Merge remote-tracking branch 'origin/master' into frankenstein

This commit is contained in:
Andreas Lauser 2016-11-18 11:09:41 +01:00
commit b2f7b8c989
17 changed files with 347 additions and 15 deletions

View File

@ -32,6 +32,7 @@
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/IterationReport.hpp>
#include <opm/autodiff/DefaultBlackoilSolutionState.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/NNC.hpp>
@ -113,6 +114,10 @@ namespace Opm {
typedef typename ModelTraits<Implementation>::ModelParameters ModelParameters;
typedef typename ModelTraits<Implementation>::SolutionState SolutionState;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<BlackoilPropsAdInterface, std::vector<int> >;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
@ -267,6 +272,18 @@ namespace Opm {
computeFluidInPlace(const ReservoirState& x,
const std::vector<int>& fipnum);
/// Function to compute the resevoir voidage for the production wells.
/// TODO: Probably should go to well model, while we then have duplications there for two Well Models.
/// With time, it looks like probably we will introduce a base class for Well Models.
void computeWellVoidageRates(const ReservoirState& reservoir_state,
const WellState& well_state,
std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs);
void applyVREPGroupControl(const ReservoirState& reservoir_state,
WellState& well_state);
protected:
// --------- Types and enums ---------
@ -321,6 +338,9 @@ namespace Opm {
double current_relaxation_;
V dx_old_;
// rate converter between the surface volume rates and reservoir voidage rates
RateConverterType rate_converter_;
// --------- Protected methods ---------
/// Access the most-derived class used for
@ -379,6 +399,7 @@ namespace Opm {
IterationReport
solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
const ReservoirState& reservoir_state,
SolutionState& state,
WellState& well_state);

View File

@ -137,6 +137,11 @@ typedef Eigen::Array<double,
, terminal_output_ (terminal_output)
, material_name_(0)
, current_relaxation_(1.0)
// only one region 0 used, which means average reservoir hydrocarbon conditions in
// the field will be calculated.
// TODO: more delicate implementation will be required if we want to handle different
// FIP regions specified from the well specifications.
, rate_converter_(fluid_, std::vector<int>(AutoDiffGrid::numCells(grid_),0))
{
if (active_[Water]) {
material_name_.push_back("Water");
@ -719,6 +724,13 @@ typedef Eigen::Array<double,
// get reasonable initial conditions for the wells
asImpl().wellModel().updateWellControls(well_state);
if (asImpl().wellModel().wellCollection()->groupControlActive()) {
// enforce VREP control when necessary.
applyVREPGroupControl(reservoir_state, well_state);
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
}
// Create the primary variables.
SolutionState state = asImpl().variableState(reservoir_state, well_state);
@ -755,7 +767,7 @@ typedef Eigen::Array<double,
asImpl().wellModel().extractWellPerfProperties(state, sd_.rq, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
iter_report = asImpl().solveWellEq(mob_perfcells, b_perfcells, state, well_state);
iter_report = asImpl().solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
}
V aliveWells;
std::vector<ADB> cq_s;
@ -770,6 +782,7 @@ typedef Eigen::Array<double,
asImpl().makeConstantState(state0);
asImpl().wellModel().computeWellPotentials(mob_perfcells, b_perfcells, state0, well_state);
}
return iter_report;
}
@ -901,8 +914,10 @@ typedef Eigen::Array<double,
// Add well contributions to mass balance equations
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = asImpl().numPhases();
const V& efficiency_factors = wellModel().wellPerfEfficiencyFactors();
for (int phase = 0; phase < np; ++phase) {
residual_.material_balance_eq[phase] -= superset(cq_s[phase], wellModel().wellOps().well_cells, nc);
residual_.material_balance_eq[phase] -= superset(efficiency_factors * cq_s[phase],
wellModel().wellOps().well_cells, nc);
}
}
@ -951,6 +966,7 @@ typedef Eigen::Array<double,
BlackoilModelBase<Grid, WellModel, Implementation>::
solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
const ReservoirState& reservoir_state,
SolutionState& state,
WellState& well_state)
{
@ -1017,6 +1033,12 @@ typedef Eigen::Array<double,
// wells active or not as parallel logging will take place that needs to
// communicate with all processes.
asImpl().wellModel().updateWellControls(well_state);
if (asImpl().wellModel().wellCollection()->groupControlActive()) {
// Enforce the VREP control
applyVREPGroupControl(reservoir_state, well_state);
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
}
} while (it < 15);
if (converged) {
@ -1700,6 +1722,7 @@ typedef Eigen::Array<double,
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < tol_well_control);
const bool converged = converged_MB && converged_CNV && converged_Well;
// Residual in Pascal can have high values and still be ok.
@ -1820,6 +1843,7 @@ typedef Eigen::Array<double,
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < tol_well_control);
const bool converged = converged_Well;
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
@ -2360,6 +2384,117 @@ typedef Eigen::Array<double,
return values;
}
template <class Grid, class WellModel, class Implementation>
void
BlackoilModelBase<Grid, WellModel, Implementation>::
computeWellVoidageRates(const ReservoirState& reservoir_state,
const WellState& well_state,
std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs)
{
// TODO: for now, we store the voidage rates for all the production wells.
// For injection wells, the rates are stored as zero.
// We only store the conversion coefficients for all the injection wells.
// Later, more delicate model will be implemented here.
// And for the moment, group control can only work for serial running.
const int nw = well_state.numWells();
const int np = numPhases();
const Wells* wells = asImpl().wellModel().wellsPointer();
// we calculate the voidage rate for each well, that means the sum of all the phases.
well_voidage_rates.resize(nw, 0);
// store the conversion coefficients, while only for the use of injection wells.
voidage_conversion_coeffs.resize(nw * np, 1.0);
int global_number_wells = nw;
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const auto& info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
global_number_wells = info.communicator().sum(global_number_wells);
if ( global_number_wells )
{
rate_converter_.defineState(reservoir_state, boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation()));
}
}
else
#endif
{
if ( global_number_wells )
{
rate_converter_.defineState(reservoir_state);
}
}
std::vector<double> well_rates(np, 0.0);
std::vector<double> convert_coeff(np, 1.0);
if ( !well_voidage_rates.empty() ) {
for (int w = 0; w < nw; ++w) {
const bool is_producer = wells->type[w] == PRODUCER;
// not sure necessary to change all the value to be positive
if (is_producer) {
std::transform(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin(), std::negate<double>());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff);
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
convert_coeff.begin(), 0.0);
} else {
// TODO: Not sure whether will encounter situation with all zero rates
// and whether it will cause problem here.
std::copy(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_.calcCoeff(well_rates, fipreg, convert_coeff);
std::copy(convert_coeff.begin(), convert_coeff.end(),
voidage_conversion_coeffs.begin() + np * w);
}
}
}
}
template <class Grid, class WellModel, class Implementation>
void
BlackoilModelBase<Grid, WellModel, Implementation>::
applyVREPGroupControl(const ReservoirState& reservoir_state,
WellState& well_state)
{
if (asImpl().wellModel().wellCollection()->havingVREPGroups()) {
std::vector<double> well_voidage_rates;
std::vector<double> voidage_conversion_coeffs;
computeWellVoidageRates(reservoir_state, well_state, well_voidage_rates, voidage_conversion_coeffs);
asImpl().wellModel().wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
// for the wells under group control, update the currentControls for the well_state
for (const WellNode* well_node : asImpl().wellModel().wellCollection()->getLeafNodes()) {
if (well_node->isInjector() && !well_node->individualControl()) {
const int well_index = well_node->selfIndex();
well_state.currentControls()[well_index] = well_node->groupControlIndex();
}
}
}
}
} // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED

View File

@ -169,6 +169,7 @@ namespace Opm {
IterationReport
solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
const ReservoirState& reservoir_state,
SolutionState& state,
WellState& well_state);

View File

@ -150,6 +150,11 @@ namespace Opm {
// get reasonable initial conditions for the wells
wellModel().updateWellControls(well_state);
// enforce VREP control when necessary.
Base::applyVREPGroupControl(reservoir_state, well_state);
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
// Create the primary variables.
SolutionState state = asImpl().variableState(reservoir_state, well_state);
@ -198,7 +203,7 @@ namespace Opm {
wellModel().extractWellPerfProperties(state, sd_.rq, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
iter_report = asImpl().solveWellEq(mob_perfcells, b_perfcells, state, well_state);
iter_report = asImpl().solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
}
// the perforation flux here are different
@ -221,10 +226,11 @@ namespace Opm {
IterationReport
BlackoilMultiSegmentModel<Grid>::solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
const ReservoirState& reservoir_state,
SolutionState& state,
WellState& well_state)
{
IterationReport iter_report = Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
IterationReport iter_report = Base::solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
if (iter_report.converged) {
// We must now update the state.segp and state.segqs members,

View File

@ -135,7 +135,7 @@ namespace Opm {
asImpl().wellModel().extractWellPerfProperties(state, sd_.rq, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
iter_report = asImpl().solveWellEq(mob_perfcells, b_perfcells, state, well_state);
iter_report = asImpl().solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
}
V aliveWells;
std::vector<ADB> cq_s;

View File

@ -141,10 +141,13 @@ namespace Opm {
MultisegmentWells::
MultisegmentWells(const Wells* wells_arg,
WellCollection* well_collection,
const std::vector< const Well* >& wells_ecl,
const int time_step)
: wells_multisegment_( createMSWellVector(wells_arg, wells_ecl, time_step) )
, wops_ms_(wells_multisegment_)
, well_collection_(well_collection)
, well_perforation_efficiency_factors_(Vector::Ones(numWells()))
, num_phases_(wells_arg ? wells_arg->number_of_phases : 0)
, wells_(wells_arg)
, fluid_(nullptr)
@ -270,6 +273,8 @@ namespace Opm {
}
assert(start_perforation == nperf_total_);
calculateEfficiencyFactors();
}
@ -381,6 +386,56 @@ namespace Opm {
return indices;
}
WellCollection*
MultisegmentWells::
wellCollection() const {
return well_collection_;
}
void
MultisegmentWells::
calculateEfficiencyFactors()
{
if ( !localWellsActive() ) {
return;
}
// get efficiency factor for each well first
const int nw = wells_->number_of_wells;
Vector well_efficiency_factors = Vector::Ones(nw);
for (int w = 0; w < nw; ++w) {
const std::string well_name = wells_->name[w];
// get the well node in the well collection
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
well_efficiency_factors(w) = well_node.getAccumulativeEfficiencyFactor();
}
// map them to the perforation.
well_perforation_efficiency_factors_ = wellOps().w2p * well_efficiency_factors.matrix();
}
const
MultisegmentWells::Vector&
MultisegmentWells::
wellPerfEfficiencyFactors() const
{
return well_perforation_efficiency_factors_;
}
} // end of namespace Opm

View File

@ -32,6 +32,7 @@
#include <cassert>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/wells/WellCollection.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
@ -89,6 +90,7 @@ namespace Opm {
// TODO: using a vector of WellMultiSegmentConstPtr for now
// TODO: it should use const Wells or something else later.
MultisegmentWells(const Wells* wells_arg,
WellCollection* well_collection,
const std::vector< const Well* >& wells_ecl,
const int time_step);
@ -229,11 +231,26 @@ namespace Opm {
const std::vector<ADB>& kr_adb,
const std::vector<ADB>& fluid_density);
WellCollection* wellCollection() const;
void calculateEfficiencyFactors();
const Vector& wellPerfEfficiencyFactors() const;
protected:
// TODO: probably a wells_active_ will be required here.
bool wells_active_;
std::vector<WellMultiSegmentConstPtr> wells_multisegment_;
MultisegmentWellOps wops_ms_;
// It will probably need to be updated during running time.
WellCollection* well_collection_;
// The efficiency factor for each connection
// It is specified based on wells and groups
// By default, they should all be one.
Vector well_perforation_efficiency_factors_;
const int num_phases_;
int nseg_total_;
int nperf_total_;

View File

@ -904,6 +904,20 @@ namespace Opm
break;
}
if (wellCollection()->groupControlActive()) {
// get the well node in the well collection
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
// update whehter the well is under group control or individual control
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
}
}

View File

@ -201,7 +201,7 @@ namespace Opm
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
const WellModel well_model(wells);
const WellModel well_model(wells, &(wells_manager.wellCollection()));
std::unique_ptr<Solver> solver = asImpl().createSolver(well_model);

View File

@ -122,7 +122,7 @@ namespace Opm
const auto wells_ecl = eclipse_state_->getSchedule().getWells(timer.currentStepNum());
const int current_time_step = timer.currentStepNum();
const WellModel well_model(wells, wells_ecl, current_time_step);
const WellModel well_model(wells, &(wells_manager.wellCollection()), wells_ecl, current_time_step);
well_state.init(well_model, state, prev_well_state, wells);

View File

@ -38,6 +38,7 @@
#include <opm/core/wells.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/core/wells/WellCollection.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
@ -70,7 +71,7 @@ namespace Opm {
Eigen::Dynamic,
Eigen::RowMajor>;
// --------- Public methods ---------
explicit StandardWells(const Wells* wells_arg);
StandardWells(const Wells* wells_arg, WellCollection* well_collection);
void init(const BlackoilPropsAdInterface* fluid_arg,
const std::vector<bool>* active_arg,
@ -190,10 +191,24 @@ namespace Opm {
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const;
WellCollection* wellCollection() const;
void calculateEfficiencyFactors();
const Vector& wellPerfEfficiencyFactors() const;
protected:
bool wells_active_;
const Wells* wells_;
const WellOps wops_;
// It will probably need to be updated during running time.
WellCollection* well_collection_;
// The efficiency factor for each connection
// It is specified based on wells and groups
// By default, they should all be one.
Vector well_perforation_efficiency_factors_;
const BlackoilPropsAdInterface* fluid_;
const std::vector<bool>* active_;

View File

@ -37,7 +37,7 @@ namespace Opm {
using Base::computeWellConnectionDensitesPressures;
// --------- Public methods ---------
StandardWellsSolvent(const Wells* wells_arg);
StandardWellsSolvent(const Wells* wells_arg, WellCollection* well_collection);
// added the Solvent related
void initSolvent(const SolventPropsAdFromDeck* solvent_props,

View File

@ -32,8 +32,8 @@ namespace Opm
StandardWellsSolvent::StandardWellsSolvent(const Wells* wells_arg)
: Base(wells_arg)
StandardWellsSolvent::StandardWellsSolvent(const Wells* wells_arg, WellCollection* well_collection)
: Base(wells_arg, well_collection)
, solvent_props_(nullptr)
, solvent_pos_(-1)
, has_solvent_(false)

View File

@ -71,10 +71,12 @@ namespace Opm
StandardWells::StandardWells(const Wells* wells_arg)
StandardWells::StandardWells(const Wells* wells_arg, WellCollection* well_collection)
: wells_active_(wells_arg!=nullptr)
, wells_(wells_arg)
, wops_(wells_arg)
, well_collection_(well_collection)
, well_perforation_efficiency_factors_(Vector::Ones(wells_!=nullptr ? wells_->well_connpos[wells_->number_of_wells] : 0))
, fluid_(nullptr)
, active_(nullptr)
, phase_condition_(nullptr)
@ -103,6 +105,8 @@ StandardWells::StandardWells(const Wells* wells_arg)
vfp_properties_ = vfp_properties_arg;
gravity_ = gravity_arg;
perf_cell_depth_ = subset(depth_arg, wellOps().well_cells);;
calculateEfficiencyFactors();
}
@ -741,6 +745,7 @@ StandardWells::StandardWells(const Wells* wells_arg)
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
// We disregard terminal_ouput here as with it only messages
@ -748,6 +753,7 @@ StandardWells::StandardWells(const Wells* wells_arg)
logger.wellSwitched(wells().name[w],
well_controls_iget_type(wc, current),
well_controls_iget_type(wc, ctrl_index));
xw.currentControls()[w] = ctrl_index;
current = xw.currentControls()[w];
}
@ -847,6 +853,22 @@ StandardWells::StandardWells(const Wells* wells_arg)
break;
}
if (wellCollection()->groupControlActive()) {
// get well node in the well collection
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
// update whehter the well is under group control or individual control
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
}
}
@ -1547,4 +1569,48 @@ StandardWells::StandardWells(const Wells* wells_arg)
}
WellCollection* StandardWells::wellCollection() const
{
return well_collection_;
}
void StandardWells::calculateEfficiencyFactors()
{
if ( !localWellsActive() ) {
return;
}
// get efficiency factor for each well first
const int nw = wells_->number_of_wells;
Vector well_efficiency_factors = Vector::Ones(nw);
for (int w = 0; w < nw; ++w) {
const std::string well_name = wells_->name[w];
const WellNode& well_node = well_collection_->findWellNode(well_name);
well_efficiency_factors(w) = well_node.getAccumulativeEfficiencyFactor();
}
// map them to the perforation.
well_perforation_efficiency_factors_ = wellOps().w2p * well_efficiency_factors.matrix();
}
const StandardWells::Vector&
StandardWells::wellPerfEfficiencyFactors() const
{
return well_perforation_efficiency_factors_;
}
} // namespace Opm

View File

@ -166,8 +166,10 @@ namespace Opm
// If the set of controls have changed, this may not be identical
// to the last control, but it must be a valid control.
currentControls()[ newIndex ] = old_control_index;
} else {
assert(well_controls_get_num(wells->ctrls[w]) > 0);
currentControls()[ newIndex ] = 0;
}
}
}
}

View File

@ -542,7 +542,7 @@ namespace Opm {
wellModel().extractWellPerfProperties(state, sd_.rq, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
Base::solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
}
V aliveWells;

View File

@ -119,7 +119,7 @@ struct SetupMSW {
const Wells* wells = wells_manager.c_wells();
const auto wells_ecl = ecl_state.getSchedule().getWells(current_timestep);
ms_wells.reset(new Opm::MultisegmentWells(wells, wells_ecl, current_timestep));
ms_wells.reset(new Opm::MultisegmentWells(wells, &(wells_manager.wellCollection()), wells_ecl, current_timestep));
};
std::shared_ptr<const Opm::MultisegmentWells> ms_wells;