mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #2914 from ducbueno/rm-oclcontainer
Removed WellContributionsOCLContainer class
This commit is contained in:
commit
b21b6cf28c
@ -61,7 +61,6 @@ if(OPENCL_FOUND)
|
||||
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/openclSolverBackend.cpp)
|
||||
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/BdaBridge.cpp)
|
||||
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/WellContributions.cpp)
|
||||
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/WellContributionsOCLContainer.cpp)
|
||||
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/MultisegmentWellContribution.cpp)
|
||||
endif()
|
||||
if(MPI_FOUND)
|
||||
@ -172,7 +171,6 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/simulators/linalg/bda/openclSolverBackend.hpp
|
||||
opm/simulators/linalg/bda/MultisegmentWellContribution.hpp
|
||||
opm/simulators/linalg/bda/WellContributions.hpp
|
||||
opm/simulators/linalg/bda/WellContributionsOCLContainer.hpp
|
||||
opm/simulators/linalg/amgcpr.hh
|
||||
opm/simulators/linalg/twolevelmethodcpr.hh
|
||||
opm/simulators/linalg/ExtractParallelGridInformationToISTL.hpp
|
||||
|
@ -251,6 +251,12 @@ namespace Opm
|
||||
if (use_gpu) {
|
||||
const std::string gpu_mode = EWOMS_GET_PARAM(TypeTag, std::string, GpuMode);
|
||||
WellContributions wellContribs(gpu_mode);
|
||||
#if HAVE_OPENCL
|
||||
if(gpu_mode.compare("opencl") == 0){
|
||||
const auto openclBackend = static_cast<const bda::openclSolverBackend<block_size>*>(&bdaBridge->getBackend());
|
||||
wellContribs.setOpenCLEnv(openclBackend->context.get(), openclBackend->queue.get());
|
||||
}
|
||||
#endif
|
||||
if (!useWellConn_) {
|
||||
simulator_.problem().wellModel().getWellContributions(wellContribs);
|
||||
}
|
||||
@ -301,7 +307,6 @@ namespace Opm
|
||||
const std::any& parallelInformation() const { return parallelInformation_; }
|
||||
|
||||
protected:
|
||||
|
||||
// 3x3 matrix block inversion was unstable at least 2.3 until and including
|
||||
// 2.5.0. There may still be some issue with the 4x4 matrix block inversion
|
||||
// we therefore still use the block inversion in OPM
|
||||
|
@ -222,7 +222,7 @@ void BdaBridge<BridgeMatrix, BridgeVector, block_size>::get_result(BridgeVector
|
||||
}
|
||||
}
|
||||
|
||||
#define INSTANTIATE_BDA_FUNCTIONS(n) \
|
||||
#define INSTANTIATE_BDA_FUNCTIONS(n) \
|
||||
template BdaBridge<Dune::BCRSMatrix<Opm::MatrixBlock<double, n, n>, std::allocator<Opm::MatrixBlock<double, n, n> > >, \
|
||||
Dune::BlockVector<Dune::FieldVector<double, n>, std::allocator<Dune::FieldVector<double, n> > >, \
|
||||
n>::BdaBridge \
|
||||
|
@ -47,8 +47,8 @@ template <class BridgeMatrix, class BridgeVector, int block_size>
|
||||
class BdaBridge
|
||||
{
|
||||
private:
|
||||
std::unique_ptr<bda::BdaSolver<block_size> > backend;
|
||||
bool use_gpu = false;
|
||||
std::unique_ptr<bda::BdaSolver<block_size> > backend;
|
||||
|
||||
public:
|
||||
/// Construct a BdaBridge
|
||||
@ -61,7 +61,6 @@ public:
|
||||
/// \param[in] opencl_ilu_reorder select either level_scheduling or graph_coloring, see BILU0.hpp for explanation
|
||||
BdaBridge(std::string gpu_mode, int linear_solver_verbosity, int maxit, double tolerance, unsigned int platformID, unsigned int deviceID, std::string opencl_ilu_reorder);
|
||||
|
||||
|
||||
/// Solve linear system, A*x = b
|
||||
/// \warning Values of A might get overwritten!
|
||||
/// \param[in] mat matrix A, should be of type Dune::BCRSMatrix
|
||||
@ -80,6 +79,10 @@ public:
|
||||
return use_gpu;
|
||||
}
|
||||
|
||||
const bda::BdaSolver<block_size>& getBackend() const {
|
||||
return *backend;
|
||||
}
|
||||
|
||||
}; // end class BdaBridge
|
||||
|
||||
}
|
||||
|
@ -66,7 +66,6 @@ namespace bda
|
||||
bool initialized = false;
|
||||
|
||||
public:
|
||||
|
||||
/// Construct a BdaSolver, can be cusparseSolver or openclSolver
|
||||
/// \param[in] linear_solver_verbosity verbosity of solver
|
||||
/// \param[in] maxit maximum number of iterations for solver
|
||||
|
@ -17,15 +17,13 @@
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <config.h> // CMake
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
|
||||
#include <opm/common/OpmLog/OpmLog.hpp>
|
||||
#include <opm/common/ErrorMacros.hpp>
|
||||
#include <opm/simulators/linalg/bda/openclKernels.hpp>
|
||||
#include "opm/simulators/linalg/bda/WellContributions.hpp"
|
||||
#include <opm/simulators/linalg/bda/WellContributions.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@ -34,75 +32,180 @@ WellContributions::WellContributions(std::string gpu_mode){
|
||||
if(gpu_mode.compare("cusparse") == 0){
|
||||
cuda_gpu = true;
|
||||
}
|
||||
|
||||
if(gpu_mode.compare("opencl") == 0){
|
||||
else if(gpu_mode.compare("opencl") == 0){
|
||||
opencl_gpu = true;
|
||||
}
|
||||
else{
|
||||
OPM_THROW(std::logic_error, "Error: invalid GPU mode");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
WellContributions::~WellContributions()
|
||||
{
|
||||
#if HAVE_CUDA
|
||||
// delete MultisegmentWellContributions
|
||||
for (auto ms : multisegments) {
|
||||
for (auto ms: multisegments) {
|
||||
delete ms;
|
||||
}
|
||||
multisegments.clear();
|
||||
|
||||
#if HAVE_CUDA
|
||||
if(cuda_gpu){
|
||||
freeCudaMemory(); // should come before 'delete[] h_x'
|
||||
}
|
||||
#endif
|
||||
|
||||
if(num_std_wells > 0){
|
||||
delete[] val_pointers;
|
||||
#if HAVE_OPENCL
|
||||
if(opencl_gpu){
|
||||
delete[] h_toOrder;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if HAVE_OPENCL
|
||||
if(opencl_gpu){
|
||||
if(num_ms_wells > 0){
|
||||
delete[] h_x;
|
||||
delete[] h_y;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if HAVE_OPENCL
|
||||
void WellContributions::setOpenCLEnv(cl::Context *context_, cl::CommandQueue *queue_){
|
||||
this->context = context_;
|
||||
this->queue = queue_;
|
||||
}
|
||||
|
||||
void WellContributions::setKernel(kernel_type *kernel_){
|
||||
this->kernel = kernel_;
|
||||
}
|
||||
|
||||
void WellContributions::apply_stdwells(cl::Buffer d_x, cl::Buffer d_y, cl::Buffer d_toOrder){
|
||||
const unsigned int work_group_size = 32;
|
||||
const unsigned int total_work_items = num_std_wells * work_group_size;
|
||||
const unsigned int lmem1 = sizeof(double) * work_group_size;
|
||||
const unsigned int lmem2 = sizeof(double) * dim_wells;
|
||||
|
||||
cl::Event event;
|
||||
event = (*kernel)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)),
|
||||
*d_Cnnzs_ocl, *d_Dnnzs_ocl, *d_Bnnzs_ocl, *d_Ccols_ocl, *d_Bcols_ocl, d_x, d_y, d_toOrder, dim, dim_wells, *d_val_pointers_ocl,
|
||||
cl::Local(lmem1), cl::Local(lmem2), cl::Local(lmem2));
|
||||
}
|
||||
|
||||
void WellContributions::apply_mswells(cl::Buffer d_x, cl::Buffer d_y, cl::Buffer d_toOrder){
|
||||
if(h_x == nullptr){
|
||||
h_x = new double[N];
|
||||
h_y = new double[N];
|
||||
}
|
||||
|
||||
if(h_toOrder == nullptr){
|
||||
h_toOrder = new int[Nb];
|
||||
}
|
||||
|
||||
if(!read_toOrder){
|
||||
events.resize(1);
|
||||
queue->enqueueReadBuffer(d_toOrder, CL_FALSE, 0, sizeof(int) * Nb, h_toOrder, nullptr, &events[0]);
|
||||
events[0].wait();
|
||||
events.clear();
|
||||
read_toOrder = true;
|
||||
}
|
||||
|
||||
events.resize(2);
|
||||
queue->enqueueReadBuffer(d_x, CL_FALSE, 0, sizeof(double) * N, h_x, nullptr, &events[0]);
|
||||
queue->enqueueReadBuffer(d_y, CL_FALSE, 0, sizeof(double) * N, h_y, nullptr, &events[1]);
|
||||
cl::WaitForEvents(events);
|
||||
events.clear();
|
||||
|
||||
// actually apply MultisegmentWells
|
||||
for(Opm::MultisegmentWellContribution *well: multisegments){
|
||||
well->setReordering(h_toOrder, true);
|
||||
well->apply(h_x, h_y);
|
||||
}
|
||||
|
||||
// copy vector y from CPU to GPU
|
||||
events.resize(1);
|
||||
queue->enqueueWriteBuffer(d_y, CL_FALSE, 0, sizeof(double) * N, h_y, nullptr, &events[0]);
|
||||
events[0].wait();
|
||||
events.clear();
|
||||
}
|
||||
|
||||
void WellContributions::apply(cl::Buffer d_x, cl::Buffer d_y, cl::Buffer d_toOrder){
|
||||
if(num_std_wells > 0){
|
||||
apply_stdwells(d_x, d_y, d_toOrder);
|
||||
}
|
||||
|
||||
if(num_ms_wells > 0){
|
||||
apply_mswells(d_x, d_y, d_toOrder);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void WellContributions::addMatrix([[maybe_unused]] MatrixType type, [[maybe_unused]] int *colIndices, [[maybe_unused]] double *values, [[maybe_unused]] unsigned int val_size)
|
||||
{
|
||||
if (!allocated) {
|
||||
OPM_THROW(std::logic_error, "Error cannot add wellcontribution before allocating memory in WellContributions");
|
||||
}
|
||||
|
||||
#if HAVE_CUDA
|
||||
if(cuda_gpu){
|
||||
if (!allocated) {
|
||||
OPM_THROW(std::logic_error, "Error cannot add wellcontribution before allocating memory in WellContributions");
|
||||
}
|
||||
addMatrixGpu(type, colIndices, values, val_size);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if HAVE_OPENCL
|
||||
if(opencl_gpu){
|
||||
if(h_val_pointers_ocl.empty()){
|
||||
h_val_pointers_ocl.push_back(0);
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case MatrixType::C:
|
||||
h_Ccols_ocl.insert(h_Ccols_ocl.end(), colIndices, colIndices + val_size);
|
||||
h_Cnnzs_ocl.insert(h_Cnnzs_ocl.end(), values, values + val_size * dim * dim_wells);
|
||||
events.resize(2);
|
||||
queue->enqueueWriteBuffer(*d_Cnnzs_ocl, CL_FALSE, sizeof(double) * num_blocks_so_far * dim * dim_wells, sizeof(double) * val_size * dim * dim_wells, values, nullptr, &events[0]);
|
||||
queue->enqueueWriteBuffer(*d_Ccols_ocl, CL_FALSE, sizeof(int) * num_blocks_so_far, sizeof(int) * val_size, colIndices, nullptr, &events[1]);
|
||||
cl::WaitForEvents(events);
|
||||
events.clear();
|
||||
break;
|
||||
|
||||
case MatrixType::D:
|
||||
h_Dnnzs_ocl.insert(h_Dnnzs_ocl.end(), values, values + dim_wells * dim_wells);
|
||||
events.resize(1);
|
||||
queue->enqueueWriteBuffer(*d_Dnnzs_ocl, CL_FALSE, sizeof(double) * num_std_wells_so_far * dim_wells * dim_wells, sizeof(double) * dim_wells * dim_wells, values, nullptr, &events[0]);
|
||||
events[0].wait();
|
||||
events.clear();
|
||||
break;
|
||||
|
||||
case MatrixType::B:
|
||||
h_Bcols_ocl.insert(h_Bcols_ocl.end(), colIndices, colIndices + val_size);
|
||||
h_Bnnzs_ocl.insert(h_Bnnzs_ocl.end(), values, values + val_size * dim * dim_wells);
|
||||
h_val_pointers_ocl.push_back(h_val_pointers_ocl.back() + val_size);
|
||||
events.resize(2);
|
||||
queue->enqueueWriteBuffer(*d_Bnnzs_ocl, CL_FALSE, sizeof(double) * num_blocks_so_far * dim * dim_wells, sizeof(double) * val_size * dim * dim_wells, values, nullptr, &events[0]);
|
||||
queue->enqueueWriteBuffer(*d_Bcols_ocl, CL_FALSE, sizeof(int) * num_blocks_so_far, sizeof(int) * val_size, colIndices, nullptr, &events[1]);
|
||||
cl::WaitForEvents(events);
|
||||
events.clear();
|
||||
|
||||
val_pointers[num_std_wells_so_far] = num_blocks_so_far;
|
||||
if (num_std_wells_so_far == num_std_wells - 1) {
|
||||
val_pointers[num_std_wells] = num_blocks;
|
||||
events.resize(1);
|
||||
queue->enqueueWriteBuffer(*d_val_pointers_ocl, CL_FALSE, 0, sizeof(unsigned int) * (num_std_wells + 1), val_pointers, nullptr, &events[0]);
|
||||
events[0].wait();
|
||||
events.clear();
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Error unsupported matrix ID for WellContributions::addMatrix()");
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
if(MatrixType::B == type) {
|
||||
num_blocks_so_far += val_size;
|
||||
num_std_wells_so_far++;
|
||||
}
|
||||
|
||||
#if !HAVE_CUDA && !HAVE_OPENCL
|
||||
OPM_THROW(std::logic_error, "Error cannot add StandardWell matrix on GPU because neither CUDA nor OpenCL were found by cmake");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void WellContributions::setBlockSize(unsigned int dim_, unsigned int dim_wells_)
|
||||
{
|
||||
dim = dim_;
|
||||
@ -115,7 +218,6 @@ void WellContributions::setBlockSize(unsigned int dim_, unsigned int dim_wells_)
|
||||
}
|
||||
}
|
||||
|
||||
#if HAVE_CUDA
|
||||
void WellContributions::addNumBlocks(unsigned int numBlocks)
|
||||
{
|
||||
if (allocated) {
|
||||
@ -128,19 +230,36 @@ void WellContributions::addNumBlocks(unsigned int numBlocks)
|
||||
void WellContributions::alloc()
|
||||
{
|
||||
if (num_std_wells > 0) {
|
||||
allocStandardWells();
|
||||
val_pointers = new unsigned int[num_std_wells + 1];
|
||||
|
||||
#if HAVE_CUDA
|
||||
if(cuda_gpu){
|
||||
allocStandardWells();
|
||||
}
|
||||
#endif
|
||||
|
||||
#if HAVE_OPENCL
|
||||
if(opencl_gpu){
|
||||
d_Cnnzs_ocl = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(double) * num_blocks * dim * dim_wells);
|
||||
d_Dnnzs_ocl = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(double) * num_std_wells * dim_wells * dim_wells);
|
||||
d_Bnnzs_ocl = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(double) * num_blocks * dim * dim_wells);
|
||||
d_Ccols_ocl = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(int) * num_blocks);
|
||||
d_Bcols_ocl = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(int) * num_blocks);
|
||||
d_val_pointers_ocl = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(unsigned int) * (num_std_wells + 1));
|
||||
}
|
||||
#endif
|
||||
allocated = true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void WellContributions::addMultisegmentWellContribution(unsigned int dim_, unsigned int dim_wells_,
|
||||
unsigned int Nb, unsigned int Mb,
|
||||
unsigned int Nb_, unsigned int Mb,
|
||||
unsigned int BnumBlocks, std::vector<double> &Bvalues, std::vector<unsigned int> &BcolIndices, std::vector<unsigned int> &BrowPointers,
|
||||
unsigned int DnumBlocks, double *Dvalues, UMFPackIndex *DcolPointers, UMFPackIndex *DrowIndices,
|
||||
std::vector<double> &Cvalues)
|
||||
{
|
||||
assert(dim==dim_);
|
||||
this->Nb = Nb_;
|
||||
this->N = Nb * dim_;
|
||||
MultisegmentWellContribution *well = new MultisegmentWellContribution(dim_, dim_wells_, Nb, Mb, BnumBlocks, Bvalues, BcolIndices, BrowPointers, DnumBlocks, Dvalues, DcolPointers, DrowIndices, Cvalues);
|
||||
multisegments.emplace_back(well);
|
||||
|
@ -127,16 +127,13 @@ __global__ void apply_well_contributions(
|
||||
|
||||
void WellContributions::allocStandardWells()
|
||||
{
|
||||
if (num_std_wells > 0) {
|
||||
cudaMalloc((void**)&d_Cnnzs, sizeof(double) * num_blocks * dim * dim_wells);
|
||||
cudaMalloc((void**)&d_Dnnzs, sizeof(double) * num_std_wells * dim_wells * dim_wells);
|
||||
cudaMalloc((void**)&d_Bnnzs, sizeof(double) * num_blocks * dim * dim_wells);
|
||||
cudaMalloc((void**)&d_Ccols, sizeof(int) * num_blocks);
|
||||
cudaMalloc((void**)&d_Bcols, sizeof(int) * num_blocks);
|
||||
val_pointers = new unsigned int[num_std_wells + 1];
|
||||
cudaMalloc((void**)&d_val_pointers, sizeof(int) * (num_std_wells + 1));
|
||||
cudaCheckLastError("apply_gpu malloc failed");
|
||||
}
|
||||
cudaMalloc((void**)&d_Cnnzs, sizeof(double) * num_blocks * dim * dim_wells);
|
||||
cudaMalloc((void**)&d_Dnnzs, sizeof(double) * num_std_wells * dim_wells * dim_wells);
|
||||
cudaMalloc((void**)&d_Bnnzs, sizeof(double) * num_blocks * dim * dim_wells);
|
||||
cudaMalloc((void**)&d_Ccols, sizeof(int) * num_blocks);
|
||||
cudaMalloc((void**)&d_Bcols, sizeof(int) * num_blocks);
|
||||
cudaMalloc((void**)&d_val_pointers, sizeof(unsigned int) * (num_std_wells + 1));
|
||||
cudaCheckLastError("apply_gpu malloc failed");
|
||||
}
|
||||
|
||||
void WellContributions::freeCudaMemory() {
|
||||
@ -147,14 +144,13 @@ void WellContributions::freeCudaMemory() {
|
||||
cudaFree(d_Bnnzs);
|
||||
cudaFree(d_Ccols);
|
||||
cudaFree(d_Bcols);
|
||||
delete[] val_pointers;
|
||||
cudaFree(d_val_pointers);
|
||||
}
|
||||
|
||||
if (num_ms_wells > 0 && h_x) {
|
||||
cudaFreeHost(h_x);
|
||||
cudaFreeHost(h_y);
|
||||
h_x = h_y = nullptr; // Mark as free for constructor
|
||||
cudaFreeHost(h_y);
|
||||
h_x = h_y = nullptr; // Mark as free for constructor
|
||||
}
|
||||
}
|
||||
|
||||
@ -200,10 +196,6 @@ void WellContributions::apply(double *d_x, double *d_y)
|
||||
|
||||
void WellContributions::addMatrixGpu(MatrixType type, int *colIndices, double *values, unsigned int val_size)
|
||||
{
|
||||
if (!allocated) {
|
||||
OPM_THROW(std::logic_error, "Error cannot add wellcontribution before allocating memory in WellContributions");
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case MatrixType::C:
|
||||
cudaMemcpy(d_Cnnzs + num_blocks_so_far * dim * dim_wells, values, sizeof(double) * val_size * dim * dim_wells, cudaMemcpyHostToDevice);
|
||||
@ -218,17 +210,13 @@ void WellContributions::addMatrixGpu(MatrixType type, int *colIndices, double *v
|
||||
val_pointers[num_std_wells_so_far] = num_blocks_so_far;
|
||||
if (num_std_wells_so_far == num_std_wells - 1) {
|
||||
val_pointers[num_std_wells] = num_blocks;
|
||||
cudaMemcpy(d_val_pointers, val_pointers, sizeof(unsigned int) * (num_std_wells + 1), cudaMemcpyHostToDevice);
|
||||
}
|
||||
cudaMemcpy(d_val_pointers, val_pointers, sizeof(int) * (num_std_wells + 1), cudaMemcpyHostToDevice);
|
||||
break;
|
||||
default:
|
||||
OPM_THROW(std::logic_error, "Error unsupported matrix ID for WellContributions::addMatrix()");
|
||||
}
|
||||
cudaCheckLastError("WellContributions::addMatrix() failed");
|
||||
if (MatrixType::B == type) {
|
||||
num_blocks_so_far += val_size;
|
||||
num_std_wells_so_far++;
|
||||
}
|
||||
}
|
||||
|
||||
void WellContributions::setCudaStream(cudaStream_t stream_)
|
||||
|
@ -71,30 +71,45 @@ public:
|
||||
B
|
||||
};
|
||||
|
||||
unsigned int dim; // number of columns in blocks in B and C, equal to StandardWell::numEq
|
||||
unsigned int dim_wells; // number of rows in blocks in B and C, equal to StandardWell::numStaticWellEq
|
||||
std::vector<MultisegmentWellContribution*> multisegments;
|
||||
|
||||
#if HAVE_OPENCL
|
||||
std::vector<double> h_Cnnzs_ocl, h_Dnnzs_ocl, h_Bnnzs_ocl;
|
||||
std::vector<int> h_Ccols_ocl, h_Bcols_ocl;
|
||||
std::vector<unsigned int> h_val_pointers_ocl;
|
||||
#endif
|
||||
|
||||
private:
|
||||
bool opencl_gpu = false;
|
||||
bool cuda_gpu = false;
|
||||
bool allocated = false;
|
||||
|
||||
unsigned int N; // number of rows (not blockrows) in vectors x and y
|
||||
unsigned int num_ms_wells = 0; // number of MultisegmentWells in this object, must equal multisegments.size()
|
||||
|
||||
#if HAVE_CUDA
|
||||
bool allocated = false;
|
||||
unsigned int Nb; // number of blockrows in vectors x and y
|
||||
unsigned int dim; // number of columns in blocks in B and C, equal to StandardWell::numEq
|
||||
unsigned int dim_wells; // number of rows in blocks in B and C, equal to StandardWell::numStaticWellEq
|
||||
unsigned int num_blocks = 0; // total number of blocks in all wells
|
||||
unsigned int num_std_wells = 0; // number of StandardWells in this object
|
||||
unsigned int num_ms_wells = 0; // number of MultisegmentWells in this object, must equal multisegments.size()
|
||||
unsigned int num_blocks_so_far = 0; // keep track of where next data is written
|
||||
unsigned int num_std_wells_so_far = 0; // keep track of where next data is written
|
||||
unsigned int *val_pointers = nullptr; // val_pointers[wellID] == index of first block for this well in Ccols and Bcols
|
||||
|
||||
double *h_x = nullptr;
|
||||
double *h_y = nullptr;
|
||||
std::vector<MultisegmentWellContribution*> multisegments;
|
||||
|
||||
#if HAVE_OPENCL
|
||||
typedef cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
||||
cl::Buffer&, const unsigned int, const unsigned int, cl::Buffer&,
|
||||
cl::LocalSpaceArg, cl::LocalSpaceArg, cl::LocalSpaceArg> kernel_type;
|
||||
|
||||
cl::Context *context;
|
||||
cl::CommandQueue *queue;
|
||||
kernel_type *kernel;
|
||||
std::vector<cl::Event> events;
|
||||
|
||||
std::unique_ptr<cl::Buffer> d_Cnnzs_ocl, d_Dnnzs_ocl, d_Bnnzs_ocl;
|
||||
std::unique_ptr<cl::Buffer> d_Ccols_ocl, d_Bcols_ocl;
|
||||
std::unique_ptr<cl::Buffer> d_val_pointers_ocl;
|
||||
|
||||
bool read_toOrder = false;
|
||||
int *h_toOrder = nullptr;
|
||||
#endif
|
||||
|
||||
#if HAVE_CUDA
|
||||
cudaStream_t stream;
|
||||
|
||||
// data for StandardWells, could remain nullptrs if not used
|
||||
@ -106,8 +121,12 @@ private:
|
||||
double *d_z1 = nullptr;
|
||||
double *d_z2 = nullptr;
|
||||
unsigned int *d_val_pointers = nullptr;
|
||||
double *h_x = nullptr;
|
||||
double *h_y = nullptr;
|
||||
|
||||
/// Allocate GPU memory for StandardWells
|
||||
void allocStandardWells();
|
||||
|
||||
/// Free GPU memory allocated with cuda.
|
||||
void freeCudaMemory();
|
||||
|
||||
/// Store a matrix in this object, in blocked csr format, can only be called after alloc() is called
|
||||
/// \param[in] type indicate if C, D or B is sent
|
||||
@ -115,12 +134,6 @@ private:
|
||||
/// \param[in] values array of nonzeroes
|
||||
/// \param[in] val_size number of blocks in C or B, ignored for D
|
||||
void addMatrixGpu(MatrixType type, int *colIndices, double *values, unsigned int val_size);
|
||||
|
||||
/// Allocate GPU memory for StandardWells
|
||||
void allocStandardWells();
|
||||
|
||||
/// Free GPU memory allocated with cuda.
|
||||
void freeCudaMemory();
|
||||
#endif
|
||||
|
||||
public:
|
||||
@ -134,6 +147,15 @@ public:
|
||||
/// \param[in] d_x vector x, must be on GPU
|
||||
/// \param[inout] d_y vector y, must be on GPU
|
||||
void apply(double *d_x, double *d_y);
|
||||
#endif
|
||||
|
||||
#if HAVE_OPENCL
|
||||
void setKernel(kernel_type *kernel_);
|
||||
void setOpenCLEnv(cl::Context *context_, cl::CommandQueue *queue_);
|
||||
void apply_stdwells(cl::Buffer d_x, cl::Buffer d_y, cl::Buffer d_toOrder);
|
||||
void apply_mswells(cl::Buffer d_x, cl::Buffer d_y, cl::Buffer d_toOrder);
|
||||
void apply(cl::Buffer d_x, cl::Buffer d_y, cl::Buffer d_toOrder);
|
||||
#endif
|
||||
|
||||
unsigned int getNumWells(){
|
||||
return num_std_wells + num_ms_wells;
|
||||
@ -145,7 +167,6 @@ public:
|
||||
|
||||
/// Allocate memory for the StandardWells
|
||||
void alloc();
|
||||
#endif
|
||||
|
||||
/// Create a new WellContributions
|
||||
WellContributions(std::string gpu_mode);
|
||||
@ -158,7 +179,6 @@ public:
|
||||
/// \param[in] dim_wells number of rows
|
||||
void setBlockSize(unsigned int dim, unsigned int dim_wells);
|
||||
|
||||
|
||||
/// Store a matrix in this object, in blocked csr format, can only be called after alloc() is called
|
||||
/// \param[in] type indicate if C, D or B is sent
|
||||
/// \param[in] colIndices columnindices of blocks in C or B, ignored for D
|
||||
@ -188,7 +208,6 @@ public:
|
||||
UMFPackIndex *DcolPointers, UMFPackIndex *DrowIndices,
|
||||
std::vector<double> &Cvalues);
|
||||
};
|
||||
|
||||
} //namespace Opm
|
||||
|
||||
#endif
|
||||
|
@ -1,176 +0,0 @@
|
||||
/*
|
||||
Copyright 2019 Equinor ASA
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#include <opm/common/OpmLog/OpmLog.hpp>
|
||||
#include <opm/common/ErrorMacros.hpp>
|
||||
#include <dune/common/timer.hh>
|
||||
|
||||
#include <opm/simulators/linalg/bda/WellContributionsOCLContainer.hpp>
|
||||
|
||||
namespace bda
|
||||
{
|
||||
using Opm::OpmLog;
|
||||
using Dune::Timer;
|
||||
|
||||
void WellContributionsOCLContainer::init(Opm::WellContributions &wellContribs, int N_, int Nb_){
|
||||
N = N_;
|
||||
Nb = Nb_;
|
||||
dim = wellContribs.dim;
|
||||
dim_wells = wellContribs.dim_wells;
|
||||
|
||||
if(!wellContribs.h_val_pointers_ocl.empty()){
|
||||
num_blocks = wellContribs.h_Ccols_ocl.size();
|
||||
num_std_wells = wellContribs.h_val_pointers_ocl.size() - 1;
|
||||
|
||||
s.Cnnzs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * wellContribs.h_Cnnzs_ocl.size());
|
||||
s.Dnnzs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * wellContribs.h_Dnnzs_ocl.size());
|
||||
s.Bnnzs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * wellContribs.h_Bnnzs_ocl.size());
|
||||
s.Ccols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * wellContribs.h_Ccols_ocl.size());
|
||||
s.Bcols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * wellContribs.h_Bcols_ocl.size());
|
||||
s.val_pointers = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(unsigned int) * wellContribs.h_val_pointers_ocl.size());
|
||||
s.toOrder = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * Nb);
|
||||
}
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::reinit(Opm::WellContributions &wellContribs){
|
||||
num_blocks = wellContribs.h_Ccols_ocl.size();
|
||||
num_std_wells = wellContribs.h_val_pointers_ocl.size() - 1;
|
||||
|
||||
s.Cnnzs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * wellContribs.h_Cnnzs_ocl.size());
|
||||
s.Dnnzs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * wellContribs.h_Dnnzs_ocl.size());
|
||||
s.Bnnzs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * wellContribs.h_Bnnzs_ocl.size());
|
||||
s.Ccols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * wellContribs.h_Ccols_ocl.size());
|
||||
s.Bcols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * wellContribs.h_Bcols_ocl.size());
|
||||
s.val_pointers = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(unsigned int) * wellContribs.h_val_pointers_ocl.size());
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::copy_to_gpu(Opm::WellContributions &wellContribs, int *toOrder_){
|
||||
toOrder.insert(toOrder.end(), toOrder_, toOrder_ + Nb);
|
||||
|
||||
if(num_std_wells > 0){
|
||||
cl::Event event;
|
||||
std::vector<cl::Event> events(7);
|
||||
queue->enqueueWriteBuffer(s.Cnnzs, CL_FALSE, 0, sizeof(double) * wellContribs.h_Cnnzs_ocl.size(), wellContribs.h_Cnnzs_ocl.data(), nullptr, &events[0]);
|
||||
queue->enqueueWriteBuffer(s.Dnnzs, CL_FALSE, 0, sizeof(double) * wellContribs.h_Dnnzs_ocl.size(), wellContribs.h_Dnnzs_ocl.data(), nullptr, &events[1]);
|
||||
queue->enqueueWriteBuffer(s.Bnnzs, CL_FALSE, 0, sizeof(double) * wellContribs.h_Bnnzs_ocl.size(), wellContribs.h_Bnnzs_ocl.data(), nullptr, &events[2]);
|
||||
queue->enqueueWriteBuffer(s.Ccols, CL_FALSE, 0, sizeof(int) * wellContribs.h_Ccols_ocl.size(), wellContribs.h_Ccols_ocl.data(), nullptr, &events[3]);
|
||||
queue->enqueueWriteBuffer(s.Bcols, CL_FALSE, 0, sizeof(int) * wellContribs.h_Bcols_ocl.size(), wellContribs.h_Bcols_ocl.data(), nullptr, &events[4]);
|
||||
queue->enqueueWriteBuffer(s.val_pointers, CL_FALSE, 0, sizeof(unsigned int) * wellContribs.h_val_pointers_ocl.size(), wellContribs.h_val_pointers_ocl.data(), nullptr, &events[5]);
|
||||
queue->enqueueWriteBuffer(s.toOrder, CL_FALSE, 0, sizeof(int) * toOrder.size(), toOrder.data(), nullptr, &events[6]);
|
||||
event.waitForEvents(events);
|
||||
}
|
||||
|
||||
if(!wellContribs.multisegments.empty()){
|
||||
multisegments = std::move(wellContribs.multisegments);
|
||||
num_ms_wells = multisegments.size();
|
||||
x_msw.reserve(N);
|
||||
y_msw.reserve(N);
|
||||
}
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::update_on_gpu(Opm::WellContributions &wellContribs){
|
||||
if(num_std_wells > 0){
|
||||
if(num_std_wells != wellContribs.h_val_pointers_ocl.size() || num_blocks != wellContribs.h_Ccols_ocl.size()){
|
||||
reinit(wellContribs);
|
||||
}
|
||||
|
||||
cl::Event event;
|
||||
std::vector<cl::Event> events(6);
|
||||
queue->enqueueWriteBuffer(s.Cnnzs, CL_FALSE, 0, sizeof(double) * wellContribs.h_Cnnzs_ocl.size(), wellContribs.h_Cnnzs_ocl.data(), nullptr, &events[0]);
|
||||
queue->enqueueWriteBuffer(s.Dnnzs, CL_FALSE, 0, sizeof(double) * wellContribs.h_Dnnzs_ocl.size(), wellContribs.h_Dnnzs_ocl.data(), nullptr, &events[1]);
|
||||
queue->enqueueWriteBuffer(s.Bnnzs, CL_FALSE, 0, sizeof(double) * wellContribs.h_Bnnzs_ocl.size(), wellContribs.h_Bnnzs_ocl.data(), nullptr, &events[2]);
|
||||
queue->enqueueWriteBuffer(s.Ccols, CL_FALSE, 0, sizeof(int) * wellContribs.h_Ccols_ocl.size(), wellContribs.h_Ccols_ocl.data(), nullptr, &events[3]);
|
||||
queue->enqueueWriteBuffer(s.Bcols, CL_FALSE, 0, sizeof(int) * wellContribs.h_Bcols_ocl.size(), wellContribs.h_Bcols_ocl.data(), nullptr, &events[4]);
|
||||
queue->enqueueWriteBuffer(s.val_pointers, CL_FALSE, 0, sizeof(unsigned int) * wellContribs.h_val_pointers_ocl.size(), wellContribs.h_val_pointers_ocl.data(), nullptr, &events[5]);
|
||||
event.waitForEvents(events);
|
||||
}
|
||||
|
||||
if(!wellContribs.multisegments.empty()){
|
||||
multisegments = std::move(wellContribs.multisegments);
|
||||
}
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::setOpenCLContext(cl::Context *context_){
|
||||
this->context = context_;
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::setOpenCLQueue(cl::CommandQueue *queue_){
|
||||
this->queue = queue_;
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::setKernel(cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
||||
cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
||||
const unsigned int, const unsigned int, cl::Buffer&,
|
||||
cl::LocalSpaceArg, cl::LocalSpaceArg, cl::LocalSpaceArg> *stdwell_apply_){
|
||||
this->stdwell_apply = stdwell_apply_;
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::applyStdWells(cl::Buffer& x, cl::Buffer& y){
|
||||
const unsigned int work_group_size = 32;
|
||||
const unsigned int total_work_items = num_std_wells * work_group_size;
|
||||
const unsigned int lmem1 = sizeof(double) * work_group_size;
|
||||
const unsigned int lmem2 = sizeof(double) * dim_wells;
|
||||
|
||||
cl::Event event;
|
||||
event = (*stdwell_apply)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)),
|
||||
s.Cnnzs, s.Dnnzs, s.Bnnzs, s.Ccols, s.Bcols, x, y, s.toOrder, dim, dim_wells, s.val_pointers,
|
||||
cl::Local(lmem1), cl::Local(lmem2), cl::Local(lmem2));
|
||||
}
|
||||
|
||||
|
||||
void WellContributionsOCLContainer::applyMSWells(cl::Buffer& x, cl::Buffer& y) {
|
||||
cl::Event event;
|
||||
std::vector<cl::Event> events(2);
|
||||
|
||||
// copy vectors x and y from GPU to CPU
|
||||
queue->enqueueReadBuffer(x, CL_FALSE, 0, sizeof(double) * N, x_msw.data(), nullptr, &events[0]);
|
||||
queue->enqueueReadBuffer(y, CL_FALSE, 0, sizeof(double) * N, y_msw.data(), nullptr, &events[1]);
|
||||
event.waitForEvents(events);
|
||||
|
||||
// actually apply MultisegmentWells
|
||||
for(auto well: multisegments){
|
||||
well->setReordering(toOrder.data(), true);
|
||||
well->apply(x_msw.data(), y_msw.data());
|
||||
}
|
||||
|
||||
// copy vector y from CPU to GPU
|
||||
queue->enqueueWriteBuffer(y, CL_FALSE, 0, sizeof(double) * N, y_msw.data(), nullptr, &event);
|
||||
event.wait();
|
||||
}
|
||||
|
||||
void WellContributionsOCLContainer::apply(cl::Buffer& x, cl::Buffer& y){
|
||||
if(num_std_wells > 0){
|
||||
applyStdWells(x, y);
|
||||
}
|
||||
|
||||
if(num_ms_wells > 0){
|
||||
applyMSWells(x, y);
|
||||
}
|
||||
}
|
||||
|
||||
WellContributionsOCLContainer::~WellContributionsOCLContainer(){
|
||||
if(num_ms_wells > 0){
|
||||
for (auto ms : multisegments) {
|
||||
delete ms;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // end namespace bda
|
@ -1,78 +0,0 @@
|
||||
/*
|
||||
Copyright 2019 Equinor ASA
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef WELLCONTRIBUTIONSOCLCONTAINER_HPP
|
||||
#define WELLCONTRIBUTIONSOCLCONTAINER_HPP
|
||||
|
||||
#include <opm/simulators/linalg/bda/opencl.hpp>
|
||||
#include <opm/simulators/linalg/bda/WellContributions.hpp>
|
||||
#include <opm/simulators/linalg/bda/MultisegmentWellContribution.hpp>
|
||||
|
||||
namespace bda
|
||||
{
|
||||
class WellContributionsOCLContainer
|
||||
{
|
||||
private:
|
||||
int N, Nb;
|
||||
unsigned int dim, dim_wells;
|
||||
unsigned int num_blocks = 0;
|
||||
unsigned int num_std_wells = 0;
|
||||
unsigned int num_ms_wells = 0; // number of MultisegmentWells in this object, must equal multisegments.size()
|
||||
|
||||
std::vector<int> toOrder;
|
||||
std::vector<double> x_msw, y_msw;
|
||||
std::vector<Opm::MultisegmentWellContribution*> multisegments;
|
||||
|
||||
typedef struct {
|
||||
cl::Buffer Cnnzs, Dnnzs, Bnnzs;
|
||||
cl::Buffer Ccols, Bcols;
|
||||
cl::Buffer val_pointers, toOrder;
|
||||
} GPU_storage;
|
||||
|
||||
GPU_storage s;
|
||||
cl::Context *context;
|
||||
cl::CommandQueue *queue;
|
||||
cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
||||
cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
||||
const unsigned int, const unsigned int, cl::Buffer&,
|
||||
cl::LocalSpaceArg, cl::LocalSpaceArg, cl::LocalSpaceArg> *stdwell_apply;
|
||||
|
||||
void reinit(Opm::WellContributions &wellContribs);
|
||||
void applyStdWells(cl::Buffer& x, cl::Buffer& y);
|
||||
void applyMSWells(cl::Buffer& x, cl::Buffer& y);
|
||||
|
||||
public:
|
||||
WellContributionsOCLContainer() {}
|
||||
~WellContributionsOCLContainer();
|
||||
WellContributionsOCLContainer(const WellContributionsOCLContainer&) = delete;
|
||||
WellContributionsOCLContainer& operator=(const WellContributionsOCLContainer&) = delete;
|
||||
void apply(cl::Buffer& x, cl::Buffer& y);
|
||||
void init(Opm::WellContributions &wellContribs, int N, int Nb);
|
||||
void copy_to_gpu(Opm::WellContributions &wellContribs, int *toOrder_);
|
||||
void update_on_gpu(Opm::WellContributions &wellContribs);
|
||||
void setOpenCLContext(cl::Context *context);
|
||||
void setOpenCLQueue(cl::CommandQueue *queue);
|
||||
void setKernel(cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
||||
cl::Buffer&, cl::Buffer&, cl::Buffer&, cl::Buffer&,
|
||||
const unsigned int, const unsigned int, cl::Buffer&,
|
||||
cl::LocalSpaceArg, cl::LocalSpaceArg, cl::LocalSpaceArg> *stdwell_apply_);
|
||||
};
|
||||
} // end namespace bda
|
||||
|
||||
#endif
|
@ -46,7 +46,142 @@ using Dune::Timer;
|
||||
template <unsigned int block_size>
|
||||
openclSolverBackend<block_size>::openclSolverBackend(int verbosity_, int maxit_, double tolerance_, unsigned int platformID_, unsigned int deviceID_, ILUReorder opencl_ilu_reorder) : BdaSolver<block_size>(verbosity_, maxit_, tolerance_, platformID_, deviceID_) {
|
||||
prec = new Preconditioner(opencl_ilu_reorder, verbosity_);
|
||||
wcontainer = new WContainer();
|
||||
|
||||
cl_int err = CL_SUCCESS;
|
||||
std::ostringstream out;
|
||||
try {
|
||||
std::vector<cl::Platform> platforms;
|
||||
cl::Platform::get(&platforms);
|
||||
if (platforms.size() == 0) {
|
||||
OPM_THROW(std::logic_error, "Error openclSolver is selected but no OpenCL platforms are found");
|
||||
}
|
||||
out << "Found " << platforms.size() << " OpenCL platforms" << "\n";
|
||||
|
||||
if (verbosity >= 1) {
|
||||
std::string platform_info;
|
||||
for (unsigned int i = 0; i < platforms.size(); ++i) {
|
||||
platforms[i].getInfo(CL_PLATFORM_NAME, &platform_info);
|
||||
out << "Platform name : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_VENDOR, &platform_info);
|
||||
out << "Platform vendor : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_VERSION, &platform_info);
|
||||
out << "Platform version : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_PROFILE, &platform_info);
|
||||
out << "Platform profile : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_EXTENSIONS, &platform_info);
|
||||
out << "Platform extensions: " << platform_info << "\n\n";
|
||||
}
|
||||
}
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
|
||||
if (platforms.size() <= platformID) {
|
||||
OPM_THROW(std::logic_error, "Error chosen too high OpenCL platform ID");
|
||||
} else {
|
||||
std::string platform_info;
|
||||
out << "Chosen:\n";
|
||||
platforms[platformID].getInfo(CL_PLATFORM_NAME, &platform_info);
|
||||
out << "Platform name : " << platform_info << "\n";
|
||||
platforms[platformID].getInfo(CL_PLATFORM_VERSION, &platform_info);
|
||||
out << "Platform version : " << platform_info << "\n";
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
}
|
||||
|
||||
cl_context_properties properties[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)(platforms[platformID])(), 0};
|
||||
context.reset(new cl::Context(CL_DEVICE_TYPE_GPU, properties));
|
||||
|
||||
devices = context->getInfo<CL_CONTEXT_DEVICES>();
|
||||
if (devices.size() == 0){
|
||||
OPM_THROW(std::logic_error, "Error openclSolver is selected but no OpenCL devices are found");
|
||||
}
|
||||
out << "Found " << devices.size() << " OpenCL devices" << "\n";
|
||||
|
||||
if (verbosity >= 1) {
|
||||
for (unsigned int i = 0; i < devices.size(); ++i) {
|
||||
std::string device_info;
|
||||
std::vector<size_t> work_sizes;
|
||||
std::vector<cl_device_partition_property> partitions;
|
||||
|
||||
devices[i].getInfo(CL_DEVICE_NAME, &device_info);
|
||||
out << "CL_DEVICE_NAME : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_VENDOR, &device_info);
|
||||
out << "CL_DEVICE_VENDOR : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DRIVER_VERSION, &device_info);
|
||||
out << "CL_DRIVER_VERSION : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_BUILT_IN_KERNELS, &device_info);
|
||||
out << "CL_DEVICE_BUILT_IN_KERNELS: " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_PROFILE, &device_info);
|
||||
out << "CL_DEVICE_PROFILE : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_OPENCL_C_VERSION, &device_info);
|
||||
out << "CL_DEVICE_OPENCL_C_VERSION: " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_EXTENSIONS, &device_info);
|
||||
out << "CL_DEVICE_EXTENSIONS : " << device_info << "\n";
|
||||
|
||||
devices[i].getInfo(CL_DEVICE_MAX_WORK_ITEM_SIZES, &work_sizes);
|
||||
for (unsigned int j = 0; j < work_sizes.size(); ++j) {
|
||||
out << "CL_DEVICE_MAX_WORK_ITEM_SIZES[" << j << "]: " << work_sizes[j] << "\n";
|
||||
}
|
||||
devices[i].getInfo(CL_DEVICE_PARTITION_PROPERTIES, &partitions);
|
||||
for (unsigned int j = 0; j < partitions.size(); ++j) {
|
||||
out << "CL_DEVICE_PARTITION_PROPERTIES[" << j << "]: " << partitions[j] << "\n";
|
||||
}
|
||||
partitions.clear();
|
||||
devices[i].getInfo(CL_DEVICE_PARTITION_TYPE, &partitions);
|
||||
for (unsigned int j = 0; j < partitions.size(); ++j) {
|
||||
out << "CL_DEVICE_PARTITION_PROPERTIES[" << j << "]: " << partitions[j] << "\n";
|
||||
}
|
||||
|
||||
// C-style properties
|
||||
cl_device_id tmp_id = devices[i]();
|
||||
cl_ulong size;
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_LOCAL_MEM_SIZE : " << size / 1024 << " KB\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_GLOBAL_MEM_SIZE : " << size / 1024 / 1024 / 1024 << " GB\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_MAX_COMPUTE_UNITS : " << size << "\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_MAX_MEM_ALLOC_SIZE : " << size / 1024 / 1024 << " MB\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_MAX_WORK_GROUP_SIZE : " << size << "\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_GLOBAL_MEM_SIZE : " << size / 1024 / 1024 / 1024 << " GB\n\n";
|
||||
}
|
||||
}
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
|
||||
if (devices.size() <= deviceID){
|
||||
OPM_THROW(std::logic_error, "Error chosen too high OpenCL device ID");
|
||||
} else {
|
||||
std::string device_info;
|
||||
out << "Chosen:\n";
|
||||
devices[deviceID].getInfo(CL_DEVICE_NAME, &device_info);
|
||||
out << "CL_DEVICE_NAME : " << device_info << "\n";
|
||||
devices[deviceID].getInfo(CL_DEVICE_VERSION, &device_info);
|
||||
out << "CL_DEVICE_VERSION : " << device_info << "\n";
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
}
|
||||
|
||||
cl::Event event;
|
||||
queue.reset(new cl::CommandQueue(*context, devices[deviceID], 0, &err));
|
||||
|
||||
} catch (const cl::Error& error) {
|
||||
std::ostringstream oss;
|
||||
oss << "OpenCL Error: " << error.what() << "(" << error.err() << ")\n";
|
||||
oss << getErrorString(error.err());
|
||||
// rethrow exception
|
||||
OPM_THROW(std::logic_error, oss.str());
|
||||
} catch (const std::logic_error& error) {
|
||||
// rethrow exception by OPM_THROW in the try{}, without this, a segfault occurs
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -177,11 +312,15 @@ void openclSolverBackend<block_size>::spmv_blocked_w(cl::Buffer vals, cl::Buffer
|
||||
}
|
||||
|
||||
template <unsigned int block_size>
|
||||
void openclSolverBackend<block_size>::gpu_pbicgstab(BdaResult& res) {
|
||||
void openclSolverBackend<block_size>::gpu_pbicgstab(WellContributions& wellContribs, BdaResult& res) {
|
||||
float it;
|
||||
double rho, rhop, beta, alpha, omega, tmp1, tmp2;
|
||||
double norm, norm_0;
|
||||
|
||||
if(wellContribs.getNumWells() > 0){
|
||||
wellContribs.setKernel(stdwell_apply_k.get());
|
||||
}
|
||||
|
||||
Timer t_total, t_prec(false), t_spmv(false), t_well(false), t_rest(false);
|
||||
|
||||
// set r to the initial residual
|
||||
@ -236,7 +375,9 @@ void openclSolverBackend<block_size>::gpu_pbicgstab(BdaResult& res) {
|
||||
|
||||
// apply wellContributions
|
||||
t_well.start();
|
||||
wcontainer->apply(d_pw, d_v);
|
||||
if(wellContribs.getNumWells() > 0){
|
||||
wellContribs.apply(d_pw, d_v, d_toOrder);
|
||||
}
|
||||
t_well.stop();
|
||||
|
||||
t_rest.start();
|
||||
@ -265,7 +406,9 @@ void openclSolverBackend<block_size>::gpu_pbicgstab(BdaResult& res) {
|
||||
|
||||
// apply wellContributions
|
||||
t_well.start();
|
||||
wcontainer->apply(d_s, d_t);
|
||||
if(wellContribs.getNumWells() > 0){
|
||||
wellContribs.apply(d_s, d_t, d_toOrder);
|
||||
}
|
||||
t_well.stop();
|
||||
|
||||
t_rest.start();
|
||||
@ -313,7 +456,7 @@ void openclSolverBackend<block_size>::gpu_pbicgstab(BdaResult& res) {
|
||||
|
||||
|
||||
template <unsigned int block_size>
|
||||
void openclSolverBackend<block_size>::initialize(int N_, int nnz_, int dim, double *vals, int *rows, int *cols, WellContributions &wellContribs) {
|
||||
void openclSolverBackend<block_size>::initialize(int N_, int nnz_, int dim, double *vals, int *rows, int *cols) {
|
||||
this->N = N_;
|
||||
this->nnz = nnz_;
|
||||
this->nnzb = nnz_ / block_size / block_size;
|
||||
@ -327,127 +470,7 @@ void openclSolverBackend<block_size>::initialize(int N_, int nnz_, int dim, doub
|
||||
out.str("");
|
||||
out.clear();
|
||||
|
||||
cl_int err = CL_SUCCESS;
|
||||
try {
|
||||
std::vector<cl::Platform> platforms;
|
||||
cl::Platform::get(&platforms);
|
||||
if (platforms.size() == 0) {
|
||||
OPM_THROW(std::logic_error, "Error openclSolver is selected but no OpenCL platforms are found");
|
||||
}
|
||||
out << "Found " << platforms.size() << " OpenCL platforms" << "\n";
|
||||
|
||||
if (verbosity >= 1) {
|
||||
std::string platform_info;
|
||||
for (unsigned int i = 0; i < platforms.size(); ++i) {
|
||||
platforms[i].getInfo(CL_PLATFORM_NAME, &platform_info);
|
||||
out << "Platform name : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_VENDOR, &platform_info);
|
||||
out << "Platform vendor : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_VERSION, &platform_info);
|
||||
out << "Platform version : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_PROFILE, &platform_info);
|
||||
out << "Platform profile : " << platform_info << "\n";
|
||||
platforms[i].getInfo(CL_PLATFORM_EXTENSIONS, &platform_info);
|
||||
out << "Platform extensions: " << platform_info << "\n\n";
|
||||
}
|
||||
}
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
|
||||
if (platforms.size() <= platformID) {
|
||||
OPM_THROW(std::logic_error, "Error chosen too high OpenCL platform ID");
|
||||
} else {
|
||||
std::string platform_info;
|
||||
out << "Chosen:\n";
|
||||
platforms[platformID].getInfo(CL_PLATFORM_NAME, &platform_info);
|
||||
out << "Platform name : " << platform_info << "\n";
|
||||
platforms[platformID].getInfo(CL_PLATFORM_VERSION, &platform_info);
|
||||
out << "Platform version : " << platform_info << "\n";
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
}
|
||||
|
||||
cl_context_properties properties[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)(platforms[platformID])(), 0};
|
||||
context.reset(new cl::Context(CL_DEVICE_TYPE_GPU, properties));
|
||||
|
||||
std::vector<cl::Device> devices = context->getInfo<CL_CONTEXT_DEVICES>();
|
||||
if (devices.size() == 0){
|
||||
OPM_THROW(std::logic_error, "Error openclSolver is selected but no OpenCL devices are found");
|
||||
}
|
||||
out << "Found " << devices.size() << " OpenCL devices" << "\n";
|
||||
|
||||
if (verbosity >= 1) {
|
||||
for (unsigned int i = 0; i < devices.size(); ++i) {
|
||||
std::string device_info;
|
||||
std::vector<size_t> work_sizes;
|
||||
std::vector<cl_device_partition_property> partitions;
|
||||
|
||||
devices[i].getInfo(CL_DEVICE_NAME, &device_info);
|
||||
out << "CL_DEVICE_NAME : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_VENDOR, &device_info);
|
||||
out << "CL_DEVICE_VENDOR : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DRIVER_VERSION, &device_info);
|
||||
out << "CL_DRIVER_VERSION : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_BUILT_IN_KERNELS, &device_info);
|
||||
out << "CL_DEVICE_BUILT_IN_KERNELS: " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_PROFILE, &device_info);
|
||||
out << "CL_DEVICE_PROFILE : " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_OPENCL_C_VERSION, &device_info);
|
||||
out << "CL_DEVICE_OPENCL_C_VERSION: " << device_info << "\n";
|
||||
devices[i].getInfo(CL_DEVICE_EXTENSIONS, &device_info);
|
||||
out << "CL_DEVICE_EXTENSIONS : " << device_info << "\n";
|
||||
|
||||
devices[i].getInfo(CL_DEVICE_MAX_WORK_ITEM_SIZES, &work_sizes);
|
||||
for (unsigned int j = 0; j < work_sizes.size(); ++j) {
|
||||
out << "CL_DEVICE_MAX_WORK_ITEM_SIZES[" << j << "]: " << work_sizes[j] << "\n";
|
||||
}
|
||||
devices[i].getInfo(CL_DEVICE_PARTITION_PROPERTIES, &partitions);
|
||||
for (unsigned int j = 0; j < partitions.size(); ++j) {
|
||||
out << "CL_DEVICE_PARTITION_PROPERTIES[" << j << "]: " << partitions[j] << "\n";
|
||||
}
|
||||
partitions.clear();
|
||||
devices[i].getInfo(CL_DEVICE_PARTITION_TYPE, &partitions);
|
||||
for (unsigned int j = 0; j < partitions.size(); ++j) {
|
||||
out << "CL_DEVICE_PARTITION_PROPERTIES[" << j << "]: " << partitions[j] << "\n";
|
||||
}
|
||||
|
||||
// C-style properties
|
||||
cl_device_id tmp_id = devices[i]();
|
||||
cl_ulong size;
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_LOCAL_MEM_SIZE : " << size / 1024 << " KB\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_GLOBAL_MEM_SIZE : " << size / 1024 / 1024 / 1024 << " GB\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_MAX_COMPUTE_UNITS : " << size << "\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_MAX_MEM_ALLOC_SIZE : " << size / 1024 / 1024 << " MB\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_MAX_WORK_GROUP_SIZE : " << size << "\n";
|
||||
clGetDeviceInfo(tmp_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &size, 0);
|
||||
out << "CL_DEVICE_GLOBAL_MEM_SIZE : " << size / 1024 / 1024 / 1024 << " GB\n\n";
|
||||
}
|
||||
}
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
|
||||
if (devices.size() <= deviceID){
|
||||
OPM_THROW(std::logic_error, "Error chosen too high OpenCL device ID");
|
||||
} else {
|
||||
std::string device_info;
|
||||
out << "Chosen:\n";
|
||||
devices[deviceID].getInfo(CL_DEVICE_NAME, &device_info);
|
||||
out << "CL_DEVICE_NAME : " << device_info << "\n";
|
||||
devices[deviceID].getInfo(CL_DEVICE_VERSION, &device_info);
|
||||
out << "CL_DEVICE_VERSION : " << device_info << "\n";
|
||||
OpmLog::info(out.str());
|
||||
out.str("");
|
||||
out.clear();
|
||||
}
|
||||
|
||||
cl::Program::Sources source(1, std::make_pair(axpy_s, strlen(axpy_s))); // what does this '1' mean? cl::Program::Sources is of type 'std::vector<std::pair<const char*, long unsigned int> >'
|
||||
source.emplace_back(std::make_pair(dot_1_s, strlen(dot_1_s)));
|
||||
source.emplace_back(std::make_pair(norm_s, strlen(norm_s)));
|
||||
@ -457,16 +480,10 @@ void openclSolverBackend<block_size>::initialize(int N_, int nnz_, int dim, doub
|
||||
source.emplace_back(std::make_pair(ILU_apply2_s, strlen(ILU_apply2_s)));
|
||||
source.emplace_back(std::make_pair(stdwell_apply_s, strlen(stdwell_apply_s)));
|
||||
program = cl::Program(*context, source);
|
||||
|
||||
program.build(devices);
|
||||
|
||||
cl::Event event;
|
||||
queue.reset(new cl::CommandQueue(*context, devices[deviceID], 0, &err));
|
||||
|
||||
prec->setOpenCLContext(context.get());
|
||||
prec->setOpenCLQueue(queue.get());
|
||||
wcontainer->setOpenCLContext(context.get());
|
||||
wcontainer->setOpenCLQueue(queue.get());
|
||||
|
||||
rb = new double[N];
|
||||
tmp = new double[N];
|
||||
@ -491,7 +508,7 @@ void openclSolverBackend<block_size>::initialize(int N_, int nnz_, int dim, doub
|
||||
d_Acols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * nnzb);
|
||||
d_Arows = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * (Nb + 1));
|
||||
|
||||
wcontainer->init(wellContribs, N, Nb);
|
||||
d_toOrder = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * Nb);
|
||||
|
||||
// queue.enqueueNDRangeKernel() is a blocking/synchronous call, at least for NVIDIA
|
||||
// cl::make_kernel<> myKernel(); myKernel(args, arg1, arg2); is also blocking
|
||||
@ -510,7 +527,6 @@ void openclSolverBackend<block_size>::initialize(int N_, int nnz_, int dim, doub
|
||||
cl::LocalSpaceArg, cl::LocalSpaceArg, cl::LocalSpaceArg>(cl::Kernel(program, "stdwell_apply")));
|
||||
|
||||
prec->setKernels(ILU_apply1_k.get(), ILU_apply2_k.get());
|
||||
wcontainer->setKernel(stdwell_apply_k.get());
|
||||
|
||||
} catch (const cl::Error& error) {
|
||||
std::ostringstream oss;
|
||||
@ -534,12 +550,10 @@ void openclSolverBackend<block_size>::finalize() {
|
||||
delete[] vals_contiguous;
|
||||
#endif
|
||||
delete prec;
|
||||
delete wcontainer;
|
||||
} // end finalize()
|
||||
|
||||
|
||||
template <unsigned int block_size>
|
||||
void openclSolverBackend<block_size>::copy_system_to_gpu(WellContributions &wellContribs) {
|
||||
void openclSolverBackend<block_size>::copy_system_to_gpu() {
|
||||
Timer t;
|
||||
cl::Event event;
|
||||
|
||||
@ -558,11 +572,10 @@ void openclSolverBackend<block_size>::copy_system_to_gpu(WellContributions &well
|
||||
queue->enqueueWriteBuffer(d_Acols, CL_TRUE, 0, sizeof(int) * nnzb, rmat->colIndices);
|
||||
queue->enqueueWriteBuffer(d_Arows, CL_TRUE, 0, sizeof(int) * (Nb + 1), rmat->rowPointers);
|
||||
queue->enqueueWriteBuffer(d_b, CL_TRUE, 0, sizeof(double) * N, rb);
|
||||
queue->enqueueWriteBuffer(d_toOrder, CL_TRUE, 0, sizeof(int) * Nb, toOrder);
|
||||
queue->enqueueFillBuffer(d_x, 0, 0, sizeof(double) * N, nullptr, &event);
|
||||
event.wait();
|
||||
|
||||
wcontainer->copy_to_gpu(wellContribs, toOrder);
|
||||
|
||||
if (verbosity > 2) {
|
||||
std::ostringstream out;
|
||||
out << "openclSolver::copy_system_to_gpu(): " << t.stop() << " s";
|
||||
@ -572,7 +585,7 @@ void openclSolverBackend<block_size>::copy_system_to_gpu(WellContributions &well
|
||||
|
||||
// don't copy rowpointers and colindices, they stay the same
|
||||
template <unsigned int block_size>
|
||||
void openclSolverBackend<block_size>::update_system_on_gpu(WellContributions &wellContribs) {
|
||||
void openclSolverBackend<block_size>::update_system_on_gpu() {
|
||||
Timer t;
|
||||
cl::Event event;
|
||||
|
||||
@ -592,8 +605,6 @@ void openclSolverBackend<block_size>::update_system_on_gpu(WellContributions &we
|
||||
queue->enqueueFillBuffer(d_x, 0, 0, sizeof(double) * N, nullptr, &event);
|
||||
event.wait();
|
||||
|
||||
wcontainer->update_on_gpu(wellContribs);
|
||||
|
||||
if (verbosity > 2) {
|
||||
std::ostringstream out;
|
||||
out << "openclSolver::update_system_on_gpu(): " << t.stop() << " s";
|
||||
@ -660,12 +671,12 @@ bool openclSolverBackend<block_size>::create_preconditioner() {
|
||||
|
||||
|
||||
template <unsigned int block_size>
|
||||
void openclSolverBackend<block_size>::solve_system(BdaResult &res) {
|
||||
void openclSolverBackend<block_size>::solve_system(WellContributions &wellContribs, BdaResult &res) {
|
||||
Timer t;
|
||||
|
||||
// actually solve
|
||||
try {
|
||||
gpu_pbicgstab(res);
|
||||
gpu_pbicgstab(wellContribs, res);
|
||||
} catch (const cl::Error& error) {
|
||||
std::ostringstream oss;
|
||||
oss << "openclSolverBackend::solve_system error: " << error.what() << "(" << error.err() << ")\n";
|
||||
@ -706,7 +717,7 @@ void openclSolverBackend<block_size>::get_result(double *x) {
|
||||
template <unsigned int block_size>
|
||||
SolverStatus openclSolverBackend<block_size>::solve_system(int N_, int nnz_, int dim, double *vals, int *rows, int *cols, double *b, WellContributions& wellContribs, BdaResult &res) {
|
||||
if (initialized == false) {
|
||||
initialize(N_, nnz_, dim, vals, rows, cols, wellContribs);
|
||||
initialize(N_, nnz_, dim, vals, rows, cols);
|
||||
if (analysis_done == false) {
|
||||
if (!analyse_matrix()) {
|
||||
return SolverStatus::BDA_SOLVER_ANALYSIS_FAILED;
|
||||
@ -716,15 +727,15 @@ SolverStatus openclSolverBackend<block_size>::solve_system(int N_, int nnz_, int
|
||||
if (!create_preconditioner()) {
|
||||
return SolverStatus::BDA_SOLVER_CREATE_PRECONDITIONER_FAILED;
|
||||
}
|
||||
copy_system_to_gpu(wellContribs);
|
||||
copy_system_to_gpu();
|
||||
} else {
|
||||
update_system(vals, b);
|
||||
if (!create_preconditioner()) {
|
||||
return SolverStatus::BDA_SOLVER_CREATE_PRECONDITIONER_FAILED;
|
||||
}
|
||||
update_system_on_gpu(wellContribs);
|
||||
update_system_on_gpu();
|
||||
}
|
||||
solve_system(res);
|
||||
solve_system(wellContribs, res);
|
||||
return SolverStatus::BDA_SOLVER_SUCCESS;
|
||||
}
|
||||
|
||||
|
@ -25,9 +25,10 @@
|
||||
#include <opm/simulators/linalg/bda/BdaSolver.hpp>
|
||||
#include <opm/simulators/linalg/bda/ILUReorder.hpp>
|
||||
#include <opm/simulators/linalg/bda/WellContributions.hpp>
|
||||
#include <opm/simulators/linalg/bda/WellContributionsOCLContainer.hpp>
|
||||
#include <opm/simulators/linalg/bda/BILU0.hpp>
|
||||
|
||||
#include <tuple>
|
||||
|
||||
namespace bda
|
||||
{
|
||||
|
||||
@ -37,7 +38,6 @@ class openclSolverBackend : public BdaSolver<block_size>
|
||||
{
|
||||
typedef BdaSolver<block_size> Base;
|
||||
typedef BILU0<block_size> Preconditioner;
|
||||
typedef WellContributionsOCLContainer WContainer;
|
||||
|
||||
using Base::N;
|
||||
using Base::Nb;
|
||||
@ -54,19 +54,17 @@ private:
|
||||
double *rb = nullptr; // reordered b vector, the matrix is reordered, so b must also be
|
||||
double *vals_contiguous = nullptr; // only used if COPY_ROW_BY_ROW is true in openclSolverBackend.cpp
|
||||
|
||||
bool analysis_done = false;
|
||||
|
||||
// OpenCL variables must be reusable, they are initialized in initialize()
|
||||
cl::Buffer d_Avals, d_Acols, d_Arows; // (reordered) matrix in BSR format on GPU
|
||||
cl::Buffer d_x, d_b, d_rb, d_r, d_rw, d_p; // vectors, used during linear solve
|
||||
cl::Buffer d_pw, d_s, d_t, d_v; // vectors, used during linear solve
|
||||
cl::Buffer d_tmp; // used as tmp GPU buffer for dot() and norm()
|
||||
cl::Buffer d_toOrder;
|
||||
double *tmp = nullptr; // used as tmp CPU buffer for dot() and norm()
|
||||
|
||||
// shared pointers are also passed to other objects
|
||||
std::vector<cl::Device> devices;
|
||||
cl::Program program;
|
||||
std::shared_ptr<cl::Context> context;
|
||||
std::shared_ptr<cl::CommandQueue> queue;
|
||||
std::unique_ptr<cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&, const unsigned int, cl::LocalSpaceArg> > dot_k;
|
||||
std::unique_ptr<cl::make_kernel<cl::Buffer&, cl::Buffer&, const unsigned int, cl::LocalSpaceArg> > norm_k;
|
||||
std::unique_ptr<cl::make_kernel<cl::Buffer&, const double, cl::Buffer&, const unsigned int> > axpy_k;
|
||||
@ -80,8 +78,8 @@ private:
|
||||
cl::LocalSpaceArg, cl::LocalSpaceArg, cl::LocalSpaceArg> > stdwell_apply_k;
|
||||
|
||||
Preconditioner *prec = nullptr; // only supported preconditioner is BILU0
|
||||
WContainer *wcontainer = nullptr;
|
||||
int *toOrder = nullptr, *fromOrder = nullptr; // BILU0 reorders rows of the matrix via these mappings
|
||||
bool analysis_done = false;
|
||||
std::unique_ptr<BlockedMatrix<block_size> > mat = nullptr; // original matrix
|
||||
BlockedMatrix<block_size> *rmat = nullptr; // reordered matrix, used for spmv
|
||||
|
||||
@ -133,7 +131,7 @@ private:
|
||||
/// Solve linear system using ilu0-bicgstab
|
||||
/// \param[in] wellContribs WellContributions, to apply them separately, instead of adding them to matrix A
|
||||
/// \param[inout] res summary of solver result
|
||||
void gpu_pbicgstab(BdaResult& res);
|
||||
void gpu_pbicgstab(WellContributions& wellContribs, BdaResult& res);
|
||||
|
||||
/// Initialize GPU and allocate memory
|
||||
/// \param[in] N number of nonzeroes, divide by dim*dim to get number of blocks
|
||||
@ -142,13 +140,13 @@ private:
|
||||
/// \param[in] vals array of nonzeroes, each block is stored row-wise and contiguous, contains nnz values
|
||||
/// \param[in] rows array of rowPointers, contains N/dim+1 values
|
||||
/// \param[in] cols array of columnIndices, contains nnz values
|
||||
void initialize(int N, int nnz, int dim, double *vals, int *rows, int *cols, WellContributions &wellContribs);
|
||||
void initialize(int N, int nnz, int dim, double *vals, int *rows, int *cols);
|
||||
|
||||
/// Clean memory
|
||||
void finalize();
|
||||
|
||||
/// Copy linear system to GPU
|
||||
void copy_system_to_gpu(WellContributions &wellContribs);
|
||||
void copy_system_to_gpu();
|
||||
|
||||
/// Reorder the linear system so it corresponds with the coloring
|
||||
/// \param[in] vals array of nonzeroes, each block is stored row-wise and contiguous, contains nnz values
|
||||
@ -156,7 +154,7 @@ private:
|
||||
void update_system(double *vals, double *b);
|
||||
|
||||
/// Update linear system on GPU, don't copy rowpointers and colindices, they stay the same
|
||||
void update_system_on_gpu(WellContributions &wellContribs);
|
||||
void update_system_on_gpu();
|
||||
|
||||
/// Analyse sparsity pattern to extract parallelism
|
||||
/// \return true iff analysis was successful
|
||||
@ -169,9 +167,11 @@ private:
|
||||
/// Solve linear system
|
||||
/// \param[in] wellContribs WellContributions, to apply them separately, instead of adding them to matrix A
|
||||
/// \param[inout] res summary of solver result
|
||||
void solve_system(BdaResult &res);
|
||||
void solve_system(WellContributions &wellContribs, BdaResult &res);
|
||||
|
||||
public:
|
||||
std::shared_ptr<cl::Context> context;
|
||||
std::shared_ptr<cl::CommandQueue> queue;
|
||||
|
||||
/// Construct a openclSolver
|
||||
/// \param[in] linear_solver_verbosity verbosity of openclSolver
|
||||
|
@ -951,7 +951,6 @@ namespace Opm {
|
||||
// prepare for StandardWells
|
||||
wellContribs.setBlockSize(StandardWell<TypeTag>::numEq, StandardWell<TypeTag>::numStaticWellEq);
|
||||
|
||||
#if HAVE_CUDA
|
||||
for(unsigned int i = 0; i < well_container_.size(); i++){
|
||||
auto& well = well_container_[i];
|
||||
std::shared_ptr<StandardWell<TypeTag> > derived = std::dynamic_pointer_cast<StandardWell<TypeTag> >(well);
|
||||
@ -964,7 +963,6 @@ namespace Opm {
|
||||
|
||||
// allocate memory for data from StandardWells
|
||||
wellContribs.alloc();
|
||||
#endif
|
||||
|
||||
for(unsigned int i = 0; i < well_container_.size(); i++){
|
||||
auto& well = well_container_[i];
|
||||
|
Loading…
Reference in New Issue
Block a user