simulators/flow/equil/EquilibrationHelpers.cpp
@ -821,6 +823,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/simulators/flow/BlackoilModelProperties.hpp
opm/simulators/flow/CollectDataOnIORank.hpp
opm/simulators/flow/CollectDataOnIORank_impl.hpp
opm/simulators/flow/CompositionalContainer.hpp
opm/simulators/flow/ConvergenceOutputConfiguration.hpp
opm/simulators/flow/countGlobalCells.hpp
opm/simulators/flow/CpGridVanguard.hpp
@ -878,6 +881,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/simulators/flow/SolutionContainers.hpp
opm/simulators/flow/SubDomain.hpp
opm/simulators/flow/TTagFlowProblemTPFA.hpp
opm/simulators/flow/TracerContainer.hpp
opm/simulators/flow/TracerModel.hpp
opm/simulators/flow/Transmissibility.hpp
opm/simulators/flow/Transmissibility_impl.hpp

View File

@ -38,7 +38,8 @@
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/BrooksCorey.hpp>
#include <opm/material/constraintsolvers/PTFlash.hpp>
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasWaterFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
@ -76,6 +77,14 @@ struct NumComp<TypeTag, TTag::CO2PTBaseProblem> {
static constexpr int value = 3;
};
template <class TypeTag, class MyTypeTag>
struct EnableDummyWater { using type = UndefinedProperty; };
template <class TypeTag>
struct EnableDummyWater<TypeTag, TTag::CO2PTBaseProblem> {
static constexpr bool value = true;
};
// Set the grid type: --->2D
template <class TypeTag>
struct Grid<TypeTag, TTag::CO2PTBaseProblem> { using type = Dune::YaspGrid</*dim=*/2>; };
@ -104,9 +113,10 @@ struct FluidSystem<TypeTag, TTag::CO2PTBaseProblem>
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
static constexpr int num_comp = getPropValue<TypeTag, Properties::NumComp>();
static constexpr bool enable_water = getPropValue<TypeTag, Properties::EnableDummyWater>();
public:
using type = Opm::GenericOilGasFluidSystem<Scalar, num_comp>;
using type = Opm::GenericOilGasWaterFluidSystem<Scalar, num_comp, enable_water>;
};
// Set the material Law
@ -118,8 +128,8 @@ private:
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
// /*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx, // TODO
using Traits = Opm::ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
@ -195,6 +205,8 @@ class CO2PTProblem : public GetPropType<TypeTag, Properties::BaseProblem>
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { z0Idx = Indices::z0Idx };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
@ -237,6 +249,21 @@ public:
porosity_ = 0.1;
}
void initWaterPVT()
{
using WaterPvt = typename FluidSystem::WaterPvt;
std::shared_ptr<WaterPvt> waterPvt = std::make_shared<WaterPvt>();
waterPvt->setApproach(WaterPvtApproach::ConstantCompressibilityWater);
auto& ccWaterPvt = waterPvt->template getRealPvt<WaterPvtApproach::ConstantCompressibilityWater>();
ccWaterPvt.setNumRegions(/*numPvtRegions=*/1);
Scalar rhoRefW = 1037.0; // [kg]
ccWaterPvt.setReferenceDensities(/*regionIdx=*/0, /*rhoRefO=*/Scalar(0.0), /*rhoRefG=*/Scalar(0.0), rhoRefW);
ccWaterPvt.setViscosity(/*regionIdx=*/0, 9.6e-4);
ccWaterPvt.setCompressibility(/*regionIdx=*/0, 1.450377e-10);
waterPvt->initEnd();
FluidSystem::setWaterPvt(waterPvt);
}
template <class Context>
const DimVector&
gravity([[maybe_unused]]const Context& context,
@ -262,8 +289,12 @@ public:
void finishInit()
{
ParentType::finishInit();
// initialize fixed parameters; temperature, permeability, porosity
initPetrophysics();
// Initialize water pvt
initWaterPVT();
}
/*!
@ -358,8 +389,8 @@ public:
// Calculate storage terms
PrimaryVariables storageL, storageG;
this->model().globalPhaseStorage(storageL, /*phaseIdx=*/0);
this->model().globalPhaseStorage(storageG, /*phaseIdx=*/1);
this->model().globalPhaseStorage(storageL, /*phaseIdx=*/oilPhaseIdx);
this->model().globalPhaseStorage(storageG, /*phaseIdx=*/gasPhaseIdx);
// Write mass balance information for rank 0
// if (this->gridView().comm().rank() == 0) {
@ -456,12 +487,12 @@ private:
int prod = Parameters::Get<Parameters::CellsX>() - 1;
int spatialIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
ComponentVector comp;
comp[0] = Evaluation::createVariable(0.5, 1);
comp[1] = Evaluation::createVariable(0.3, 2);
comp[0] = Evaluation::createVariable(0.5, z0Idx);
comp[1] = Evaluation::createVariable(0.3, z0Idx + 1);
comp[2] = 1. - comp[0] - comp[1];
if (spatialIdx == inj) {
comp[0] = Evaluation::createVariable(0.99, 1);
comp[1] = Evaluation::createVariable(0.01 - 1e-3, 2);
comp[0] = Evaluation::createVariable(0.99, z0Idx);
comp[1] = Evaluation::createVariable(0.01 - 1e-3, z0Idx + 1);
comp[2] = 1. - comp[0] - comp[1];
}
@ -475,10 +506,11 @@ private:
if (spatialIdx == prod) {
p0 *= 0.5;
}
Evaluation p_init = Evaluation::createVariable(p0, 0);
Evaluation p_init = Evaluation::createVariable(p0, pressure0Idx);
fs.setPressure(FluidSystem::oilPhaseIdx, p_init);
fs.setPressure(FluidSystem::gasPhaseIdx, p_init);
fs.setPressure(FluidSystem::waterPhaseIdx, p_init);
fs.setTemperature(temperature_);

View File

@ -36,10 +36,13 @@
template <int compileTimeComponent>
std::tuple<bool, int>
runComponent(int runtimeComponent, int argc, char** argv)
runComponent(int runtimeComponent, bool water, int argc, char** argv)
{
if (runtimeComponent == compileTimeComponent) {
return std::make_tuple(true, Opm::dispatchFlowExpComp<compileTimeComponent>(argc, argv));
if (water)
return std::make_tuple(true, Opm::dispatchFlowExpComp<compileTimeComponent, true>(argc, argv));
else
return std::make_tuple(true, Opm::dispatchFlowExpComp<compileTimeComponent, false>(argc, argv));
}
return std::make_tuple(false, EXIT_FAILURE);
}
@ -63,18 +66,21 @@ runComponent(int runtimeComponent, int argc, char** argv)
*/
template <int currentCompileTimeComponent, int nextComponent, int... components>
std::tuple<bool, int>
runComponent(int runtimecomponent, int argc, char** argv)
runComponent(int runtimecomponent, bool water, int argc, char** argv)
{
if (currentCompileTimeComponent == runtimecomponent) {
return std::make_tuple(true, Opm::dispatchFlowExpComp<currentCompileTimeComponent>(argc, argv));
if (water)
return std::make_tuple(true, Opm::dispatchFlowExpComp<currentCompileTimeComponent, true>(argc, argv));
else
return std::make_tuple(true, Opm::dispatchFlowExpComp<currentCompileTimeComponent, false>(argc, argv));
}
return runComponent<nextComponent, components...>(runtimecomponent, argc, argv);
return runComponent<nextComponent, components...>(runtimecomponent, water, argc, argv);
}
int
main(int argc, char** argv)
{
using TypeTag = Opm::Properties::TTag::FlowExpCompProblem<0>;
using TypeTag = Opm::Properties::TTag::FlowExpCompProblem<0, true>;
Opm::registerEclTimeSteppingParameters<double>();
// At the moment, this is probably as optimal as can be.
@ -90,9 +96,11 @@ main(int argc, char** argv)
= Opm::Parser {}.parseFile(inputFilename, Opm::ParseContext {}, std::vector {Opm::Ecl::SectionType::RUNSPEC});
const auto runspec = Opm::Runspec(deck);
const auto numComps = runspec.numComps();
const auto& phases = runspec.phases();
const auto wat = phases.active(Opm::Phase::WATER);
auto [componentSupported, executionStatus]
= runComponent<OPM_COMPILE_COMPONENTS_TEMPLATE_LIST>(numComps, argc, argv);
= runComponent<OPM_COMPILE_COMPONENTS_TEMPLATE_LIST>(numComps, wat, argc, argv);
if (!componentSupported) {
fmt::print("Deck has {} components, not supported. In this build of the simulator, we support the "

View File

@ -20,7 +20,7 @@
#define FLOWEXP_COMP_HPP
#include <opm/material/constraintsolvers/PTFlash.hpp>
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasWaterFluidSystem.hpp>
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
#include <opm/models/ptflash/flashmodel.hh>
@ -39,7 +39,7 @@
// suggestTimeStep is taken from newton solver in problem.limitTimestep
namespace Opm {
template<int numComp>
template<int numComp, bool EnableWater>
int dispatchFlowExpComp(int argc, char** argv);
}
@ -47,15 +47,15 @@ int dispatchFlowExpComp(int argc, char** argv);
namespace Opm::Properties {
namespace TTag {
template<int NumComp>
template<int NumComp, bool EnableWater>
struct FlowExpCompProblem {
using InheritsFrom = std::tuple<FlowBaseProblemComp, FlashModel>;
};
}
template<class TypeTag, int NumComp>
struct SparseMatrixAdapter<TypeTag, TTag::FlowExpCompProblem<NumComp>>
template<class TypeTag, int NumComp, bool EnableWater>
struct SparseMatrixAdapter<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
@ -109,30 +109,30 @@ struct LocalLinearizerSplice<TypeTag, TTag::FlowExpCompProblem>
#endif
// Set the problem property
template <class TypeTag, int NumComp>
struct Problem<TypeTag, TTag::FlowExpCompProblem<NumComp>>
template <class TypeTag, int NumComp, bool EnableWater>
struct Problem<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>>
{
using type = FlowProblemComp<TypeTag>;
};
template<class TypeTag, int NumComp>
struct AquiferModel<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct AquiferModel<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
using type = EmptyModel<TypeTag>;
};
template<class TypeTag, int NumComp>
struct WellModel<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct WellModel<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
using type = EmptyModel<TypeTag>;
};
template<class TypeTag, int NumComp>
struct TracerModel<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct TracerModel<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
using type = EmptyModel<TypeTag>;
};
template <class TypeTag, int NumComp>
struct FlashSolver<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template <class TypeTag, int NumComp, bool EnableWater>
struct FlashSolver<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
@ -147,10 +147,18 @@ template <class TypeTag, class MyTypeTag>
struct NumComp { using type = UndefinedProperty; };
// TODO: this is unfortunate, have to check why we need to hard-code it
template <class TypeTag, int NumComp_>
struct NumComp<TypeTag, TTag::FlowExpCompProblem<NumComp_>> {
template <class TypeTag, int NumComp_, bool EnableWater_>
struct NumComp<TypeTag, TTag::FlowExpCompProblem<NumComp_, EnableWater_>> {
static constexpr int value = NumComp_;
};
template <class TypeTag, class MyTypeTag>
struct EnableDummyWater { using type = UndefinedProperty; };
template <class TypeTag, int NumComp_, bool EnableWater_>
struct EnableDummyWater<TypeTag, TTag::FlowExpCompProblem<NumComp_, EnableWater_>> {
static constexpr bool value = EnableWater_;
};
#if 0
struct Temperature { using type = UndefinedProperty; };
@ -161,26 +169,29 @@ struct Temperature { using type = UndefinedProperty; };
};
#endif
template <class TypeTag, int NumComp_>
struct FluidSystem<TypeTag, TTag::FlowExpCompProblem<NumComp_>>
template <class TypeTag, int NumComp_, bool EnableWater_>
struct FluidSystem<TypeTag, TTag::FlowExpCompProblem<NumComp_, EnableWater_>>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
static constexpr int num_comp = getPropValue<TypeTag, Properties::NumComp>();
static constexpr bool enable_water = getPropValue<TypeTag, Properties::EnableDummyWater>();
public:
using type = Opm::GenericOilGasFluidSystem<Scalar, num_comp>;
using type = Opm::GenericOilGasWaterFluidSystem<Scalar, num_comp, enable_water>;
};
template<class TypeTag, int NumComp>
struct EnableMech<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableMech<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableDisgasInWater<TypeTag, TTag::FlowExpCompProblem<NumComp>> { static constexpr bool value = false; };
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableDisgasInWater<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct Stencil<TypeTag, TTag::FlowExpCompProblem<NumComp>>
template<class TypeTag, int NumComp, bool EnableWater>
struct Stencil<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
@ -190,62 +201,62 @@ public:
using type = EcfvStencil<Scalar, GridView>;
};
template<class TypeTag, int NumComp>
struct EnableApiTracking<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableApiTracking<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableTemperature<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableTemperature<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableSaltPrecipitation<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableSaltPrecipitation<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnablePolymerMW<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnablePolymerMW<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnablePolymer<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnablePolymer<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableDispersion<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableDispersion<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableBrine<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableBrine<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableVapwat<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableVapwat<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableSolvent<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableSolvent<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableEnergy<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableEnergy<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableFoam<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableFoam<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableExtbo<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableExtbo<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};
template<class TypeTag, int NumComp>
struct EnableMICP<TypeTag, TTag::FlowExpCompProblem<NumComp>> {
template<class TypeTag, int NumComp, bool EnableWater>
struct EnableMICP<TypeTag, TTag::FlowExpCompProblem<NumComp, EnableWater>> {
static constexpr bool value = false;
};

View File

@ -28,9 +28,9 @@
namespace Opm {
template<>
int dispatchFlowExpComp<2>(int argc, char** argv)
int dispatchFlowExpComp<2, true>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<2>>(argc, argv, false);
return start<Properties::TTag::FlowExpCompProblem<2, true>>(argc, argv, false);
}
}

View File

@ -0,0 +1,36 @@
/*
Copyright 2024, SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/models/utils/start.hh>
#include <opm/simulators/flow/FlowGenericProblem_impl.hpp>
#include "flowexp_comp.hpp"
namespace Opm {
template<>
int dispatchFlowExpComp<2, false>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<2, false>>(argc, argv, false);
}
}

View File

@ -28,9 +28,9 @@
namespace Opm {
template<>
int dispatchFlowExpComp<3>(int argc, char** argv)
int dispatchFlowExpComp<3, true>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<3>>(argc, argv, false);
return start<Properties::TTag::FlowExpCompProblem<3, true>>(argc, argv, false);
}
}

View File

@ -0,0 +1,36 @@
/*
Copyright 2024, SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/models/utils/start.hh>
#include <opm/simulators/flow/FlowGenericProblem_impl.hpp>
#include "flowexp_comp.hpp"
namespace Opm {
template<>
int dispatchFlowExpComp<3, false>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<3, false>>(argc, argv, false);
}
}

View File

@ -28,9 +28,9 @@
namespace Opm {
template<>
int dispatchFlowExpComp<4>(int argc, char** argv)
int dispatchFlowExpComp<4, true>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<4>>(argc, argv, false);
return start<Properties::TTag::FlowExpCompProblem<4, true>>(argc, argv, false);
}
}

View File

@ -0,0 +1,36 @@
/*
Copyright 2024, SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/models/utils/start.hh>
#include <opm/simulators/flow/FlowGenericProblem_impl.hpp>
#include "flowexp_comp.hpp"
namespace Opm {
template<>
int dispatchFlowExpComp<4, false>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<4, false>>(argc, argv, false);
}
}

View File

@ -28,9 +28,9 @@
namespace Opm {
template<>
int dispatchFlowExpComp<5>(int argc, char** argv)
int dispatchFlowExpComp<5, true>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<5>>(argc, argv, false);
return start<Properties::TTag::FlowExpCompProblem<5, true>>(argc, argv, false);
}
}

View File

@ -0,0 +1,36 @@
/*
Copyright 2024, SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/models/utils/start.hh>
#include <opm/simulators/flow/FlowGenericProblem_impl.hpp>
#include "flowexp_comp.hpp"
namespace Opm {
template<>
int dispatchFlowExpComp<5, false>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<5, false>>(argc, argv, false);
}
}

View File

@ -28,9 +28,9 @@
namespace Opm {
template<>
int dispatchFlowExpComp<6>(int argc, char** argv)
int dispatchFlowExpComp<6, true>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<6>>(argc, argv, false);
return start<Properties::TTag::FlowExpCompProblem<6, true>>(argc, argv, false);
}
}

View File

@ -0,0 +1,36 @@
/*
Copyright 2024, SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/models/utils/start.hh>
#include <opm/simulators/flow/FlowGenericProblem_impl.hpp>
#include "flowexp_comp.hpp"
namespace Opm {
template<>
int dispatchFlowExpComp<6, false>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<6, false>>(argc, argv, false);
}
}

View File

@ -28,9 +28,9 @@
namespace Opm {
template<>
int dispatchFlowExpComp<7>(int argc, char** argv)
int dispatchFlowExpComp<7, true>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<7>>(argc, argv, false);
return start<Properties::TTag::FlowExpCompProblem<7, true>>(argc, argv, false);
}
}

View File

@ -0,0 +1,36 @@
/*
Copyright 2024, SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/models/utils/start.hh>
#include <opm/simulators/flow/FlowGenericProblem_impl.hpp>
#include "flowexp_comp.hpp"
namespace Opm {
template<>
int dispatchFlowExpComp<7, false>(int argc, char** argv)
{
return start<Properties::TTag::FlowExpCompProblem<7, false>>(argc, argv, false);
}
}

View File

@ -94,10 +94,10 @@ struct BlackOilIndices
numEnergy + numFoam + numBrine + numMICPs;
//! \brief returns the index of "active" component
static constexpr unsigned canonicalToActiveComponentIndex(unsigned compIdx)
static constexpr int canonicalToActiveComponentIndex(const int compIdx)
{ return compIdx; }
static constexpr unsigned activeToCanonicalComponentIndex(unsigned compIdx)
static constexpr int activeToCanonicalComponentIndex(const int compIdx)
{ return compIdx; }
////////

View File

@ -30,6 +30,8 @@
#include <cassert>
#include <opm/common/utility/ConstexprAssert.hpp>
namespace Opm {
/*!
@ -179,15 +181,15 @@ struct BlackOilOnePhaseIndices
//////////////////////
//! \brief returns the index of "active" component
static constexpr unsigned canonicalToActiveComponentIndex(unsigned /*compIdx*/)
static constexpr int canonicalToActiveComponentIndex(const int /*compIdx*/)
{
return 0;
}
static unsigned activeToCanonicalComponentIndex([[maybe_unused]] unsigned compIdx)
static constexpr int activeToCanonicalComponentIndex([[maybe_unused]] const int compIdx)
{
// assumes canonical oil = 0, water = 1, gas = 2;
assert(compIdx == 0);
constexpr_assert(compIdx == 0);
if (gasEnabled) {
return 2;
} else if (waterEnabled) {

View File

@ -181,7 +181,7 @@ struct BlackOilTwoPhaseIndices
//////////////////////
//! \brief returns the index of "active" component
static constexpr unsigned canonicalToActiveComponentIndex(const unsigned compIdx)
static constexpr int canonicalToActiveComponentIndex(const int compIdx)
{
// assumes canonical oil = 0, water = 1, gas = 2;
if (!gasEnabled) {
@ -201,10 +201,10 @@ struct BlackOilTwoPhaseIndices
return compIdx - 1;
}
static unsigned activeToCanonicalComponentIndex(unsigned compIdx)
static constexpr int activeToCanonicalComponentIndex(const int compIdx)
{
// assumes canonical oil = 0, water = 1, gas = 2;
assert(compIdx < 2);
constexpr_assert(compIdx < 2);
if (!gasEnabled) {
// oil = 0, water = 1
return compIdx;
@ -212,7 +212,7 @@ struct BlackOilTwoPhaseIndices
// oil = 0, gas = 1
return compIdx * 2;
} else {
assert(!oilEnabled);
constexpr_assert(!oilEnabled);
}
// water = 0, gas = 1;

View File

@ -83,6 +83,8 @@ struct EnableDispersion { using type = UndefinedProperty; };
//! Enable convective mixing?
template<class TypeTag, class MyTypeTag>
struct EnableConvectiveMixing { using type = UndefinedProperty; };
template <class TypeTag, class MyTypeTag>
struct EnableWater { using type = UndefinedProperty; };
} // namespace Opm::Properties

View File

@ -48,16 +48,20 @@ class FlashIndices
{
static constexpr int numComponents = getPropValue<TypeTag, Properties::NumComponents>();
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableWater = getPropValue<TypeTag, Properties::EnableWater>() };
using EnergyIndices = Opm::EnergyIndices<PVOffset + numComponents, enableEnergy>;
public:
static constexpr bool waterEnabled = false;
//! All phases active (note: immiscible/"dummy" water phase)
static constexpr bool waterEnabled = enableWater;
static constexpr bool gasEnabled = true;
static constexpr bool oilEnabled = true;
static constexpr int waterPhaseIdx = -1;
static constexpr int numPhases = 2;
//! number of active phases
static constexpr int numPhases = enableWater ? 3 : 2;
//! number of equations/primary variables
static const int numEq = numComponents + EnergyIndices::numEq_;
static const int numEq = numComponents + EnergyIndices::numEq_ + (enableWater ? 1 : 0);
// Primary variable indices
@ -66,6 +70,9 @@ public:
//! Index of the molefraction of the first component
static constexpr int z0Idx = pressure0Idx + 1;
//! Index of water saturation
static constexpr int water0Idx = enableWater ? z0Idx + numComponents - 1 : -1000;
// equation indices

View File

@ -76,6 +76,9 @@ class FlashIntensiveQuantities
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { dimWorld = GridView::dimensionworld };
enum { pressure0Idx = Indices::pressure0Idx };
enum { water0Idx = Indices::water0Idx};
static constexpr bool waterEnabled = Indices::waterEnabled;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
@ -216,19 +219,26 @@ public:
// Update saturation
// \Note: the current implementation assume oil-gas system.
Evaluation Sw = 0.0;
if constexpr (waterEnabled) {
Sw = priVars.makeEvaluation(water0Idx, timeIdx);
}
Evaluation L = fluidState_.L();
Evaluation So = Opm::max((L * Z_L / ( L * Z_L + (1 - L) * Z_V)), 0.0);
Evaluation Sg = Opm::max(1 - So, 0.0);
Scalar sumS = Opm::getValue(So) + Opm::getValue(Sg);
Evaluation So = Opm::max((1 - Sw) * (L * Z_L / ( L * Z_L + (1 - L) * Z_V)), 0.0);
Evaluation Sg = Opm::max(1 - So - Sw, 0.0);
Scalar sumS = Opm::getValue(So) + Opm::getValue(Sg) + Opm::getValue(Sw);
So /= sumS;
Sg /= sumS;
fluidState_.setSaturation(0, So);
fluidState_.setSaturation(1, Sg);
fluidState_.setSaturation(FluidSystem::oilPhaseIdx, So);
fluidState_.setSaturation(FluidSystem::gasPhaseIdx, Sg);
if constexpr (waterEnabled) {
Sw /= sumS;
fluidState_.setSaturation(FluidSystem::waterPhaseIdx, Sw);
}
fluidState_.setCompressFactor(0, Z_L);
fluidState_.setCompressFactor(1, Z_V);
fluidState_.setCompressFactor(FluidSystem::oilPhaseIdx, Z_L);
fluidState_.setCompressFactor(FluidSystem::gasPhaseIdx, Z_V);
// Print saturation
if (flashVerbosity >= 5) {
@ -250,7 +260,10 @@ public:
// set the phase viscosity and density
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
paramCache.updatePhase(fluidState_, phaseIdx);
if (phaseIdx == static_cast<unsigned int>(FluidSystem::oilPhaseIdx)
|| phaseIdx == static_cast<unsigned int>(FluidSystem::gasPhaseIdx)) {
paramCache.updatePhase(fluidState_, phaseIdx);
}
const Evaluation& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);

View File

@ -49,18 +49,24 @@ class FlashLocalResidual: public GetPropType<TypeTag, Properties::DiscLocalResid
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { water0Idx = Indices::water0Idx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
using DiffusionModule = Opm::DiffusionModule<TypeTag, enableDiffusion>;
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
static const bool waterEnabled = Indices::waterEnabled;
using Toolbox = Opm::MathToolbox<Evaluation>;
public:
@ -77,15 +83,25 @@ public:
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
const auto& fs = intQuants.fluidState();
// compute storage term of all components within all phases
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
unsigned eqIdx = conti0EqIdx + compIdx;
storage[eqIdx] +=
Toolbox::template decay<LhsEval>(fs.massFraction(phaseIdx, compIdx))
* Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
// compute water storage term
if (waterEnabled && phaseIdx == static_cast<unsigned int>(waterPhaseIdx)) {
unsigned eqIdx = conti0EqIdx + numComponents;
storage[eqIdx] =
Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
}
else {
// compute storage term of all components within oil/gas phases
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
unsigned eqIdx = conti0EqIdx + compIdx;
storage[eqIdx] +=
Toolbox::template decay<LhsEval>(fs.massFraction(phaseIdx, compIdx))
* Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
}
}
EnergyModule::addPhaseStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx), phaseIdx);
}
@ -146,19 +162,31 @@ public:
up.fluidState().density(phaseIdx)
* extQuants.volumeFlux(phaseIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
flux[conti0EqIdx + compIdx] +=
tmp*up.fluidState().massFraction(phaseIdx, compIdx);
if (waterEnabled && phaseIdx == static_cast<unsigned int>(waterPhaseIdx)) {
unsigned eqIdx = conti0EqIdx + numComponents;
flux[eqIdx] = tmp;
}
else {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
flux[conti0EqIdx + compIdx] +=
tmp*up.fluidState().massFraction(phaseIdx, compIdx);
}
}
}
else {
Evaluation tmp =
Toolbox::value(up.fluidState().density(phaseIdx))
* extQuants.volumeFlux(phaseIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
flux[conti0EqIdx + compIdx] +=
tmp*Toolbox::value(up.fluidState().massFraction(phaseIdx, compIdx));
if (waterEnabled && phaseIdx == static_cast<unsigned int>(waterPhaseIdx)) {
unsigned eqIdx = conti0EqIdx + numComponents;
flux[eqIdx] = tmp;
}
else {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
flux[conti0EqIdx + compIdx] +=
tmp*Toolbox::value(up.fluidState().massFraction(phaseIdx, compIdx));
}
}
}
}

View File

@ -135,6 +135,10 @@ template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::FlashModel>
{ static constexpr bool value = false; };
template<class TypeTag>
struct EnableWater<TypeTag, TTag::MultiPhaseBaseModel>
{ static constexpr int value = GetPropType<TypeTag, Properties::FluidSystem>::waterEnabled; };
} // namespace Opm::Properties
namespace Opm {

View File

@ -63,6 +63,8 @@ class FlashNewtonMethod : public GetPropType<TypeTag, Properties::DiscNewtonMeth
enum { z0Idx = Indices::z0Idx };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
static constexpr bool waterEnabled = Indices::waterEnabled;
public:
/*!
* \copydoc FvBaseNewtonMethod::FvBaseNewtonMethod(Problem& )
@ -125,6 +127,14 @@ protected:
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
clampValue_(nextValue[z0Idx + compIdx], tol, 1-tol);
}
if constexpr (waterEnabled) {
// limit change in water saturation to 0.2
constexpr Scalar dSwMax = 0.2;
if (update[Indices::water0Idx] > dSwMax) {
nextValue[Indices::water0Idx] = currentValue[Indices::water0Idx] - dSwMax;
}
}
}
private:
void clampValue_(Scalar& val, Scalar minVal, Scalar maxVal) const

View File

@ -61,6 +61,14 @@ class FlashPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
// primary variable indices
enum { z0Idx = Indices::z0Idx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { water0Idx = Indices::water0Idx };
static constexpr bool waterEnabled = Indices::waterEnabled;
// phase indices
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
@ -108,10 +116,17 @@ public:
// the energy module
EnergyModule::setPriVarTemperatures(*this, fluidState);
// assign components total fraction
for (int i = 0; i < numComponents - 1; ++i)
(*this)[z0Idx + i] = getValue(fluidState.moleFraction(i));
(*this)[pressure0Idx] = getValue(fluidState.pressure(0));
// assign pressure
(*this)[pressure0Idx] = getValue(fluidState.pressure(oilPhaseIdx));
// assign water saturation
if constexpr (waterEnabled) {
(*this)[water0Idx] = getValue(fluidState.saturation(waterPhaseIdx));
}
}
/*!
@ -121,12 +136,15 @@ public:
*/
void print(std::ostream& os = std::cout) const
{
os << "(p_" << FluidSystem::phaseName(0) << " = "
os << "(p_" << FluidSystem::phaseName(FluidSystem::oilPhaseIdx) << " = "
<< this->operator[](pressure0Idx);
for (unsigned compIdx = 0; compIdx < numComponents - 2; ++compIdx) {
os << ", z_" << FluidSystem::componentName(compIdx) << " = "
<< this->operator[](z0Idx + compIdx);
}
if constexpr (waterEnabled) {
os << ", S_w = " << this->operator[](water0Idx);
}
os << ")" << std::flush;
}
};

View File

@ -0,0 +1,191 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <opm/simulators/flow/CompositionalContainer.hpp>
#include <opm/material/fluidsystems/GenericOilGasWaterFluidSystem.hpp>
#include <opm/output/data/Solution.hpp>
#include <algorithm>
#include <tuple>
#include <fmt/format.h>
namespace Opm {
template<class FluidSystem>
void CompositionalContainer<FluidSystem>::
allocate(const unsigned bufferSize,
std::map<std::string, int>& rstKeywords)
{
if (auto& zmf = rstKeywords["ZMF"]; zmf > 0) {
this->allocated_ = true;
zmf = 0;
for (int i = 0; i < numComponents; ++i) {
moleFractions_[i].resize(bufferSize, 0.0);
}
}
if (auto& xmf = rstKeywords["XMF"]; xmf > 0 && FluidSystem::phaseIsActive(oilPhaseIdx)) {
this->allocated_ = true;
xmf = 0;
for (int i = 0; i < numComponents; ++i) {
phaseMoleFractions_[oilPhaseIdx][i].resize(bufferSize, 0.0);
}
}
if (auto& ymf = rstKeywords["YMF"]; ymf > 0 && FluidSystem::phaseIsActive(gasPhaseIdx)) {
this->allocated_ = true;
ymf = 0;
for (int i = 0; i < numComponents; ++i) {
phaseMoleFractions_[gasPhaseIdx][i].resize(bufferSize, 0.0);
}
}
}
template<class FluidSystem>
void CompositionalContainer<FluidSystem>::
assignGasFractions(const unsigned globalDofIdx,
const AssignFunction& fractions)
{
if (phaseMoleFractions_[gasPhaseIdx][0].empty()) {
return;
}
std::for_each(phaseMoleFractions_[gasPhaseIdx].begin(),
phaseMoleFractions_[gasPhaseIdx].end(),
[globalDofIdx, &fractions, c = 0](auto& comp) mutable
{ comp[globalDofIdx] = fractions(c++); });
}
template<class FluidSystem>
void CompositionalContainer<FluidSystem>::
assignMoleFractions(const unsigned globalDofIdx,
const AssignFunction& fractions)
{
if (moleFractions_.empty()) {
return;
}
std::for_each(moleFractions_.begin(), moleFractions_.end(),
[&fractions, globalDofIdx, c = 0](auto& comp) mutable
{ comp[globalDofIdx] = fractions(c++); });
}
template<class FluidSystem>
void CompositionalContainer<FluidSystem>::
assignOilFractions(const unsigned globalDofIdx,
const AssignFunction& fractions)
{
if (phaseMoleFractions_[oilPhaseIdx][0].empty()) {
return;
}
std::for_each(phaseMoleFractions_[oilPhaseIdx].begin(),
phaseMoleFractions_[oilPhaseIdx].end(),
[globalDofIdx, &fractions, c = 0](auto& comp) mutable
{ comp[globalDofIdx] = fractions(c++); });
}
template<class FluidSystem>
void CompositionalContainer<FluidSystem>::
outputRestart(data::Solution& sol,
ScalarBuffer& oil_saturation)
{
using DataEntry =
std::tuple<std::string, UnitSystem::measure, std::vector<Scalar>&>;
auto doInsert = [&sol](DataEntry& entry,
const data::TargetType target)
{
if (std::get<2>(entry).empty()) {
return;
}
sol.insert(std::get<std::string>(entry),
std::get<UnitSystem::measure>(entry),
std::move(std::get<2>(entry)),
target);
};
auto entries = std::vector<DataEntry>{};
// ZMF
if (!moleFractions_[0].empty()) {
for (int i = 0; i < numComponents; ++i) {
const auto name = fmt::format("ZMF{}", i + 1); // Generate ZMF1, ZMF2, ...
entries.emplace_back(name, UnitSystem::measure::identity, moleFractions_[i]);
}
}
// XMF
if (!phaseMoleFractions_[oilPhaseIdx][0].empty()) {
for (int i = 0; i < numComponents; ++i) {
const auto name = fmt::format("XMF{}", i + 1); // Generate XMF1, XMF2, ...
entries.emplace_back(name, UnitSystem::measure::identity,
phaseMoleFractions_[oilPhaseIdx][i]);
}
}
// YMF
if (!phaseMoleFractions_[gasPhaseIdx][0].empty()) {
for (int i = 0; i < numComponents; ++i) {
const auto name = fmt::format("YMF{}", i + 1); // Generate YMF1, YMF2, ...
entries.emplace_back(name, UnitSystem::measure::identity,
phaseMoleFractions_[gasPhaseIdx][i]);
}
}
if (!oil_saturation.empty()) {
entries.emplace_back("SOIL", UnitSystem::measure::identity, oil_saturation);
}
std::for_each(entries.begin(), entries.end(),
[&doInsert](auto& array)
{ doInsert(array, data::TargetType::RESTART_SOLUTION); });
this->allocated_ = false;
}
#define INSTANTIATE_COMP_THREEPHASE(NUM) \
template<class T> using FS##NUM = GenericOilGasWaterFluidSystem<T, NUM, true>; \
template class CompositionalContainer<FS##NUM<double>>;
#define INSTANTIATE_COMP_TWOPHASE(NUM) \
template<class T> using GFS##NUM = GenericOilGasWaterFluidSystem<T, NUM, false>; \
template class CompositionalContainer<GFS##NUM<double>>;
#define INSTANTIATE_COMP(NUM) \
INSTANTIATE_COMP_THREEPHASE(NUM) \
INSTANTIATE_COMP_TWOPHASE(NUM)
INSTANTIATE_COMP_THREEPHASE(0) // \Note: to register the parameter ForceDisableFluidInPlaceOutput
INSTANTIATE_COMP(2)
INSTANTIATE_COMP(3)
INSTANTIATE_COMP(4)
INSTANTIATE_COMP(5)
INSTANTIATE_COMP(6)
INSTANTIATE_COMP(7)
} // namespace Opm

View File

@ -0,0 +1,83 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::OutputBlackOilModule
*/
#ifndef OPM_COMPOSITIONAL_CONTAINER_HPP
#define OPM_COMPOSITIONAL_CONTAINER_HPP
#include <array>
#include <functional>
#include <map>
#include <string>
#include <vector>
namespace Opm {
namespace data { class Solution; }
template<class FluidSystem>
class CompositionalContainer
{
using Scalar = typename FluidSystem::Scalar;
using ScalarBuffer = std::vector<Scalar>;
static constexpr int numComponents = FluidSystem::numComponents;
static constexpr int numPhases = FluidSystem::numPhases;
static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr int oilPhaseIdx = FluidSystem::oilPhaseIdx;
static constexpr int waterPhaseIdx = FluidSystem::waterPhaseIdx;
public:
void allocate(const unsigned bufferSize,
std::map<std::string, int>& rstKeywords);
using AssignFunction = std::function<Scalar(const unsigned)>;
void assignGasFractions(const unsigned globalDofIdx,
const AssignFunction& fractions);
void assignMoleFractions(const unsigned globalDofIdx,
const AssignFunction& fractions);
void assignOilFractions(const unsigned globalDofIdx,
const AssignFunction& fractions);
void outputRestart(data::Solution& sol,
ScalarBuffer& oil_saturation);
bool allocated() const
{ return allocated_; }
private:
bool allocated_ = false;
// total mole fractions for each component
std::array<ScalarBuffer, numComponents> moleFractions_;
// mole fractions for each component in each phase
std::array<std::array<ScalarBuffer, numComponents>, numPhases> phaseMoleFractions_;
};
} // namespace Opm
#endif // OPM_COMPOSITIONAL_CONTAINER_HPP

View File

@ -27,7 +27,7 @@
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasWaterFluidSystem.hpp>
#include <opm/output/data/Solution.hpp>
@ -438,11 +438,19 @@ INSTANTIATE_TYPE(double)
INSTANTIATE_TYPE(float)
#endif
#define INSTANTIATE_COMP(NUM) \
template<class T> using FS##NUM = GenericOilGasFluidSystem<T, NUM>; \
#define INSTANTIATE_COMP_THREEPHASE(NUM) \
template<class T> using FS##NUM = GenericOilGasWaterFluidSystem<T, NUM, true>; \
template class FIPContainer<FS##NUM<double>>;
INSTANTIATE_COMP(0)
#define INSTANTIATE_COMP_TWOPHASE(NUM) \
template<class T> using GFS##NUM = GenericOilGasWaterFluidSystem<T, NUM, false>; \
template class FIPContainer<GFS##NUM<double>>;
#define INSTANTIATE_COMP(NUM) \
INSTANTIATE_COMP_THREEPHASE(NUM) \
INSTANTIATE_COMP_TWOPHASE(NUM)
INSTANTIATE_COMP_THREEPHASE(0) // \Note: to register the parameter ForceDisableFluidInPlaceOutput
INSTANTIATE_COMP(2)
INSTANTIATE_COMP(3)
INSTANTIATE_COMP(4)

View File

@ -362,6 +362,9 @@ public:
Dune::FieldVector<Scalar, numComponents> z(0.0);
Scalar sumMoles = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (Indices::waterEnabled && phaseIdx == static_cast<unsigned int>(waterPhaseIdx)){
continue;
}
const auto saturation = fs.saturation(phaseIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Scalar tmp = fs.molarity(phaseIdx, compIdx) * saturation;
@ -491,7 +494,7 @@ protected:
const bool gas_active = FluidSystem::phaseIsActive(gasPhaseIdx);
const bool oil_active = FluidSystem::phaseIsActive(oilPhaseIdx);
if (water_active && Indices::numPhases > 1)
if (water_active && Indices::numPhases > 2)
waterSaturationData = fp.get_double("SWAT");
else
waterSaturationData.resize(numDof);
@ -527,6 +530,10 @@ protected:
- waterSaturationData[dofIdx]
- gasSaturationData[dofIdx]);
}
if (water_active) {
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[dofIdx]);
}
//////
// set phase pressures

View File

@ -69,17 +69,10 @@ private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
// using Traits = ThreePhaseMaterialTraits<Scalar,
// /*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
// /*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
// /*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
// TODO: We should be able to use FluidSystem here and using Indices to handle the active phases
// some more development is needed
using Traits = ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/ 0,
/*nonWettingPhaseIdx=*/ 1,
/*gasPhaseIdx=*/ 2>;
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using EclMaterialLawManager = ::Opm::EclMaterialLawManager<Traits>;

View File

@ -27,10 +27,10 @@
#include <opm/grid/common/CommunicationUtils.hpp>
#include <opm/material/fluidmatrixinteractions/EclHysteresisConfig.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasWaterFluidSystem.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Runspec.hpp>
@ -55,7 +55,6 @@
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <stdexcept>
#include <string>
#include <string_view>
#include <tuple>
@ -104,8 +103,7 @@ GenericOutputBlackoilModule(const EclipseState& eclState,
bool enableBrine,
bool enableSaltPrecipitation,
bool enableExtbo,
bool enableMICP,
bool isCompositional)
bool enableMICP)
: eclState_(eclState)
, schedule_(schedule)
, summaryState_(summaryState)
@ -124,7 +122,7 @@ GenericOutputBlackoilModule(const EclipseState& eclState,
, enableSaltPrecipitation_(enableSaltPrecipitation)
, enableExtbo_(enableExtbo)
, enableMICP_(enableMICP)
, isCompositional_(isCompositional)
, tracerC_(eclState_)
, local_data_valid_(false)
{
const auto& fp = eclState_.fieldProps();
@ -527,38 +525,6 @@ assignToSolution(data::Solution& sol)
DataEntry{"TMULT_RC", UnitSystem::measure::identity, rockCompTransMultiplier_},
};
// basically, for compositional, we can not use std::array for this. We need to generate the ZMF1, ZMF2, and so on
// and also, we need to map these values.
// TODO: the following should go to a function
if (this->isCompositional_) {
auto compositionalEntries = std::vector<DataEntry>{};
{
// ZMF
for (int i = 0; i < numComponents; ++i) {
const auto name = fmt::format("ZMF{}", i + 1); // Generate ZMF1, ZMF2, ...
compositionalEntries.emplace_back(name, UnitSystem::measure::identity, moleFractions_[i]);
}
// XMF
for (int i = 0; i < numComponents; ++i) {
const auto name = fmt::format("XMF{}", i + 1); // Generate XMF1, XMF2, ...
compositionalEntries.emplace_back(name, UnitSystem::measure::identity,
phaseMoleFractions_[oilPhaseIdx][i]);
}
// YMF
for (int i = 0; i < numComponents; ++i) {
const auto name = fmt::format("YMF{}", i + 1); // Generate YMF1, YMF2, ...
compositionalEntries.emplace_back(name, UnitSystem::measure::identity,
phaseMoleFractions_[gasPhaseIdx][i]);
}
}
for (auto& array: compositionalEntries) {
doInsert(array, data::TargetType::RESTART_SOLUTION);
}
}
for (auto& array : baseSolutionVector) {
doInsert(array, data::TargetType::RESTART_SOLUTION);
}
@ -602,15 +568,6 @@ assignToSolution(data::Solution& sol)
data::TargetType::RESTART_SOLUTION);
}
if (this->isCompositional_ && FluidSystem::phaseIsActive(oilPhaseIdx) &&
! this->saturation_[oilPhaseIdx].empty())
{
sol.insert("SOIL", UnitSystem::measure::identity,
std::move(this->saturation_[oilPhaseIdx]),
data::TargetType::RESTART_SOLUTION);
}
if ((eclState_.runspec().co2Storage() || eclState_.runspec().h2Storage()) && !rsw_.empty()) {
auto mfrac = std::vector<double>(this->rsw_.size(), 0.0);
@ -674,41 +631,7 @@ assignToSolution(data::Solution& sol)
this->fipC_.outputRestart(sol);
// Tracers
if (! this->freeTracerConcentrations_.empty()) {
const auto& tracers = this->eclState_.tracer();
for (auto tracerIdx = 0*tracers.size();
tracerIdx < tracers.size(); ++tracerIdx)
{
sol.insert(tracers[tracerIdx].fname(),
UnitSystem::measure::identity,
std::move(freeTracerConcentrations_[tracerIdx]),
data::TargetType::RESTART_TRACER_SOLUTION);
}
// Put freeTracerConcentrations container into a valid state. Otherwise
// we'll move from vectors that have already been moved from if we
// get here and it's not a restart step.
this->freeTracerConcentrations_.clear();
}
if (! this->solTracerConcentrations_.empty()) {
const auto& tracers = this->eclState_.tracer();
for (auto tracerIdx = 0*tracers.size();
tracerIdx < tracers.size(); ++tracerIdx)
{
if (solTracerConcentrations_[tracerIdx].empty())
continue;
sol.insert(tracers[tracerIdx].sname(),
UnitSystem::measure::identity,
std::move(solTracerConcentrations_[tracerIdx]),
data::TargetType::RESTART_TRACER_SOLUTION);
}
// Put solTracerConcentrations container into a valid state. Otherwise
// we'll move from vectors that have already been moved from if we
// get here and it's not a restart step.
this->solTracerConcentrations_.clear();
}
this->tracerC_.outputRestart(sol);
}
template<class FluidSystem>
@ -828,16 +751,15 @@ doAllocBuffers(const unsigned bufferSize,
const bool substep,
const bool log,
const bool isRestart,
const bool vapparsActive,
const bool enablePCHysteresis,
const bool enableNonWettingHysteresis,
const bool enableWettingHysteresis,
const unsigned numTracers,
const std::vector<bool>& enableSolTracers,
const unsigned numOutputNnc)
const EclHysteresisConfig* hysteresisConfig,
const unsigned numOutputNnc,
std::map<std::string, int> rstKeywords)
{
if (rstKeywords.empty()) {
rstKeywords = schedule_.rst_keywords(reportStepNum);
}
// Output RESTART_OPM_EXTENDED only when explicitly requested by user.
std::map<std::string, int> rstKeywords = schedule_.rst_keywords(reportStepNum);
for (auto& [keyword, should_write] : rstKeywords) {
if (this->isOutputCreationDirective_(keyword)) {
// 'BASIC', 'FREQ' and similar. Don't attempt to create
@ -1027,11 +949,13 @@ doAllocBuffers(const unsigned bufferSize,
this->micpC_.allocate(bufferSize);
}
const bool vapparsActive = schedule_[std::max(reportStepNum, 0u)].oilvap().getType() ==
OilVaporizationProperties::OilVaporization::VAPPARS;
if (vapparsActive) {
soMax_.resize(bufferSize, 0.0);
}
if (enableNonWettingHysteresis) {
if (hysteresisConfig && hysteresisConfig->enableNonWettingHysteresis()) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)){
if (FluidSystem::phaseIsActive(waterPhaseIdx)){
soMax_.resize(bufferSize, 0.0);
@ -1043,7 +967,7 @@ doAllocBuffers(const unsigned bufferSize,
//TODO add support for gas-water
}
}
if (enableWettingHysteresis) {
if (hysteresisConfig && hysteresisConfig->enableWettingHysteresis()) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)){
if (FluidSystem::phaseIsActive(waterPhaseIdx)){
swMax_.resize(bufferSize, 0.0);
@ -1055,7 +979,7 @@ doAllocBuffers(const unsigned bufferSize,
//TODO add support for gas-water
}
}
if (enablePCHysteresis) {
if (hysteresisConfig && hysteresisConfig->enablePCHysteresis()) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)){
if (FluidSystem::phaseIsActive(waterPhaseIdx)){
swmin_.resize(bufferSize, 0.0);
@ -1259,19 +1183,7 @@ doAllocBuffers(const unsigned bufferSize,
}
// tracers
if (numTracers > 0) {
freeTracerConcentrations_.resize(numTracers);
for (unsigned tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
{
freeTracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
}
solTracerConcentrations_.resize(numTracers);
for (unsigned tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
{
if (enableSolTracers[tracerIdx])
solTracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
}
}
this->tracerC_.allocate(bufferSize);
if (rstKeywords["RESIDUAL"] > 0) {
rstKeywords["RESIDUAL"] = 0;
@ -1293,30 +1205,6 @@ doAllocBuffers(const unsigned bufferSize,
overburdenPressure_.resize(bufferSize, 0.0);
}
if (this->isCompositional_) {
if (rstKeywords["ZMF"] > 0) {
rstKeywords["ZMF"] = 0;
for (int i = 0; i < numComponents; ++i) {
moleFractions_[i].resize(bufferSize, 0.0);
}
}
if (rstKeywords["XMF"] > 0 && FluidSystem::phaseIsActive(oilPhaseIdx)) {
rstKeywords["XMF"] = 0;
for (int i = 0; i < numComponents; ++i) {
phaseMoleFractions_[oilPhaseIdx][i].resize(bufferSize, 0.0);
}
}
if (rstKeywords["YMF"] > 0 && FluidSystem::phaseIsActive(gasPhaseIdx)) {
rstKeywords["YMF"] = 0;
for (int i = 0; i < numComponents; ++i) {
phaseMoleFractions_[gasPhaseIdx][i].resize(bufferSize, 0.0);
}
}
}
//Warn for any unhandled keyword
if (log) {
for (auto& keyValue: rstKeywords) {
@ -1585,12 +1473,19 @@ INSTANTIATE_TYPE(double)
INSTANTIATE_TYPE(float)
#endif
#define INSTANTIATE_COMP(NUM) \
template<class T> using FS##NUM = GenericOilGasFluidSystem<T, NUM>; \
#define INSTANTIATE_COMP_THREEPHASE(NUM) \
template<class T> using FS##NUM = GenericOilGasWaterFluidSystem<T, NUM, true>; \
template class GenericOutputBlackoilModule<FS##NUM<double>>;
INSTANTIATE_COMP(0) // \Note: to register the parameter ForceDisableFluidInPlaceOutput
#define INSTANTIATE_COMP_TWOPHASE(NUM) \
template<class T> using GFS##NUM = GenericOilGasWaterFluidSystem<T, NUM, false>; \
template class GenericOutputBlackoilModule<GFS##NUM<double>>;
#define INSTANTIATE_COMP(NUM) \
INSTANTIATE_COMP_THREEPHASE(NUM) \
INSTANTIATE_COMP_TWOPHASE(NUM)
INSTANTIATE_COMP_THREEPHASE(0) // \Note: to register the parameter ForceDisableFluidInPlaceOutput
INSTANTIATE_COMP(2)
INSTANTIATE_COMP(3)
INSTANTIATE_COMP(4)

View File

@ -40,6 +40,7 @@
#include <opm/simulators/flow/MechContainer.hpp>
#include <opm/simulators/flow/MICPContainer.hpp>
#include <opm/simulators/flow/RegionPhasePVAverage.hpp>
#include <opm/simulators/flow/TracerContainer.hpp>
#include <opm/simulators/utils/ParallelCommunication.hpp>
@ -62,6 +63,7 @@ struct ForceDisableResvFluidInPlaceOutput { static constexpr bool value = false;
namespace Opm {
namespace data { class Solution; }
class EclHysteresisConfig;
class EclipseState;
class Schedule;
class SummaryConfig;
@ -319,21 +321,16 @@ protected:
bool enableBrine,
bool enableSaltPrecipitation,
bool enableExtbo,
bool enableMICP,
bool isCompositional = false);
bool enableMICP);
void doAllocBuffers(unsigned bufferSize,
unsigned reportStepNum,
const bool substep,
const bool log,
const bool isRestart,
const bool vapparsActive = false,
const bool enablePCHysteresis = false,
const bool enableNonWettingHysteresis =false,
const bool enableWettingHysteresis = false,
unsigned numTracers = 0,
const std::vector<bool>& enableSolTracers = {},
unsigned numOutputNnc = 0);
const EclHysteresisConfig* hysteresisConfig,
unsigned numOutputNnc = 0,
std::map<std::string, int> rstKeywords = {});
void makeRegionSum(Inplace& inplace,
const std::string& region_name,
@ -390,7 +387,6 @@ protected:
bool enableSaltPrecipitation_{false};
bool enableExtbo_{false};
bool enableMICP_{false};
bool isCompositional_{false};
bool forceDisableFipOutput_{false};
bool forceDisableFipresvOutput_{false};
@ -468,12 +464,7 @@ protected:
std::array<ScalarBuffer, numPhases> viscosity_;
std::array<ScalarBuffer, numPhases> relativePermeability_;
// total mole fractions for each component
std::array<ScalarBuffer, numComponents> moleFractions_;
// mole fractions for each component in each phase
std::array<std::array<ScalarBuffer, numComponents>, numPhases> phaseMoleFractions_;
std::vector<ScalarBuffer> freeTracerConcentrations_;
std::vector<ScalarBuffer> solTracerConcentrations_;
TracerContainer<FluidSystem> tracerC_;
std::array<ScalarBuffer, numPhases> residual_;

View File

@ -184,12 +184,7 @@ public:
substep,
log,
isRestart,
problem.vapparsActive(std::max(simulator_.episodeIndex(), 0)),
problem.materialLawManager()->enablePCHysteresis(),
problem.materialLawManager()->enableNonWettingHysteresis(),
problem.materialLawManager()->enableWettingHysteresis(),
problem.tracerModel().numTracers(),
problem.tracerModel().enableSolTracers(),
&problem.materialLawManager()->hysteresisConfig(),
problem.eclWriter()->getOutputNnc().size());
}
@ -517,7 +512,7 @@ public:
const auto& matLawManager = problem.materialLawManager();
if (matLawManager->enableHysteresis()) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)
if (FluidSystem::phaseIsActive(oilPhaseIdx)
&& FluidSystem::phaseIsActive(waterPhaseIdx)) {
Scalar somax;
Scalar swmax;
@ -525,7 +520,7 @@ public:
matLawManager->oilWaterHysteresisParams(
somax, swmax, swmin, globalDofIdx);
if (matLawManager->enableNonWettingHysteresis()) {
if (!this->soMax_.empty()) {
this->soMax_[globalDofIdx] = somax;
@ -543,14 +538,14 @@ public:
}
}
if (FluidSystem::phaseIsActive(oilPhaseIdx)
if (FluidSystem::phaseIsActive(oilPhaseIdx)
&& FluidSystem::phaseIsActive(gasPhaseIdx)) {
Scalar sgmax;
Scalar shmax;
Scalar somin;
matLawManager->gasOilHysteresisParams(
sgmax, shmax, somin, globalDofIdx);
if (matLawManager->enableNonWettingHysteresis()) {
if (!this->sgmax_.empty()) {
this->sgmax_[globalDofIdx] = sgmax;
@ -568,7 +563,7 @@ public:
}
}
} else {
if (!this->soMax_.empty())
this->soMax_[globalDofIdx]
= std::max(getValue(fs.saturation(oilPhaseIdx)), problem.maxOilSaturation(globalDofIdx));
@ -647,25 +642,14 @@ public:
// tracers
const auto& tracerModel = simulator_.problem().tracerModel();
if (! this->freeTracerConcentrations_.empty()) {
for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); ++tracerIdx) {
if (this->freeTracerConcentrations_[tracerIdx].empty()) {
continue;
}
this->freeTracerConcentrations_[tracerIdx][globalDofIdx] =
tracerModel.freeTracerConcentration(tracerIdx, globalDofIdx);
}
}
if (! this->solTracerConcentrations_.empty()) {
for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); ++tracerIdx) {
if (this->solTracerConcentrations_[tracerIdx].empty()) {
continue;
}
this->solTracerConcentrations_[tracerIdx][globalDofIdx] =
tracerModel.solTracerConcentration(tracerIdx, globalDofIdx);
}
}
this->tracerC_.assignFreeConcentrations(globalDofIdx,
[globalDofIdx, &tracerModel](const unsigned tracerIdx)
{ return tracerModel.freeTracerConcentration(tracerIdx,
globalDofIdx); });
this->tracerC_.assignSolConcentrations(globalDofIdx,
[globalDofIdx, &tracerModel](const unsigned tracerIdx)
{ return tracerModel.solTracerConcentration(tracerIdx,
globalDofIdx); });
// output residual
for ( int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx )
@ -1176,7 +1160,7 @@ public:
if (simulator.problem().materialLawManager()->enableHysteresis()) {
auto matLawManager = simulator.problem().materialLawManager();
if (FluidSystem::phaseIsActive(oilPhaseIdx)
if (FluidSystem::phaseIsActive(oilPhaseIdx)
&& FluidSystem::phaseIsActive(waterPhaseIdx)) {
Scalar somax = 2.0;
Scalar swmax = -2.0;
@ -1200,7 +1184,7 @@ public:
matLawManager->setOilWaterHysteresisParams(
somax, swmax, swmin, elemIdx);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx)
if (FluidSystem::phaseIsActive(oilPhaseIdx)
&& FluidSystem::phaseIsActive(gasPhaseIdx)) {
Scalar sgmax = 2.0;
Scalar shmax = -2.0;
@ -1538,7 +1522,7 @@ private:
{
this->updateCO2InGas(globalDofIdx, pv, intQuants);
}
if (this->fipC_.hasCo2InWater() &&
(FluidSystem::phaseIsActive(waterPhaseIdx) ||
FluidSystem::phaseIsActive(oilPhaseIdx)))

View File

@ -32,15 +32,20 @@
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/common/multiphasebaseproperties.hh>
#include <opm/models/utils/parametersystem.hpp>
#include <opm/models/utils/propertysystem.hh>
#include <opm/simulators/flow/CompositionalContainer.hpp>
#include <opm/simulators/flow/FlowBaseVanguard.hpp>
#include <opm/simulators/flow/GenericOutputBlackoilModule.hpp>
@ -53,8 +58,7 @@
#include <vector>
namespace Opm
{
namespace Opm {
// forward declaration
template <class TypeTag>
@ -102,8 +106,7 @@ public:
getPropValue<TypeTag, Properties::EnableBrine>(),
getPropValue<TypeTag, Properties::EnableSaltPrecipitation>(),
getPropValue<TypeTag, Properties::EnableExtbo>(),
getPropValue<TypeTag, Properties::EnableMICP>(),
true)
getPropValue<TypeTag, Properties::EnableMICP>())
, simulator_(simulator)
{
for (auto& region_pair : this->regions_) {
@ -155,11 +158,19 @@ public:
return;
}
this->doAllocBuffers(bufferSize,
reportStepNum,
substep,
log,
isRestart);
auto rstKeywords = this->schedule_.rst_keywords(reportStepNum);
this->compC_.allocate(bufferSize, rstKeywords);
this->doAllocBuffers(bufferSize, reportStepNum, substep, log, isRestart,
/* hysteresisConfig = */ nullptr,
/* numOutputNnc =*/ 0,
std::move(rstKeywords));
}
void assignToSolution(data::Solution& sol)
{
this->compC_.outputRestart(sol, this->saturation_[oilPhaseIdx]);
BaseType::assignToSolution(sol);
}
/*!
@ -187,20 +198,21 @@ public:
Valgrind::CheckDefined(this->saturation_[phaseIdx][globalDofIdx]);
}
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
if (this->moleFractions_[compIdx].empty()) continue;
if (this->compC_.allocated()) {
this->compC_.assignMoleFractions(globalDofIdx,
[&fs](const unsigned compIdx)
{ return getValue(fs.moleFraction(compIdx)); });
this->moleFractions_[compIdx][globalDofIdx] = getValue(fs.moleFraction(compIdx));
}
// XMF and YMF
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
if (this->phaseMoleFractions_[oilPhaseIdx][compIdx].empty()) continue;
this->phaseMoleFractions_[oilPhaseIdx][compIdx][globalDofIdx] = getValue(fs.moleFraction(oilPhaseIdx, compIdx));
}
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
if (this->phaseMoleFractions_[gasPhaseIdx][compIdx].empty()) continue;
this->phaseMoleFractions_[gasPhaseIdx][compIdx][globalDofIdx] = getValue(fs.moleFraction(gasPhaseIdx, compIdx));
this->compC_.assignGasFractions(globalDofIdx,
[&fs](const unsigned compIdx)
{ return getValue(fs.moleFraction(gasPhaseIdx, compIdx)); });
}
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
this->compC_.assignOilFractions(globalDofIdx,
[&fs](const unsigned compIdx)
{ return getValue(fs.moleFraction(oilPhaseIdx, compIdx)); });
}
}
@ -332,6 +344,7 @@ private:
}
const Simulator& simulator_;
CompositionalContainer<FluidSystem> compC_;
};
} // namespace Opm

View File

@ -0,0 +1,154 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <opm/simulators/flow/TracerContainer.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasWaterFluidSystem.hpp>
#include <opm/output/data/Solution.hpp>
#include <algorithm>
#include <utility>
namespace Opm {
template<class FluidSystem>
void TracerContainer<FluidSystem>::
allocate(const unsigned bufferSize)
{
const auto& tracers = eclState_.tracer();
if (!tracers.empty()) {
allocated_ = true;
freeConcentrations_.resize(tracers.size());
solConcentrations_.resize(tracers.size());
std::for_each(tracers.begin(), tracers.end(),
[idx = 0, bufferSize, this](const auto& tracer) mutable
{
freeConcentrations_[idx].resize(bufferSize, 0.0);
if (((tracer.phase == Phase::GAS && FluidSystem::enableDissolvedGas()) ||
(tracer.phase == Phase::OIL && FluidSystem::enableVaporizedOil())) &&
(tracer.solution_concentration.has_value() ||
tracer.solution_tvdp.has_value()))
{
solConcentrations_[idx].resize(bufferSize, 0.0);
}
++idx;
});
}
}
template<class FluidSystem>
void TracerContainer<FluidSystem>::
assignFreeConcentrations(const unsigned globalDofIdx,
const AssignFunction& concentration)
{
std::for_each(freeConcentrations_.begin(), freeConcentrations_.end(),
[globalDofIdx, idx = 0, &concentration](auto& tracer) mutable
{
if (!tracer.empty()) {
tracer[globalDofIdx] = concentration(idx);
}
++idx;
});
}
template<class FluidSystem>
void TracerContainer<FluidSystem>::
assignSolConcentrations(const unsigned globalDofIdx,
const AssignFunction& concentration)
{
std::for_each(solConcentrations_.begin(), solConcentrations_.end(),
[globalDofIdx, idx = 0, &concentration](auto& tracer) mutable
{
if (!tracer.empty()) {
tracer[globalDofIdx] = concentration(idx);
}
++idx;
});
}
template<class FluidSystem>
void TracerContainer<FluidSystem>::
outputRestart(data::Solution& sol)
{
if (!this->allocated_) {
return;
}
const auto& tracers = this->eclState_.tracer();
std::for_each(tracers.begin(), tracers.end(),
[idx = 0, &sol, this](const auto& tracer) mutable
{
sol.insert(tracer.fname(),
UnitSystem::measure::identity,
std::move(freeConcentrations_[idx]),
data::TargetType::RESTART_TRACER_SOLUTION);
if (!solConcentrations_[idx].empty()) {
sol.insert(tracer.sname(),
UnitSystem::measure::identity,
std::move(solConcentrations_[idx]),
data::TargetType::RESTART_TRACER_SOLUTION);
}
++idx;
});
this->allocated_ = false;
}
template<class T> using FS = BlackOilFluidSystem<T,BlackOilDefaultIndexTraits>;
#define INSTANTIATE_TYPE(T) \
template class TracerContainer<FS<T>>;
INSTANTIATE_TYPE(double)
#if FLOW_INSTANTIATE_FLOAT
INSTANTIATE_TYPE(float)
#endif
#define INSTANTIATE_COMP_THREEPHASE(NUM) \
template<class T> using FS##NUM = GenericOilGasWaterFluidSystem<T, NUM, true>; \
template class TracerContainer<FS##NUM<double>>;
#define INSTANTIATE_COMP_TWOPHASE(NUM) \
template<class T> using GFS##NUM = GenericOilGasWaterFluidSystem<T, NUM, false>; \
template class TracerContainer<GFS##NUM<double>>;
#define INSTANTIATE_COMP(NUM) \
INSTANTIATE_COMP_THREEPHASE(NUM) \
INSTANTIATE_COMP_TWOPHASE(NUM)
INSTANTIATE_COMP_THREEPHASE(0) // \Note: to register the parameter ForceDisableFluidInPlaceOutput
INSTANTIATE_COMP(2)
INSTANTIATE_COMP(3)
INSTANTIATE_COMP(4)
INSTANTIATE_COMP(5)
INSTANTIATE_COMP(6)
INSTANTIATE_COMP(7)
} // namespace Opm

View File

@ -0,0 +1,70 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::OutputBlackOilModule
*/
#ifndef OPM_TRACER_CONTAINER_HPP
#define OPM_TRACER_CONTAINER_HPP
#include <functional>
#include <vector>
namespace Opm {
namespace data { class Solution; }
class EclipseState;
template<class FluidSystem>
class TracerContainer
{
using Scalar = typename FluidSystem::Scalar;
using ScalarBuffer = std::vector<Scalar>;
public:
TracerContainer(const EclipseState& eclState)
: eclState_(eclState)
{}
void allocate(const unsigned bufferSize);
using AssignFunction = std::function<Scalar(const unsigned)>;
void assignFreeConcentrations(const unsigned globalDofIdx,
const AssignFunction& concentration);
void assignSolConcentrations(const unsigned globalDofIdx,
const AssignFunction& concentration);
void outputRestart(data::Solution& sol);
private:
const EclipseState& eclState_;
std::vector<ScalarBuffer> freeConcentrations_{};
std::vector<ScalarBuffer> solConcentrations_{};
bool allocated_{false};
};
} // namespace Opm
#endif // OPM_TRACER_CONTAINER_HPP

View File

@ -25,6 +25,7 @@
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/solver.hh>
#include <opm/common/CriticalError.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/TimingMacros.hpp>
@ -377,10 +378,11 @@ std::unique_ptr<Matrix> blockJacobiAdjacency(const Grid& grid,
void prepare(const Matrix& M, Vector& b)
{
OPM_TIMEBLOCK(istlSolverPrepare);
try {
initPrepare(M,b);
initPrepare(M,b);
prepareFlexibleSolver();
prepareFlexibleSolver();
} OPM_CATCH_AND_RETHROW_AS_CRITICAL_ERROR("This is likely due to a faulty linear solver JSON specification. Check for errors related to missing nodes.");
}

View File

@ -188,6 +188,7 @@ GpuBuffer<T>::copyFromHost(const std::vector<T>& data)
{
copyFromHost(data.data(), data.size());
}
template <class T>
void
GpuBuffer<T>::copyToHost(std::vector<T>& data) const

View File

@ -27,6 +27,7 @@
#include <opm/simulators/linalg/gpuistl/GpuView.hpp>
#include <vector>
#include <string>
#include <cuda_runtime.h>
namespace Opm::gpuistl

View File

@ -37,6 +37,7 @@
#include <functional>
#include <utility>
#include <string>
namespace Opm::gpuistl
{
@ -93,7 +94,8 @@ GpuDILU<M, X, Y, l>::GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, int
}
}
computeDiagAndMoveReorderedData(m_moveThreadBlockSize, m_DILUFactorizationThreadBlockSize);
reorderAndSplitMatrix(m_moveThreadBlockSize);
computeDiagonal(m_DILUFactorizationThreadBlockSize);
if (m_tuneThreadBlockSizes) {
tuneThreadBlockSizes();
@ -110,10 +112,31 @@ template <class M, class X, class Y, int l>
void
GpuDILU<M, X, Y, l>::apply(X& v, const Y& d)
{
// ensure that this stream only starts doing work when main stream is completed up to this point
OPM_GPU_SAFE_CALL(cudaEventRecord(m_before.get(), 0));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(m_stream.get(), m_before.get(), 0));
OPM_TIMEBLOCK(prec_apply);
{
apply(v, d, m_lowerSolveThreadBlockSize, m_upperSolveThreadBlockSize);
const auto ptrs = std::make_pair(v.data(), d.data());
auto it = m_apply_graphs.find(ptrs);
if (it == m_apply_graphs.end()) {
OPM_GPU_SAFE_CALL(cudaStreamBeginCapture(m_stream.get(), cudaStreamCaptureModeGlobal));
// The apply functions contains lots of small function calls which call a kernel each
apply(v, d, m_lowerSolveThreadBlockSize, m_upperSolveThreadBlockSize);
OPM_GPU_SAFE_CALL(cudaStreamEndCapture(m_stream.get(), &m_apply_graphs[ptrs].get()));
OPM_GPU_SAFE_CALL(cudaGraphInstantiate(&m_executableGraphs[ptrs].get(), m_apply_graphs[ptrs].get(), nullptr, nullptr, 0));
}
OPM_GPU_SAFE_CALL(cudaGraphLaunch(m_executableGraphs[ptrs].get(), 0));
}
// ensure that main stream only continues after this stream is completed
OPM_GPU_SAFE_CALL(cudaEventRecord(m_after.get(), m_stream.get()));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(0, m_after.get(), 0));
}
template <class M, class X, class Y, int l>
@ -135,7 +158,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
m_gpuDInvFloat->data(),
d.data(),
v.data(),
lowerSolveThreadBlockSize);
lowerSolveThreadBlockSize,
m_stream.get());
} else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG) {
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, float, field_type>(
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
@ -147,7 +171,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
m_gpuDInv.data(),
d.data(),
v.data(),
lowerSolveThreadBlockSize);
lowerSolveThreadBlockSize,
m_stream.get());
} else {
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, field_type, field_type>(
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
@ -159,7 +184,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
m_gpuDInv.data(),
d.data(),
v.data(),
lowerSolveThreadBlockSize);
lowerSolveThreadBlockSize,
m_stream.get());
}
} else {
detail::DILU::solveLowerLevelSet<field_type, blocksize_>(
@ -172,7 +198,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
m_gpuDInv.data(),
d.data(),
v.data(),
lowerSolveThreadBlockSize);
lowerSolveThreadBlockSize,
m_stream.get());
}
levelStartIdx += numOfRowsInLevel;
}
@ -193,7 +220,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
numOfRowsInLevel,
m_gpuDInvFloat->data(),
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
} else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG){
detail::DILU::solveUpperLevelSetSplit<blocksize_, field_type, float>(
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
@ -204,7 +232,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
numOfRowsInLevel,
m_gpuDInv.data(),
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
} else {
detail::DILU::solveUpperLevelSetSplit<blocksize_, field_type, field_type>(
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
@ -215,7 +244,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
numOfRowsInLevel,
m_gpuDInv.data(),
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
}
} else {
detail::DILU::solveUpperLevelSet<field_type, blocksize_>(
@ -227,7 +257,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
numOfRowsInLevel,
m_gpuDInv.data(),
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
}
}
}
@ -252,7 +283,9 @@ GpuDILU<M, X, Y, l>::update()
{
OPM_TIMEBLOCK(prec_update);
{
update(m_moveThreadBlockSize, m_DILUFactorizationThreadBlockSize);
m_gpuMatrix.updateNonzeroValues(m_cpuMatrix); // send updated matrix to the gpu
reorderAndSplitMatrix(m_moveThreadBlockSize);
computeDiagonal(m_DILUFactorizationThreadBlockSize);
}
}
@ -260,13 +293,22 @@ template <class M, class X, class Y, int l>
void
GpuDILU<M, X, Y, l>::update(int moveThreadBlockSize, int factorizationBlockSize)
{
m_gpuMatrix.updateNonzeroValues(m_cpuMatrix, true); // send updated matrix to the gpu
computeDiagAndMoveReorderedData(moveThreadBlockSize, factorizationBlockSize);
// ensure that this stream only starts doing work when main stream is completed up to this point
OPM_GPU_SAFE_CALL(cudaEventRecord(m_before.get(), 0));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(m_stream.get(), m_before.get(), 0));
m_gpuMatrix.updateNonzeroValues(m_cpuMatrix); // send updated matrix to the gpu
reorderAndSplitMatrix(moveThreadBlockSize);
computeDiagonal(factorizationBlockSize);
// ensure that main stream only continues after this stream is completed
OPM_GPU_SAFE_CALL(cudaEventRecord(m_after.get(), m_stream.get()));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(0, m_after.get(), 0));
}
template <class M, class X, class Y, int l>
void
GpuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData(int moveThreadBlockSize, int factorizationBlockSize)
GpuDILU<M, X, Y, l>::reorderAndSplitMatrix(int moveThreadBlockSize)
{
if (m_splitMatrix) {
detail::copyMatDataToReorderedSplit<field_type, blocksize_>(
@ -290,7 +332,12 @@ GpuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData(int moveThreadBlockSize, in
m_gpuMatrixReordered->N(),
moveThreadBlockSize);
}
}
template <class M, class X, class Y, int l>
void
GpuDILU<M, X, Y, l>::computeDiagonal(int factorizationBlockSize)
{
int levelStartIdx = 0;
for (int level = 0; level < m_levelSets.size(); ++level) {
const int numOfRowsInLevel = m_levelSets[level].size();

View File

@ -24,8 +24,10 @@
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <opm/simulators/linalg/gpuistl/GpuSparseMatrix.hpp>
#include <opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp>
#include <opm/simulators/linalg/gpuistl/gpu_resources.hpp>
#include <vector>
#include <map>
#include <utility>
namespace Opm::gpuistl
@ -82,8 +84,11 @@ public:
//! \brief Updates the matrix data.
void update() final;
//! \brief perform matrix splitting and reordering
void reorderAndSplitMatrix(int moveThreadBlockSize);
//! \brief Compute the diagonal of the DILU, and update the data of the reordered matrix
void computeDiagAndMoveReorderedData(int moveThreadBlockSize, int factorizationThreadBlockSize);
void computeDiagonal(int factorizationThreadBlockSize);
//! \brief function that will experimentally tune the thread block sizes of the important cuda kernels
void tuneThreadBlockSizes();
@ -153,6 +158,16 @@ private:
int m_lowerSolveThreadBlockSize = -1;
int m_moveThreadBlockSize = -1;
int m_DILUFactorizationThreadBlockSize = -1;
// Graphs for Apply
std::map<std::pair<field_type*, const field_type*>, GPUGraph> m_apply_graphs;
std::map<std::pair<field_type*, const field_type*>, GPUGraphExec> m_executableGraphs;
// Stream for the DILU operations on the GPU
GPUStream m_stream{};
// Events for synchronization with main stream
GPUEvent m_before{};
GPUEvent m_after{};
};
} // end namespace Opm::gpuistl

View File

@ -266,6 +266,19 @@ GpuVector<T>::copyFromHost(const T* dataPointer, size_t numberOfElements)
OPM_GPU_SAFE_CALL(cudaMemcpy(data(), dataPointer, numberOfElements * sizeof(T), cudaMemcpyHostToDevice));
}
template <class T>
void
GpuVector<T>::copyFromHost(const T* dataPointer, size_t numberOfElements, cudaStream_t stream)
{
if (numberOfElements > dim()) {
OPM_THROW(std::runtime_error,
fmt::format("Requesting to copy too many elements. Vector has {} elements, while {} was requested.",
dim(),
numberOfElements));
}
OPM_GPU_SAFE_CALL(cudaMemcpyAsync(data(), dataPointer, numberOfElements * sizeof(T), cudaMemcpyHostToDevice, stream));
}
template <class T>
void
GpuVector<T>::copyToHost(T* dataPointer, size_t numberOfElements) const

View File

@ -203,6 +203,7 @@ public:
* @note assumes that this vector has numberOfElements elements
*/
void copyFromHost(const T* dataPointer, size_t numberOfElements);
void copyFromHost(const T* dataPointer, size_t numberOfElements, cudaStream_t stream);
/**
* @brief copyFromHost copies numberOfElements to the CPU memory dataPointer

View File

@ -37,6 +37,7 @@
#include <string>
#include <tuple>
#include <utility>
namespace Opm::gpuistl
{
@ -58,7 +59,6 @@ OpmGpuILU0<M, X, Y, l>::OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernel
, m_tuneThreadBlockSizes(tuneKernels)
, m_mixedPrecisionScheme(makeMatrixStorageMPScheme(mixedPrecisionScheme))
{
// TODO: Should in some way verify that this matrix is symmetric, only do it debug mode?
// Some sanity check
OPM_ERROR_IF(A.N() != m_gpuMatrix.N(),
@ -98,7 +98,8 @@ OpmGpuILU0<M, X, Y, l>::OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernel
}
}
LUFactorizeAndMoveData(m_moveThreadBlockSize, m_ILU0FactorizationThreadBlockSize);
reorderAndSplitMatrix(m_moveThreadBlockSize);
LUFactorizeMatrix(m_ILU0FactorizationThreadBlockSize);
if (m_tuneThreadBlockSizes) {
tuneThreadBlockSizes();
@ -117,7 +118,29 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d)
{
OPM_TIMEBLOCK(prec_apply);
{
apply(v, d, m_lowerSolveThreadBlockSize, m_upperSolveThreadBlockSize);
// ensure that this stream only starts doing work when main stream is completed up to this point
OPM_GPU_SAFE_CALL(cudaEventRecord(m_before.get(), 0));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(m_stream.get(), m_before.get(), 0));
const auto ptrs = std::make_pair(v.data(), d.data());
auto it = m_apply_graphs.find(ptrs);
if (it == m_apply_graphs.end()) {
OPM_GPU_SAFE_CALL(cudaStreamBeginCapture(m_stream.get(), cudaStreamCaptureModeGlobal));
// The apply functions contains lots of small function calls which call a kernel each
apply(v, d, m_lowerSolveThreadBlockSize, m_upperSolveThreadBlockSize);
OPM_GPU_SAFE_CALL(cudaStreamEndCapture(m_stream.get(), &m_apply_graphs[ptrs].get()));
OPM_GPU_SAFE_CALL(cudaGraphInstantiate(&m_executableGraphs[ptrs].get(), m_apply_graphs[ptrs].get(), nullptr, nullptr, 0));
}
OPM_GPU_SAFE_CALL(cudaGraphLaunch(m_executableGraphs[ptrs].get(), 0));
// ensure that main stream only continues after this stream is completed
OPM_GPU_SAFE_CALL(cudaEventRecord(m_after.get(), m_stream.get()));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(0, m_after.get(), 0));
}
}
@ -142,7 +165,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
numOfRowsInLevel,
d.data(),
v.data(),
lowerSolveThreadBlockSize);
lowerSolveThreadBlockSize,
m_stream.get());
}
else{
detail::ILU0::solveLowerLevelSetSplit<blocksize_, field_type, field_type>(
@ -154,7 +178,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
numOfRowsInLevel,
d.data(),
v.data(),
lowerSolveThreadBlockSize);
lowerSolveThreadBlockSize,
m_stream.get());
}
} else {
detail::ILU0::solveLowerLevelSet<field_type, blocksize_>(m_gpuReorderedLU->getNonZeroValues().data(),
@ -165,7 +190,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
numOfRowsInLevel,
d.data(),
v.data(),
lowerSolveThreadBlockSize);
lowerSolveThreadBlockSize,
m_stream.get());
}
levelStartIdx += numOfRowsInLevel;
}
@ -185,7 +211,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
numOfRowsInLevel,
m_gpuMatrixReorderedDiagFloat.value().data(),
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
}
else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG) {
detail::ILU0::solveUpperLevelSetSplit<blocksize_, field_type, float, field_type>(
@ -197,7 +224,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
numOfRowsInLevel,
m_gpuMatrixReorderedDiag.value().data(),
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
}
else{
detail::ILU0::solveUpperLevelSetSplit<blocksize_, field_type, field_type, field_type>(
@ -209,7 +237,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
numOfRowsInLevel,
m_gpuMatrixReorderedDiag.value().data(),
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
}
} else {
detail::ILU0::solveUpperLevelSet<field_type, blocksize_>(m_gpuReorderedLU->getNonZeroValues().data(),
@ -219,7 +248,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
levelStartIdx,
numOfRowsInLevel,
v.data(),
upperSolveThreadBlockSize);
upperSolveThreadBlockSize,
m_stream.get());
}
}
}
@ -241,10 +271,9 @@ template <class M, class X, class Y, int l>
void
OpmGpuILU0<M, X, Y, l>::update()
{
OPM_TIMEBLOCK(prec_update);
{
update(m_moveThreadBlockSize, m_ILU0FactorizationThreadBlockSize);
}
m_gpuMatrix.updateNonzeroValues(m_cpuMatrix); // send updated matrix to the gpu
reorderAndSplitMatrix(m_moveThreadBlockSize);
LUFactorizeMatrix(m_ILU0FactorizationThreadBlockSize);
}
template <class M, class X, class Y, int l>
@ -253,13 +282,23 @@ OpmGpuILU0<M, X, Y, l>::update(int moveThreadBlockSize, int factorizationThreadB
{
OPM_TIMEBLOCK(prec_update);
{
// ensure that this stream only starts doing work when main stream is completed up to this point
OPM_GPU_SAFE_CALL(cudaEventRecord(m_before.get(), 0));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(m_stream.get(), m_before.get(), 0));
m_gpuMatrix.updateNonzeroValues(m_cpuMatrix, true); // send updated matrix to the gpu
LUFactorizeAndMoveData(moveThreadBlockSize, factorizationThreadBlockSize);
reorderAndSplitMatrix(moveThreadBlockSize);
LUFactorizeMatrix(factorizationThreadBlockSize);
// ensure that main stream only continues after this stream is completed
OPM_GPU_SAFE_CALL(cudaEventRecord(m_after.get(), m_stream.get()));
OPM_GPU_SAFE_CALL(cudaStreamWaitEvent(0, m_after.get(), 0));
}
}
template <class M, class X, class Y, int l>
void
OpmGpuILU0<M, X, Y, l>::LUFactorizeAndMoveData(int moveThreadBlockSize, int factorizationThreadBlockSize)
OpmGpuILU0<M, X, Y, l>::reorderAndSplitMatrix(int moveThreadBlockSize)
{
if (m_splitMatrix) {
detail::copyMatDataToReorderedSplit<field_type, blocksize_>(
@ -283,6 +322,12 @@ OpmGpuILU0<M, X, Y, l>::LUFactorizeAndMoveData(int moveThreadBlockSize, int fact
m_gpuReorderedLU->N(),
moveThreadBlockSize);
}
}
template <class M, class X, class Y, int l>
void
OpmGpuILU0<M, X, Y, l>::LUFactorizeMatrix(int factorizationThreadBlockSize)
{
int levelStartIdx = 0;
for (int level = 0; level < m_levelSets.size(); ++level) {
const int numOfRowsInLevel = m_levelSets[level].size();

View File

@ -24,6 +24,7 @@
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <opm/simulators/linalg/gpuistl/GpuSparseMatrix.hpp>
#include <opm/simulators/linalg/gpuistl/GpuVector.hpp>
#include <opm/simulators/linalg/gpuistl/gpu_resources.hpp>
#include <opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp>
#include <optional>
#include <type_traits>
@ -84,8 +85,11 @@ public:
//! \brief Updates the matrix data.
void update() final;
//! \brief perform matrix splitting and reordering
void reorderAndSplitMatrix(int moveThreadBlockSize);
//! \brief Compute LU factorization, and update the data of the reordered matrix
void LUFactorizeAndMoveData(int moveThreadBlockSize, int factorizationThreadBlockSize);
void LUFactorizeMatrix(int factorizationThreadBlockSize);
//! \brief function that will experimentally tune the thread block sizes of the important cuda kernels
void tuneThreadBlockSizes();
@ -152,6 +156,16 @@ private:
int m_lowerSolveThreadBlockSize = -1;
int m_moveThreadBlockSize = -1;
int m_ILU0FactorizationThreadBlockSize = -1;
// Graphs for Apply
std::map<std::pair<field_type*, const field_type*>, GPUGraph> m_apply_graphs;
std::map<std::pair<field_type*, const field_type*>, GPUGraphExec> m_executableGraphs;
// Stream for the DILU operations on the GPU
GPUStream m_stream{};
// Events for synchronization with main stream
GPUEvent m_before{};
GPUEvent m_after{};
};
} // end namespace Opm::gpuistl

View File

@ -85,10 +85,12 @@ namespace
// TODO: removce the first condition in the for loop
for (int block = nnzIdx; block < nnzIdxLim; ++block) {
const int col = colIndices[block];
mmvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
mmvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(
&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
}
mvMixedGeneral<blocksize, DiagonalScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
mvMixedGeneral<blocksize, DiagonalScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(
&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
}
}
@ -137,10 +139,12 @@ namespace
LinearSolverScalar rhs[blocksize] = {0};
for (int block = nnzIdx; block < nnzIdxLim; ++block) {
const int col = colIndices[block];
umvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
umvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(
&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
}
mmvMixedGeneral<blocksize, DiagonalScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
mmvMixedGeneral<blocksize, DiagonalScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(
&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
}
}
@ -211,8 +215,8 @@ namespace
}
}
// TODO: rewrite such that during the factorization there is a dInv of InputScalar type that stores intermediate results
// TOOD: The important part is to only cast after that is fully computed
// TODO: rewrite such that during the factorization there is a dInv of InputScalar type that stores intermediate
// results TOOD: The important part is to only cast after that is fully computed
template <int blocksize, class InputScalar, class OutputScalar, MatrixStorageMPScheme mixedPrecisionScheme>
__global__ void cuComputeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
int* lowerRowIndices,
@ -239,7 +243,8 @@ namespace
InputScalar dInvTmp[blocksize * blocksize];
for (int i = 0; i < blocksize; ++i) {
for (int j = 0; j < blocksize; ++j) {
dInvTmp[i * blocksize + j] = srcDiagonal[reorderedRowIdx * blocksize * blocksize + i * blocksize + j];
dInvTmp[i * blocksize + j]
= srcDiagonal[reorderedRowIdx * blocksize * blocksize + i * blocksize + j];
}
}
@ -257,21 +262,26 @@ namespace
if constexpr (detail::storeOffDiagonalAsFloat(mixedPrecisionScheme)) {
// TODO: think long and hard about whether this performs only the wanted memory transfers
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedLowerMat[block * blocksize * blocksize], &dstLowerMat[block * blocksize * blocksize]);
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedUpperMat[symOppositeBlock * blocksize * blocksize], &dstUpperMat[symOppositeBlock * blocksize * blocksize]);
moveBlock<blocksize, InputScalar, OutputScalar>(
&srcReorderedLowerMat[block * blocksize * blocksize],
&dstLowerMat[block * blocksize * blocksize]);
moveBlock<blocksize, InputScalar, OutputScalar>(
&srcReorderedUpperMat[symOppositeBlock * blocksize * blocksize],
&dstUpperMat[symOppositeBlock * blocksize * blocksize]);
}
mmx2Subtraction<InputScalar, blocksize>(&srcReorderedLowerMat[block * blocksize * blocksize],
&dInv[col * blocksize * blocksize],
&srcReorderedUpperMat[symOppositeBlock * blocksize * blocksize],
dInvTmp);
&dInv[col * blocksize * blocksize],
&srcReorderedUpperMat[symOppositeBlock * blocksize * blocksize],
dInvTmp);
}
invBlockInPlace<InputScalar, blocksize>(dInvTmp);
moveBlock<blocksize, InputScalar, InputScalar>(dInvTmp, &dInv[reorderedRowIdx * blocksize * blocksize]);
if constexpr (detail::storeDiagonalAsFloat(mixedPrecisionScheme)) {
moveBlock<blocksize, InputScalar, OutputScalar>(dInvTmp, &dstDiag[reorderedRowIdx * blocksize * blocksize]); // important!
moveBlock<blocksize, InputScalar, OutputScalar>(
dInvTmp, &dstDiag[reorderedRowIdx * blocksize * blocksize]); // important!
}
}
}
@ -289,12 +299,13 @@ solveLowerLevelSet(T* reorderedMat,
const T* dInv,
const T* d,
T* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize
= ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(cuSolveLowerLevelSet<T, blocksize>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveLowerLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(
cuSolveLowerLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, d, v);
}
@ -310,13 +321,15 @@ solveLowerLevelSetSplit(MatrixScalar* reorderedMat,
const DiagonalScalar* dInv,
const LinearSolverScalar* d,
LinearSolverScalar* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar><<<nThreadBlocks, threadBlockSize>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, d, v);
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>
<<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, d, v);
}
// perform the upper solve for all rows in the same level set
template <class T, int blocksize>
@ -329,12 +342,13 @@ solveUpperLevelSet(T* reorderedMat,
int rowsInLevelSet,
const T* dInv,
T* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize
= ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(cuSolveUpperLevelSet<T, blocksize>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveUpperLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(
cuSolveUpperLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
}
@ -348,13 +362,15 @@ solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
int rowsInLevelSet,
const DiagonalScalar* dInv,
LinearSolverScalar* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar><<<nThreadBlocks, threadBlockSize>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>
<<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
}
template <class T, int blocksize>
@ -409,43 +425,134 @@ computeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, scheme>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, scheme><<<nThreadBlocks, threadBlockSize>>>(srcReorderedLowerMat,
lowerRowIndices,
lowerColIndices,
srcReorderedUpperMat,
upperRowIndices,
upperColIndices,
srcDiagonal,
reorderedToNatural,
naturalToReordered,
startIdx,
rowsInLevelSet,
dInv,
dstDiag,
dstLowerMat,
dstUpperMat);
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, scheme>
<<<nThreadBlocks, threadBlockSize>>>(srcReorderedLowerMat,
lowerRowIndices,
lowerColIndices,
srcReorderedUpperMat,
upperRowIndices,
upperColIndices,
srcDiagonal,
reorderedToNatural,
naturalToReordered,
startIdx,
rowsInLevelSet,
dInv,
dstDiag,
dstLowerMat,
dstUpperMat);
} else {
OPM_THROW(std::invalid_argument, "Inverting diagonal is not implemented for blocksizes > 3");
}
}
// TODO: format
#define INSTANTIATE_KERNEL_WRAPPERS(T, blocksize) \
template void computeDiluDiagonal<T, blocksize>(T*, int*, int*, int*, int*, const int, int, T*, int); \
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
template void solveUpperLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int); \
template void solveLowerLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, const T*, T*, int);
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const int, \
int, \
T*, \
double*, \
double*, \
double*, \
int); \
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const int, \
int, \
T*, \
float*, \
float*, \
float*, \
int); \
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const int, \
int, \
T*, \
float*, \
float*, \
float*, \
int); \
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const int, \
int, \
T*, \
double*, \
double*, \
double*, \
int); \
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const int, \
int, \
T*, \
float*, \
float*, \
float*, \
int); \
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const T*, \
int*, \
int*, \
const int, \
int, \
T*, \
double*, \
double*, \
double*, \
int); \
template void solveUpperLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int, cudaStream_t); \
template void solveLowerLevelSet<T, blocksize>( \
T*, int*, int*, int*, int, int, const T*, const T*, T*, int, cudaStream_t);
INSTANTIATE_KERNEL_WRAPPERS(float, 1);
INSTANTIATE_KERNEL_WRAPPERS(float, 2);
@ -460,19 +567,29 @@ INSTANTIATE_KERNEL_WRAPPERS(double, 4);
INSTANTIATE_KERNEL_WRAPPERS(double, 5);
INSTANTIATE_KERNEL_WRAPPERS(double, 6);
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar) \
template void solveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>( \
MatrixScalar*, int*, int*, int*, int, int, const DiagonalScalar*, LinearSolverScalar*, int); \
template void solveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>( \
MatrixScalar*, int*, int*, int*, int, int, const DiagonalScalar*, const LinearSolverScalar*, LinearSolverScalar*, int);
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar) \
template void solveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>( \
MatrixScalar*, int*, int*, int*, int, int, const DiagonalScalar*, LinearSolverScalar*, int, cudaStream_t); \
template void solveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>( \
MatrixScalar*, \
int*, \
int*, \
int*, \
int, \
int, \
const DiagonalScalar*, \
const LinearSolverScalar*, \
LinearSolverScalar*, \
int, \
cudaStream_t);
// TODO: be smarter about this... Surely this instantiates many more combinations that are actually needed
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(blocksize) \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, float, float, float); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, double, float); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, float, float); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, float, float, double); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, double, double); \
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(blocksize) \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, float, float, float); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, double, float); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, float, float); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, float, float, double); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, double, double); \
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, float, double);
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(1);

View File

@ -54,7 +54,8 @@ void solveLowerLevelSet(T* reorderedMat,
const T* dInv,
const T* d,
T* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Perform a lower solve on certain rows in a matrix that can safely be computed in parallel
@ -82,7 +83,8 @@ void solveLowerLevelSetSplit(MatrixScalar* reorderedUpperMat,
const DiagonalScalar* dInv,
const LinearSolverScalar* d,
LinearSolverScalar* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Perform an upper solve on certain rows in a matrix that can safely be computed in parallel
@ -108,7 +110,8 @@ void solveUpperLevelSet(T* reorderedMat,
int rowsInLevelSet,
const T* dInv,
T* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Perform an upper solve on certain rows in a matrix that can safely be computed in parallel
@ -134,7 +137,8 @@ void solveUpperLevelSetSplit(MatrixScalar* reorderedUpperMat,
int rowsInLevelSet,
const DiagonalScalar* dInv,
LinearSolverScalar* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Computes the ILU0 of the diagonal elements of the reordered matrix and stores it in a reordered vector

View File

@ -215,9 +215,9 @@ namespace
// as of now, if we are using mixed precision, then we are always storing the off-diagonals as floats,
// and sometimes also the diagonal.
if constexpr (detail::usingMixedPrecision(mixedPrecisionScheme)) {
// if we are want to store the entire matrix as a float then we must also move the diagonal block from double to float
// if not then we just use the double diagonal that is already now stored in srcDiagonal
if constexpr (detail::storeDiagonalAsFloat(mixedPrecisionScheme)){
// if we are want to store the entire matrix as a float then we must also move the diagonal block from
// double to float if not then we just use the double diagonal that is already now stored in srcDiagonal
if constexpr (detail::storeDiagonalAsFloat(mixedPrecisionScheme)) {
moveBlock<blocksize, InputScalar, OutputScalar>(&srcDiagonal[reorderedIdx * scalarsInBlock],
&dstDiagonal[reorderedIdx * scalarsInBlock]);
}
@ -362,12 +362,13 @@ solveLowerLevelSet(T* reorderedMat,
int rowsInLevelSet,
const T* d,
T* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize
= ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(cuSolveLowerLevelSet<T, blocksize>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveLowerLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(
cuSolveLowerLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, d, v);
}
// perform the upper solve for all rows in the same level set
@ -380,12 +381,13 @@ solveUpperLevelSet(T* reorderedMat,
int startIdx,
int rowsInLevelSet,
T* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize
= ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(cuSolveUpperLevelSet<T, blocksize>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveUpperLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(
cuSolveUpperLevelSet<T, blocksize><<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, v);
}
@ -399,13 +401,15 @@ solveLowerLevelSetSplit(MatrixScalar* reorderedMat,
int rowsInLevelSet,
const LinearSolverScalar* d,
LinearSolverScalar* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar><<<nThreadBlocks, threadBlockSize>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, d, v);
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>
<<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, d, v);
}
// perform the upper solve for all rows in the same level set
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
@ -418,13 +422,15 @@ solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
int rowsInLevelSet,
const DiagonalScalar* dInv,
LinearSolverScalar* v,
int thrBlockSize)
int thrBlockSize,
cudaStream_t stream)
{
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>, thrBlockSize);
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar><<<nThreadBlocks, threadBlockSize>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>
<<<nThreadBlocks, threadBlockSize, 0, stream>>>(
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
}
template <class T, int blocksize>
@ -484,28 +490,28 @@ LUFactorizationSplit(InputScalar* srcReorderedLowerMat,
}
#define INSTANTIATE_KERNEL_WRAPPERS(T, blocksize) \
template void solveUpperLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, T*, int); \
template void solveLowerLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int); \
template void solveUpperLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, T*, int, cudaStream_t); \
template void solveLowerLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int, cudaStream_t); \
template void LUFactorization<T, blocksize>(T*, int*, int*, int*, int*, size_t, int, int); \
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, float*, float*, float*, int*, int*, const int, int, int); \
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int); \
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, float*, float*, float*, int*, int*, const int, int, int); \
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int); \
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int); \
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, float*, float*, float*, int*, int*, const int, int, int); \
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int);
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int);
#define INSTANTIATE_BLOCK_SIZED_KERNEL_WRAPPERS(T) \
INSTANTIATE_KERNEL_WRAPPERS(T, 1); \
INSTANTIATE_KERNEL_WRAPPERS(T, 2); \
INSTANTIATE_KERNEL_WRAPPERS(T, 3); \
INSTANTIATE_KERNEL_WRAPPERS(T, 4); \
INSTANTIATE_KERNEL_WRAPPERS(T, 5); \
#define INSTANTIATE_BLOCK_SIZED_KERNEL_WRAPPERS(T) \
INSTANTIATE_KERNEL_WRAPPERS(T, 1); \
INSTANTIATE_KERNEL_WRAPPERS(T, 2); \
INSTANTIATE_KERNEL_WRAPPERS(T, 3); \
INSTANTIATE_KERNEL_WRAPPERS(T, 4); \
INSTANTIATE_KERNEL_WRAPPERS(T, 5); \
INSTANTIATE_KERNEL_WRAPPERS(T, 6);
INSTANTIATE_BLOCK_SIZED_KERNEL_WRAPPERS(float)
@ -514,32 +520,32 @@ INSTANTIATE_BLOCK_SIZED_KERNEL_WRAPPERS(double)
#define INSTANTIATE_MIXED_PRECISION_KERNEL_WRAPPERS(blocksize) \
/* double preconditioner */ \
template void solveLowerLevelSetSplit<blocksize, double, double>( \
double*, int*, int*, int*, int, int, const double*, double*, int); \
double*, int*, int*, int*, int, int, const double*, double*, int, cudaStream_t); \
/* float matrix, double compute preconditioner */ \
template void solveLowerLevelSetSplit<blocksize, double, float>( \
float*, int*, int*, int*, int, int, const double*, double*, int); \
float*, int*, int*, int*, int, int, const double*, double*, int, cudaStream_t); \
/* float preconditioner */ \
template void solveLowerLevelSetSplit<blocksize, float, float>( \
float*, int*, int*, int*, int, int, const float*, float*, int); \
float*, int*, int*, int*, int, int, const float*, float*, int, cudaStream_t); \
\
/* double preconditioner */ \
template void solveUpperLevelSetSplit<blocksize, double, double, double>( \
double*, int*, int*, int*, int, int, const double*, double*, int); \
template void solveUpperLevelSetSplit<blocksize, double, double, double>( \
double*, int*, int*, int*, int, int, const double*, double*, int, cudaStream_t); \
/* float matrix, double compute preconditioner */ \
template void solveUpperLevelSetSplit<blocksize, double, float, double>( \
float*, int*, int*, int*, int, int, const double*, double*, int); \
template void solveUpperLevelSetSplit<blocksize, double, float, double>( \
float*, int*, int*, int*, int, int, const double*, double*, int, cudaStream_t); \
/* float preconditioner */ \
template void solveUpperLevelSetSplit<blocksize, float, float, double>( \
float*, int*, int*, int*, int, int, const double*, float*, int); \
template void solveUpperLevelSetSplit<blocksize, float, float, double>( \
float*, int*, int*, int*, int, int, const double*, float*, int, cudaStream_t); \
/* double preconditioner */ \
template void solveUpperLevelSetSplit<blocksize, double, double, float>( \
double*, int*, int*, int*, int, int, const float*, double*, int); \
template void solveUpperLevelSetSplit<blocksize, double, double, float>( \
double*, int*, int*, int*, int, int, const float*, double*, int, cudaStream_t); \
/* float matrix, double compute preconditioner */ \
template void solveUpperLevelSetSplit<blocksize, double, float, float>( \
float*, int*, int*, int*, int, int, const float*, double*, int); \
template void solveUpperLevelSetSplit<blocksize, double, float, float>( \
float*, int*, int*, int*, int, int, const float*, double*, int, cudaStream_t); \
/* float preconditioner */ \
template void solveUpperLevelSetSplit<blocksize, float, float, float>( \
float*, int*, int*, int*, int, int, const float*, float*, int);
template void solveUpperLevelSetSplit<blocksize, float, float, float>( \
float*, int*, int*, int*, int, int, const float*, float*, int, cudaStream_t);
INSTANTIATE_MIXED_PRECISION_KERNEL_WRAPPERS(1);

View File

@ -46,7 +46,8 @@ void solveUpperLevelSet(T* reorderedMat,
int startIdx,
int rowsInLevelSet,
T* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Perform a lower solve on certain rows in a matrix that can safely be computed in parallel
@ -72,7 +73,8 @@ void solveLowerLevelSet(T* reorderedMat,
int rowsInLevelSet,
const T* d,
T* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Perform an upper solve on certain rows in a matrix that can safely be computed in parallel
@ -99,7 +101,8 @@ void solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
int rowsInLevelSet,
const DiagonalScalar* dInv,
LinearSolverScalar* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Perform an lower solve on certain rows in a matrix that can safely be computed in parallel
@ -127,7 +130,8 @@ void solveLowerLevelSetSplit(MatrixScalar* reorderedLowerMat,
int rowsInLevelSet,
const LinearSolverScalar* d,
LinearSolverScalar* v,
int threadBlockSize);
int threadBlockSize,
cudaStream_t stream);
/**
* @brief Computes the ILU Factorization of the input bcsr matrix, which is stored in a reordered way. The diagonal

View File

@ -32,6 +32,12 @@ const SupportedKeywordItems<std::string>&
fullySupported()
{
static const SupportedKeywordItems<std::string> fully_supported_keywords_strings = {
{
"GEFAC",
{
{3,{true, is_bool_convertible {}, "GEFAC(GRPNETWK): String value must be convertible to bool."}}, // USE_GEFAC_IN_NETWORK
},
},
{
"NEXTSTEP",
{
@ -44,6 +50,12 @@ fullySupported()
{3,{true, allow_values<std::string> {"ORAT", "WRAT", "GRAT", "LRAT", "RESV", "BHP"}, "WCONHIST(TARGET): should be set to ORAT/WRAT/GRAT/LRAT/RESV or BHP"}}, // CMODE
},
},
{
"WEFAC",
{
{3,{true, is_bool_convertible {}, "WEFAC(WELNETWK): String value must be convertible to bool."}}, // USE_WEFAC_IN_NETWORK
},
},
};
return fully_supported_keywords_strings;
@ -66,6 +78,12 @@ const SupportedKeywordItems<double>&
fullySupported()
{
static const SupportedKeywordItems<double> fully_supported_keywords_double = {
{
"NEFAC",
{
{2,{true, [](double x) { return x > 0 && x <= 1.0; }, "NEFAC(EFF_FACTOR: Efficiency must be in the range (0,1]"}}, // NETWORK_EFF_FACTOR
},
},
{
"WPIMULT",
{

View File

@ -111,12 +111,6 @@ partiallySupported()
{8,{true, allow_values<std::string> {"NO"}, "GECON(ENDRUN): End run not implemented"}},
},
},
{
"GEFAC",
{
{3,{true, allow_values<std::string> {"YES"}, "GEFAC(GRPNETWK): Extended Network Model efficiency NO option not implemented"}}, // TRANSFER_EXT_NET
},
},
{
"GRIDOPTS",
{
@ -273,12 +267,6 @@ partiallySupported()
{5,{true, allow_values<std::string> {"NO"}, "WAGHYSTR(WATER_MODEL): only the NO option is supported will STOP"}}, // WATER_MODEL
},
},
{
"WEFAC",
{
{3,{true, allow_values<std::string> {"YES"}, "WEFAC(WELNETWK): only the YES option is supported"}}, // EXTENDED_NETWORK_OPT
},
},
{
"WELSPECS",
{

View File

@ -397,7 +397,6 @@ const KeywordValidation::UnsupportedKeywords& unsupportedKeywords()
{"NARROW", {true, std::nullopt}},
{"NCONSUMP", {true, std::nullopt}},
{"NCOMPS", {false, std::nullopt}},
{"NEFAC", {true, std::nullopt}},
{"NETCOMPA", {true, std::nullopt}},
{"NEXT", {false, std::nullopt}},
{"NEXTSTPL", {true, std::nullopt}},

View File

@ -118,13 +118,13 @@ template<class Scalar> class WellContributions;
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::BlockVector<VectorBlockType> BVector;
using VectorBlockType = Dune::FieldVector<Scalar, numEq>;
using BVector = Dune::BlockVector<VectorBlockType>;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef BlackOilMICPModule<TypeTag> MICPModule;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using MICPModule = BlackOilMICPModule<TypeTag>;
// For the conversion between the surface volume rate and resrevoir voidage rate
// For the conversion between the surface volume rate and reservoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;

View File

@ -1373,6 +1373,10 @@ updateAndCommunicateGroupData(const int reportStepIdx,
reportStepIdx,
well_state_nupcol,
this->groupState());
WellGroupHelpers<Scalar>::updateNetworkLeafNodeProductionRates(schedule(),
reportStepIdx,
well_state_nupcol,
this->groupState());
WellGroupHelpers<Scalar>::updateGroupProductionRates(fieldGroup,
schedule(),

View File

@ -41,6 +41,7 @@ GroupState<Scalar> GroupState<Scalar>::serializationTestObject()
{
GroupState result(3);
result.m_production_rates = {{"test1", {1.0, 2.0}}};
result.m_network_leaf_node_production_rates={{"test1", {1.0, 20}}};
result.production_controls = {{"test2", Group::ProductionCMode::LRAT}};
result.prod_red_rates = {{"test3", {3.0, 4.0, 5.0}}};
result.inj_red_rates = {{"test4", {6.0, 7.0}}};
@ -61,6 +62,7 @@ template<class Scalar>
bool GroupState<Scalar>::operator==(const GroupState& other) const
{
return this->m_production_rates == other.m_production_rates &&
this->m_network_leaf_node_production_rates == other.m_network_leaf_node_production_rates &&
this->production_controls == other.production_controls &&
this->prod_red_rates == other.prod_red_rates &&
this->inj_red_rates == other.inj_red_rates &&
@ -93,6 +95,16 @@ void GroupState<Scalar>::update_production_rates(const std::string& gname,
this->m_production_rates[gname] = rates;
}
template<class Scalar>
void GroupState<Scalar>::update_network_leaf_node_production_rates(const std::string& gname,
const std::vector<Scalar>& rates)
{
if (rates.size() != this->num_phases)
throw std::logic_error("Wrong number of phases");
this->m_network_leaf_node_production_rates[gname] = rates;
}
template<class Scalar>
const std::vector<Scalar>&
GroupState<Scalar>::production_rates(const std::string& gname) const
@ -104,6 +116,17 @@ GroupState<Scalar>::production_rates(const std::string& gname) const
return group_iter->second;
}
template<class Scalar>
const std::vector<Scalar>&
GroupState<Scalar>::network_leaf_node_production_rates(const std::string& gname) const
{
auto group_iter = this->m_network_leaf_node_production_rates.find(gname);
if (group_iter == this->m_network_leaf_node_production_rates.end())
throw std::logic_error("No such group");
return group_iter->second;
}
//-------------------------------------------------------------------------
template<class Scalar>

View File

@ -52,7 +52,10 @@ public:
bool has_production_rates(const std::string& gname) const;
void update_production_rates(const std::string& gname,
const std::vector<Scalar>& rates);
void update_network_leaf_node_production_rates(const std::string& gname,
const std::vector<Scalar>& rates);
const std::vector<Scalar>& production_rates(const std::string& gname) const;
const std::vector<Scalar>& network_leaf_node_production_rates(const std::string& gname) const;
void update_well_group_thp(const std::string& gname, const double& thp);
Scalar well_group_thp(const std::string& gname) const;
@ -130,6 +133,7 @@ public:
auto forAllGroupData = [&](auto& func) {
iterateContainer(m_production_rates, func);
iterateContainer(m_network_leaf_node_production_rates, func);
iterateContainer(prod_red_rates, func);
iterateContainer(inj_red_rates, func);
iterateContainer(inj_resv_rates, func);
@ -187,6 +191,7 @@ public:
{
serializer(num_phases);
serializer(m_production_rates);
serializer(m_network_leaf_node_production_rates);
serializer(production_controls);
serializer(group_thp);
serializer(prod_red_rates);
@ -205,6 +210,7 @@ public:
private:
std::size_t num_phases{};
std::map<std::string, std::vector<Scalar>> m_production_rates;
std::map<std::string, std::vector<Scalar>> m_network_leaf_node_production_rates;
std::map<std::string, Group::ProductionCMode> production_controls;
std::map<std::string, std::vector<Scalar>> prod_red_rates;
std::map<std::string, std::vector<Scalar>> inj_red_rates;

View File

@ -152,6 +152,7 @@ update(const WellState<Scalar>& well_state,
}
}
}
init();
}
template<class FluidSystem, class Indices>
@ -208,6 +209,7 @@ updateNewton(const BVectorWell& dwells,
if (stop_or_zero_rate_target) {
value_[0][WQTotal] = 0.;
}
init();
}
template<class FluidSystem, class Indices>
@ -515,7 +517,7 @@ template<typename FluidSystem, typename Indices>
typename MultisegmentWellPrimaryVariables<FluidSystem,Indices>::EvalWell
MultisegmentWellPrimaryVariables<FluidSystem,Indices>::
volumeFraction(const int seg,
const unsigned compIdx) const
const int compIdx) const
{
if (has_wfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return evaluation_[seg][WFrac];
@ -584,7 +586,7 @@ typename MultisegmentWellPrimaryVariables<FluidSystem,Indices>::EvalWell
MultisegmentWellPrimaryVariables<FluidSystem,Indices>::
getSegmentRateUpwinding(const int seg,
const int seg_upwind,
const std::size_t comp_idx) const
const int comp_idx) const
{
// the result will contain the derivative with respect to WQTotal in segment seg,
// and the derivatives with respect to WFrac GFrac in segment seg_upwind.

View File

@ -115,7 +115,7 @@ public:
//! \brief Returns upwinding rate for a component in a segment.
EvalWell getSegmentRateUpwinding(const int seg,
const int seg_upwind,
const std::size_t comp_idx) const;
const int comp_idx) const;
//! \brief Get bottomhole pressure.
EvalWell getBhp() const;
@ -154,7 +154,7 @@ private:
//! \brief Returns volume fraction for component in a segment.
EvalWell volumeFraction(const int seg,
const unsigned compIdx) const;
const int compIdx) const;
//! \brief The values for the primary variables
//! \details Based on different solution strategies, the wells can have different primary variables

View File

@ -51,9 +51,9 @@ namespace Opm {
template<class Value>
RatioCalculator<Value>::
RatioCalculator(unsigned gasCompIdx,
unsigned oilCompIdx,
unsigned waterCompIdx,
RatioCalculator(int gasCompIdx,
int oilCompIdx,
int waterCompIdx,
std::string_view name)
: gasComp_{gasCompIdx}
, oilComp_(oilCompIdx)

View File

@ -39,9 +39,9 @@ class RatioCalculator
public:
using Scalar = decltype(getValue(Value{}));
RatioCalculator(unsigned gasCompIdx,
unsigned oilCompIdx,
unsigned waterCompIdx,
RatioCalculator(int gasCompIdx,
int oilCompIdx,
int waterCompIdx,
std::string_view name);
void disOilVapWatVolumeRatio(Value& volumeRatio,
@ -91,9 +91,9 @@ public:
const bool isProducer) const;
private:
unsigned gasComp_;
unsigned oilComp_;
unsigned waterComp_;
int gasComp_;
int oilComp_;
int waterComp_;
std::string name_;
};

View File

@ -731,7 +731,7 @@ connectionRateFoam(const std::vector<EvalWell>& cq_s,
}
case Phase::SOLVENT: {
if constexpr (Indices::enableSolvent)
return static_cast<unsigned>(Indices::contiSolventEqIdx);
return Indices::contiSolventEqIdx;
else
OPM_DEFLOG_THROW(std::runtime_error, "Foam transport phase is SOLVENT but SOLVENT is not activated.", deferred_logger);
}

View File

@ -223,6 +223,7 @@ update(const WellState<Scalar>& well_state,
// BHP
value_[Bhp] = ws.bhp;
init();
}
template<class FluidSystem, class Indices>
@ -301,6 +302,7 @@ updateNewton(const BVectorWell& dwells,
// so that bhp constaint can be an active control when needed.
constexpr Scalar bhp_lower_limit = 1. * unit::barsa - 1. * unit::Pascal;
value_[Bhp] = std::max(value_[Bhp] - dx1_limited, bhp_lower_limit);
init();
}
template<class FluidSystem, class Indices>
@ -320,6 +322,7 @@ updateNewtonPolyMW(const BVectorWell& dwells)
value_[pskin_index] -= relaxation_factor * dx_pskin;
}
}
init();
}
template<class FluidSystem, class Indices>
@ -446,7 +449,7 @@ copyToWellStatePolyMW(WellState<Scalar>& well_state) const
template<class FluidSystem, class Indices>
typename StandardWellPrimaryVariables<FluidSystem,Indices>::EvalWell
StandardWellPrimaryVariables<FluidSystem,Indices>::
volumeFraction(const unsigned compIdx) const
volumeFraction(const int compIdx) const
{
if (FluidSystem::numActivePhases() == 1) {
return EvalWell(numWellEq_ + Indices::numEq, 1.0);
@ -456,7 +459,7 @@ volumeFraction(const unsigned compIdx) const
return evaluation_[GFrac];
}
if (Indices::enableSolvent && compIdx == (unsigned)Indices::contiSolventEqIdx) {
if (Indices::enableSolvent && compIdx == Indices::contiSolventEqIdx) {
return evaluation_[SFrac];
}

View File

@ -157,7 +157,7 @@ private:
DeferredLogger& deferred_logger) const;
//! \brief Returns volume fraction for a component.
EvalWell volumeFraction(const unsigned compIdx) const;
EvalWell volumeFraction(const int compIdx) const;
//! \brief Handle non-reasonable fractions due to numerical overshoot.
void processFractions();

View File

@ -90,14 +90,15 @@ namespace Opm {
const Opm::WellState<Scalar>& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector)
const bool injector,
const bool network)
{
Scalar rate = 0.0;
for (const std::string& groupName : group.groups()) {
const auto& groupTmp = schedule.getGroup(groupName, reportStepIdx);
const auto& gefac = groupTmp.getGroupEfficiencyFactor();
rate += gefac * sumWellPhaseRates(res_rates, groupTmp, schedule, wellState, reportStepIdx, phasePos, injector);
const auto& gefac = groupTmp.getGroupEfficiencyFactor(network);
rate += gefac * sumWellPhaseRates(res_rates, groupTmp, schedule, wellState, reportStepIdx, phasePos, injector, network);
}
// only sum satelite production once
@ -126,8 +127,7 @@ namespace Opm {
if (wellEcl.getStatus() == Opm::Well::Status::SHUT)
continue;
const Scalar factor = wellEcl.getEfficiencyFactor() *
wellState[wellEcl.name()].efficiency_scaling_factor;
const Scalar factor = wellEcl.getEfficiencyFactor(network) * wellState[wellEcl.name()].efficiency_scaling_factor;
const auto& ws = wellState.well(well_index.value());
if (res_rates) {
const auto& well_rates = ws.reservoir_rates;
@ -744,6 +744,30 @@ updateGroupProductionRates(const Group& group,
group_state.update_production_rates(group.name(), rates);
}
template<class Scalar>
void WellGroupHelpers<Scalar>::
updateNetworkLeafNodeProductionRates(const Schedule& schedule,
const int reportStepIdx,
const WellState<Scalar>& wellState,
GroupState<Scalar>& group_state)
{
const auto& network = schedule[reportStepIdx].network();
if (network.active()) {
const int np = wellState.numPhases();
for (const auto& group_name : network.leaf_nodes()) {
assert(schedule[reportStepIdx].groups.has(group_name));
const auto& group = schedule[reportStepIdx].groups.get(group_name);
std::vector<Scalar> network_rates(np, 0.0);
if (group.numWells() > 0) {
for (int phase = 0; phase < np; ++phase) {
network_rates[phase] = sumWellPhaseRates(false, group, schedule, wellState, reportStepIdx, phase, /*isInjector*/ false, /*network*/ true);
}
}
group_state.update_network_leaf_node_production_rates(group_name, network_rates);
}
}
}
template<class Scalar>
void WellGroupHelpers<Scalar>::
updateREINForGroups(const Group& group,
@ -928,23 +952,15 @@ computeNetworkPressures(const Network::ExtNetwork& network,
continue;
}
node_inflows[node] = group_state.production_rates(node);
node_inflows[node] = group_state.network_leaf_node_production_rates(node);
// Add the ALQ amounts to the gas rates if requested.
if (network.node(node).add_gas_lift_gas()) {
const auto& group = schedule.getGroup(node, report_time_step);
for (const std::string& wellname : group.wells()) {
const Well& well = schedule.getWell(wellname, report_time_step);
if (well.isInjector() || !well_state.isOpen(wellname)) continue;
// Here we use the efficiency unconditionally, but if WEFAC item 3
// for the well is false (it defaults to true) then we should NOT use
// the efficiency factor. Fixing this requires not only changing the
// code here, but also:
// - Adding a member to the well for this flag, and setting it in Schedule::handleWEFAC().
// - Making the wells' maximum flows (i.e. not time-averaged by using a efficiency factor)
// available and using those (for wells with WEFAC(3) true only) when accumulating group
// rates, but ONLY for network calculations.
const Scalar efficiency = well.getEfficiencyFactor() *
well_state.getGlobalEfficiencyScalingFactor(wellname);
const Scalar efficiency = well.getEfficiencyFactor(/*network*/ true) * well_state.getGlobalEfficiencyScalingFactor(wellname);
node_inflows[node][BlackoilPhases::Vapour] += well_state.getALQ(wellname) * efficiency;
}
}
@ -962,13 +978,14 @@ computeNetworkPressures(const Network::ExtNetwork& network,
// Add downbranch rates to upbranch.
std::vector<Scalar>& up = node_inflows[(*upbranch).uptree_node()];
const std::vector<Scalar>& down = node_inflows[node];
// We now also support NEFAC
const Scalar efficiency = network.node(node).efficiency();
if (up.empty()) {
up = down;
} else {
assert (up.size() == down.size());
for (std::size_t ii = 0; ii < up.size(); ++ii) {
up[ii] += down[ii];
}
up = std::vector<Scalar>(down.size(), 0.0);
}
assert (up.size() == down.size());
for (std::size_t ii = 0; ii < up.size(); ++ii) {
up[ii] += efficiency*down[ii];
}
}
}

View File

@ -56,7 +56,8 @@ public:
const Opm::WellState<Scalar>& wellState,
const int reportStepIdx,
const int phasePos,
const bool injector);
const bool injector,
const bool network = false);
static Scalar satelliteProduction(const ScheduleState& sched,
const std::vector<std::string>& groups,
@ -199,6 +200,12 @@ public:
const WellState<Scalar>& wellState,
GroupState<Scalar>& group_state);
static void updateNetworkLeafNodeProductionRates(const Schedule& schedule,
const int reportStepIdx,
const WellState<Scalar>& wellState,
GroupState<Scalar>& group_state);
static void updateWellRatesFromGroupTargetScale(const Scalar scale,
const Group& group,
const Schedule& schedule,

View File

@ -78,7 +78,7 @@ flowPhaseToModelCompIdx(const int phaseIdx) const
template<class FluidSystem, class Indices>
int
WellInterfaceIndices<FluidSystem,Indices>::
modelCompIdxToFlowCompIdx(const unsigned compIdx) const
modelCompIdxToFlowCompIdx(const int compIdx) const
{
const auto& pu = this->phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == compIdx)

View File

@ -41,7 +41,7 @@ public:
using ModelParameters = typename WellInterfaceFluidSystem<FluidSystem>::ModelParameters;
int flowPhaseToModelCompIdx(const int phaseIdx) const;
int modelCompIdxToFlowCompIdx(const unsigned compIdx) const;
int modelCompIdxToFlowCompIdx(const int compIdx) const;
Scalar scalingFactor(const int phaseIdx) const;
template <class EvalWell>