Merge pull request #2 from atgeirr/master

Handle WPOLYMER keyword
This commit is contained in:
Atgeirr Flø Rasmussen
2012-10-04 07:09:06 -07:00
18 changed files with 365 additions and 1006 deletions

View File

@@ -13,6 +13,7 @@ opm/polymer/SimulatorPolymer.cpp \
opm/polymer/SimulatorCompressiblePolymer.cpp \ opm/polymer/SimulatorCompressiblePolymer.cpp \
opm/polymer/TransportModelPolymer.cpp \ opm/polymer/TransportModelPolymer.cpp \
opm/polymer/TransportModelCompressiblePolymer.cpp \ opm/polymer/TransportModelCompressiblePolymer.cpp \
opm/polymer/PolymerInflow.cpp \
opm/polymer/PolymerProperties.cpp \ opm/polymer/PolymerProperties.cpp \
opm/polymer/polymerUtilities.cpp opm/polymer/polymerUtilities.cpp
@@ -22,6 +23,7 @@ opm/polymer/GravityColumnSolverPolymer_impl.hpp \
opm/polymer/IncompPropertiesDefaultPolymer.hpp \ opm/polymer/IncompPropertiesDefaultPolymer.hpp \
opm/polymer/IncompTpfaPolymer.hpp \ opm/polymer/IncompTpfaPolymer.hpp \
opm/polymer/CompressibleTpfaPolymer.hpp \ opm/polymer/CompressibleTpfaPolymer.hpp \
opm/polymer/PolymerInflow.hpp \
opm/polymer/PolymerProperties.hpp \ opm/polymer/PolymerProperties.hpp \
opm/polymer/PolymerState.hpp \ opm/polymer/PolymerState.hpp \
opm/polymer/SinglePointUpwindTwoPhasePolymer.hpp \ opm/polymer/SinglePointUpwindTwoPhasePolymer.hpp \

View File

@@ -10,14 +10,10 @@ $(BOOST_SYSTEM_LIB)
noinst_PROGRAMS = \ noinst_PROGRAMS = \
polymer_reorder \
sim_poly2p_incomp_reorder \ sim_poly2p_incomp_reorder \
sim_poly2p_comp_reorder \ sim_poly2p_comp_reorder \
test_singlecellsolves test_singlecellsolves
polymer_reorder_SOURCES = \
polymer_reorder.cpp
sim_poly2p_incomp_reorder_SOURCES = \ sim_poly2p_incomp_reorder_SOURCES = \
sim_poly2p_incomp_reorder.cpp sim_poly2p_incomp_reorder.cpp

View File

@@ -1,909 +0,0 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
Copyright 2012 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/polymer/IncompTpfaPolymer.hpp>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/GridManager.hpp>
#include <opm/core/newwells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/initState.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
//#include <opm/core/linalg/LinearSolverAGMG.hpp>
#include <opm/core/transport/transport_source.h>
#include <opm/core/transport/CSRMatrixUmfpackSolver.hpp>
#include <opm/core/transport/NormSupport.hpp>
#include <opm/core/transport/ImplicitAssembly.hpp>
#include <opm/core/transport/ImplicitTransport.hpp>
#include <opm/core/transport/JacobianSystem.hpp>
#include <opm/core/transport/CSRMatrixBlockAssembler.hpp>
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
#include <opm/core/utility/ColumnExtract.hpp>
#include <opm/polymer/PolymerState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/SinglePointUpwindTwoPhasePolymer.hpp>
#include <opm/polymer/GravityColumnSolverPolymer.hpp>
#include <opm/polymer/TransportModelPolymer.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/polymerUtilities.hpp>
#include <boost/filesystem/convenience.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <cassert>
#include <cstddef>
#include <algorithm>
#include <tr1/array>
#include <functional>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <iterator>
#include <vector>
#include <numeric>
#include <list>
static void outputState(const UnstructuredGrid& grid,
const Opm::PolymerState& state,
const int step,
const std::string& output_dir,
const Opm::TransportModelPolymer& reorder_model)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
THROW("Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
dm["concentration"] = &state.concentration();
dm["cmax"] = &state.maxconcentration();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
// Write data (not grid) in Matlab format
dm["faceflux"] = &state.faceflux();
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
#ifdef PROFILING
std::ostringstream fname;
fname << output_dir << "/" << "residualcounts" << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
typedef std::list<Opm::TransportModelPolymer::Newton_Iter> ListRes;
const ListRes& res_counts = reorder_model.res_counts;
for (ListRes::const_iterator it = res_counts.begin(); it != res_counts.end(); ++it) {
file << it->res_s << "," << it->cell << "," << std::setprecision(15) << it->s << "," << std::setprecision(15) << it->c << "\n";
}
file.close();
#else
(void) reorder_model; // to avoid compilator warning
#endif
}
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
wellreport.write(os);
}
// --------------- Types needed to define transport solver ---------------
class PolymerFluid2pWrappingProps
{
public:
PolymerFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops)
: props_(props),
polyprops_(polyprops),
smin_(props.numCells()*props.numPhases()),
smax_(props.numCells()*props.numPhases())
{
if (props.numPhases() != 2) {
THROW("PolymerFluid2pWrapper requires 2 phases.");
}
const int num_cells = props.numCells();
std::vector<int> cells(num_cells);
for (int c = 0; c < num_cells; ++c) {
cells[c] = c;
}
props.satRange(num_cells, &cells[0], &smin_[0], &smax_[0]);
}
double density(int phase) const
{
return props_.density()[phase];
}
template <class PolyC,
class CAds,
class DCAdsDc>
void adsorption(const PolyC& c, const PolyC& cmax, CAds& cads, DCAdsDc& dcadsdc)
{
polyprops_.adsorptionWithDer(c, cmax, cads, dcadsdc);
}
const double* porosity() const
{
return props_.porosity();
}
double deadporespace() const
{
return polyprops_.deadPoreVol();
}
double rockdensity() const
{
return polyprops_.rockDensity();
}
template <class Sat,
class PolyC,
class Mob,
class DMobDs,
class DMobWatDc>
void mobility(int cell, const Sat& s, const PolyC& c, const PolyC& cmax,
Mob& mob, DMobDs& dmobds, DMobWatDc& dmobwatdc) const
{
const double* visc = props_.viscosity();
double relperm[2];
double drelpermds[4];
props_.relperm(1, &s[0], &cell, relperm, drelpermds);
polyprops_.effectiveMobilitiesWithDer(c, cmax, visc, relperm, drelpermds, mob, dmobds, dmobwatdc);
}
template <class Sat,
class Pcap,
class DPcap>
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const
{
double pcow[2];
double dpcow[4];
props_.capPress(1, &s[0], &c, pcow, dpcow);
pcap = pcow[0];
ASSERT(pcow[1] == 0.0);
dpcap = dpcow[0];
ASSERT(dpcow[1] == 0.0);
ASSERT(dpcow[2] == 0.0);
ASSERT(dpcow[3] == 0.0);
}
double s_min(int c) const
{
return smin_[2*c + 0];
}
double s_max(int c) const
{
return smax_[2*c + 0];
}
double cMax() const
{
return polyprops_.cMax();
}
template <class PolyC,
class Mc,
class DMcDc>
void computeMc(const PolyC& c, Mc& mc,
DMcDc& dmcdc) const
{
polyprops_.computeMcWithDer(c, mc, dmcdc);
}
private:
const Opm::IncompPropertiesInterface& props_;
const Opm::PolymerProperties& polyprops_;
std::vector<double> smin_;
std::vector<double> smax_;
};
class IncompPropertiesCorey : public Opm::IncompPropertiesBasic {
private:
std::vector<double> exponents_;
int np_;
double corey_kr(double s, int p) const {
return std::pow(s, exponents_[p]);
}
double corey_dkrds(double s, int p) const {
return exponents_[p]*std::pow(s, exponents_[p] - 1.0);
}
public:
IncompPropertiesCorey(const Opm::parameter::ParameterGroup& param,
const int dim,
const int num_cells,
const std::vector<double> exponents
) : IncompPropertiesBasic(param, dim, num_cells) {
exponents_ = exponents;
np_ = numPhases();
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
virtual void relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const {
if (dkrds == 0) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
for (int p = 0; p < np_; ++p) {
kr[i*np_ + p] = corey_kr(s[i*np_ + p], p);
}
}
return;
}
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
std::fill(dkrds + i*np_*np_, dkrds + (i+1)*np_*np_, 0.0);
for (int p = 0; p < np_; ++p) {
kr[i*np_ + p] = corey_kr(s[i*np_ + p], p);
// Only diagonal elements in derivative.
dkrds[i*np_*np_ + p*np_ + p] = corey_dkrds(s[i*np_ + p], p);
}
}
}
};
typedef PolymerFluid2pWrappingProps TwophaseFluidPolymer;
typedef Opm::SinglePointUpwindTwoPhasePolymer<TwophaseFluidPolymer> FluxModel;
using namespace Opm::ImplicitTransportDefault;
typedef NewtonVectorCollection< ::std::vector<double> > NVecColl;
typedef JacobianSystem < struct CSRMatrix, NVecColl > JacSys;
template <class Vector>
class MaxNorm {
public:
static double
norm(const Vector& v) {
return AccumulationNorm <Vector, MaxAbs>::norm(v);
}
};
typedef Opm::ImplicitTransport<FluxModel,
JacSys ,
MaxNorm ,
VectorNegater ,
VectorZero ,
MatrixZero ,
VectorAssign > TransportSolver;
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow with polymer ===============\n\n";
Opm::parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// Reading various control parameters.
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
const bool use_reorder = param.getDefault("use_reorder", true);
const bool output = param.getDefault("output", true);
std::string output_dir;
int output_interval = 1;
if (output) {
output_dir = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
output_interval = param.getDefault("output_interval", output_interval);
}
const int num_transport_substeps = param.getDefault("num_transport_substeps", 1);
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.getDefault("use_deck", true);
use_deck = param.has("deck_filename") && use_deck;
boost::scoped_ptr<Opm::GridManager> grid;
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
boost::scoped_ptr<Opm::WellsManager> wells;
boost::scoped_ptr<Opm::RockCompressibility> rock_comp;
Opm::SimulatorTimer simtimer;
Opm::PolymerState state;
Opm::PolymerProperties polyprop;
bool check_well_controls = false;
int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
Opm::EclipseGridParser deck(deck_filename);
// Grid init
grid.reset(new Opm::GridManager(deck));
// Rock and fluid init
props.reset(new Opm::IncompPropertiesFromDeck(deck, *grid->c_grid()));
// Wells init.
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
check_well_controls = param.getDefault("check_well_controls", false);
max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Timer init.
if (deck.hasField("TSTEP")) {
simtimer.init(deck);
} else {
simtimer.init(param);
}
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(deck));
// Gravity.
gravity[2] = deck.hasField("NOGRAV") ? 0.0 : Opm::unit::gravity;
// Init state variables (saturation and pressure).
initStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state);
// Init polymer properties.
polyprop.readFromDeck(deck);
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
// props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
bool use_corey = false;
use_corey = param.getDefault("use_corey", false);
if (use_corey) {
std::vector<double> exponents(2, 1.0);
exponents[0] = param.getDefault("n1", 1.0);
exponents[1] = param.getDefault("n2", 1.0);
props.reset(new IncompPropertiesCorey(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells, exponents));
} else {
props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
}
// Wells init.
wells.reset(new Opm::WellsManager());
// Timer init.
simtimer.init(param);
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
// Init Polymer state
if (param.has("poly_init")) {
double poly_init = param.getDefault("poly_init", 0.0);
for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) {
double smin[2], smax[2];
props->satRange(1, &cell, smin, smax);
if (state.saturation()[2*cell] > 0.5*(smin[0] + smax[0])) {
state.concentration()[cell] = poly_init;
state.maxconcentration()[cell] = poly_init;
} else {
state.saturation()[2*cell + 0] = 0.;
state.saturation()[2*cell + 1] = 1.;
state.concentration()[cell] = 0.;
state.maxconcentration()[cell] = 0.;
}
}
}
// Init polymer properties.
// Setting defaults to provide a simple example case.
bool use_deck_fluid = param.getDefault("use_deck_fluid", false);
if(!use_deck_fluid){
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(param));
double c_max = param.getDefault("c_max_limit", 5.0);
double mix_param = param.getDefault("mix_param", 1.0);
double rock_density = param.getDefault("rock_density", 1000.0);
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.1);
double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
double c_max_ads = param.getDefault("c_max_ads", 1.);
int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
std::vector<double> c_vals_visc(2, -1e100);
c_vals_visc[0] = 0.0;
c_vals_visc[1] = c_max;
std::vector<double> visc_mult_vals(2, -1e100);
visc_mult_vals[0] = 1.0;
visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
std::vector<double> c_vals_ads(2, -1e100);
c_vals_ads[0] = 0.0;
c_vals_ads[1] = 8.0;
// Here we set up adsorption equal to zero.
std::vector<double> ads_vals(2, -1e100);
ads_vals[0] = 0.0;
ads_vals[1] = 0.0;
polyprop.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
}else{
std::string deck_filename = param.get<std::string>("deck_filename");
Opm::EclipseGridParser deck(deck_filename);
rock_comp.reset(new Opm::RockCompressibility(deck));
polyprop.readFromDeck(deck);
}
}
// Initialize polymer inflow function.
double poly_start = param.getDefault("poly_start_days", 300.0)*Opm::unit::day;
double poly_end = param.getDefault("poly_end_days", 800.0)*Opm::unit::day;
double poly_amount = param.getDefault("poly_amount", polyprop.cMax());
PolymerInflow poly_inflow(poly_start, poly_end, poly_amount);
// Extra fluid init for transport solver.
TwophaseFluidPolymer fluid(*props, polyprop);
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
if (use_gravity) {
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
bool use_segregation_split = false;
bool use_column_solver = false;
bool use_gauss_seidel_gravity = false;
if (use_gravity && use_reorder) {
use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split);
if (use_segregation_split) {
use_column_solver = param.getDefault("use_column_solver", use_column_solver);
if (use_column_solver) {
use_gauss_seidel_gravity = param.getDefault("use_gauss_seidel_gravity", use_gauss_seidel_gravity);
}
}
}
// Check that rock compressibility is not used with solvers that do not handle it.
int nl_pressure_maxiter = 0;
double nl_pressure_residual_tolerance = 0.0;
double nl_pressure_change_tolerance = 0.0;
if (rock_comp->isActive()) {
if (!use_reorder) {
THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet.");
}
nl_pressure_residual_tolerance = param.getDefault("nl_pressure_residual_tolerance", 0.0);
nl_pressure_change_tolerance = param.getDefault("nl_pressure_change_tolerance", 1.0); // In Pascal.
nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10);
}
// Source-related variables init.
int num_cells = grid->c_grid()->number_of_cells;
// Extra rock init.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
// Initialising src
std::vector<double> src(num_cells, 0.0);
if (wells->c_wells()) {
// Do nothing, wells will be the driving force, not source terms.
// Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
} else {
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_volume_per_day", default_injection)/Opm::unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
std::vector<double> reorder_src = src;
// Boundary conditions.
Opm::FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), Opm::FlowBCManager::Side(pside), pside_pressure);
}
// Solvers init.
// Linear solver.
Opm::LinearSolverFactory linsolver(param);
//Opm::LinearSolverAGMG linsolver;
// Pressure solver.
const double *grav = use_gravity ? &gravity[0] : 0;
Opm::IncompTpfaPolymer psolver(*grid->c_grid(), *props, rock_comp.get(), polyprop, linsolver,
nl_pressure_residual_tolerance, nl_pressure_change_tolerance,
nl_pressure_maxiter,
grav, wells->c_wells(), src, bcs.c_bcs());
// Reordering solver.
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
Opm::TransportModelPolymer::SingleCellMethod method;
std::string method_string = param.getDefault("single_cell_method", std::string("Bracketing"));
if (method_string == "Bracketing") {
method = Opm::TransportModelPolymer::Bracketing;
} else if (method_string == "Newton") {
method = Opm::TransportModelPolymer::Newton;
} else if (method_string == "Gradient") {
method = Opm::TransportModelPolymer::Gradient;
} else if (method_string == "NewtonSimpleSC") {
method = Opm::TransportModelPolymer::NewtonSimpleSC;
} else if (method_string == "NewtonSimpleC") {
method = Opm::TransportModelPolymer::NewtonSimpleC;
} else {
THROW("Unknown method: " << method_string);
}
Opm::TransportModelPolymer reorder_model(*grid->c_grid(), *props, polyprop,
method, nl_tolerance, nl_maxiter);
if (use_gauss_seidel_gravity) {
reorder_model.initGravity(grav);
}
// Non-reordering solver.
FluxModel fmodel(fluid, *grid->c_grid(), porevol, grav, guess_old_solution);
if (use_gravity) {
fmodel.initGravityTrans(*grid->c_grid(), psolver.getHalfTrans());
}
TransportSolver tsolver(fmodel);
// Column-based gravity segregation solver.
std::vector<std::vector<int> > columns;
if (use_column_solver) {
Opm::extractColumn(*grid->c_grid(), columns);
}
Opm::GravityColumnSolverPolymer<FluxModel, TwophaseFluidPolymer> colsolver(fmodel, fluid, *grid->c_grid(), nl_tolerance, nl_maxiter);
// // // Not implemented for polymer.
// // Control init.
// Opm::ImplicitTransportDetails::NRReport rpt;
// Opm::ImplicitTransportDetails::NRControl ctrl;
// if (!use_reorder || use_segregation_split) {
// ctrl.max_it = param.getDefault("max_it", 20);
// ctrl.verbosity = param.getDefault("verbosity", 0);
// ctrl.max_it_ls = param.getDefault("max_it_ls", 5);
// }
// // Linear solver init.
// using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
// CSRMatrixUmfpackSolver linsolve;
// The allcells vector is used in calls to computeTotalMobility()
// and computeTotalMobilityOmega().
std::vector<int> allcells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells[cell] = cell;
}
// Warn if any parameters are unused.
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
// Write parameters used for later reference.
if (output) {
param.writeParam(output_dir + "/spu_2p.param");
}
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
double init_satvol[2] = { 0.0 };
double init_polymass = 0.0;
double satvol[2] = { 0.0 };
double polymass = 0.0;
double polymass_adsorbed = 0.0;
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
double tot_polyinj = 0.0;
double tot_polyprod = 0.0;
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
Opm::WellState well_state;
well_state.init(wells->c_wells(), state);
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
int num_wells = 0;
if (wells->c_wells()) {
num_wells = wells->c_wells()->number_of_wells;
well_resflows_phase.resize((wells->c_wells()->number_of_phases)*(wells->c_wells()->number_of_wells), 0.0);
wellreport.push(*props, *wells->c_wells(), state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
for (; !simtimer.done(); ++simtimer) {
// Report timestep and (optionally) write state to disk.
simtimer.report(std::cout);
if (output && (simtimer.currentStepNum() % output_interval == 0)) {
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir, reorder_model);
}
// Solve pressure.
if (check_well_controls) {
computeFractionalFlow(*props, allcells, state.saturation(), fractional_flows);
}
if (check_well_controls) {
wells->applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls;
int well_control_iteration = 0;
do {
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver.solve(simtimer.currentStepLength(), state, well_state);
if (!rock_comp->isActive()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.;
double av_press = 0.;
double tot_vol = 0.;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid->c_grid()->cell_volumes[cell];
av_press += state.pressure()[cell]*grid->c_grid()->cell_volumes[cell];
tot_vol += grid->c_grid()->cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
if (check_well_controls) {
Opm::computePhaseFlowRatesPerWell(*wells->c_wells(),
fractional_flows,
well_state.perfRates(),
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells->conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations) {
THROW("Could not satisfy well conditions in " << max_well_control_iterations << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
wells->c_wells(), well_state.perfRates(), reorder_src);
// Find inflow rate.
const double current_time = simtimer.currentTime();
double stepsize = simtimer.currentStepLength();
const double inflowc0 = poly_inflow(current_time + 1e-5*stepsize);
const double inflowc1 = poly_inflow(current_time + (1.0 - 1e-5)*stepsize);
if (inflowc0 != inflowc1) {
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
}
const double inflow_c = inflowc0;
// Solve transport.
transport_timer.start();
if (num_transport_substeps != 1) {
stepsize /= double(num_transport_substeps);
std::cout << "Making " << num_transport_substeps << " transport substeps." << std::endl;
}
for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) {
if (use_reorder) {
reorder_model.solve(&state.faceflux()[0], &porevol[0], &reorder_src[0], stepsize, inflow_c,
state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(*props, polyprop, state.saturation(), state.concentration(), state.maxconcentration(),
reorder_src, simtimer.currentStepLength(), inflow_c,
injected, produced, polyinj, polyprod);
if (use_segregation_split) {
if (use_column_solver) {
if (use_gauss_seidel_gravity) {
reorder_model.solveGravity(columns, &porevol[0], stepsize, state.saturation(),
state.concentration(), state.maxconcentration());
} else {
colsolver.solve(columns, stepsize, state.saturation(), state.concentration(),
state.maxconcentration());
}
} else {
THROW("use_segregation_split option for polymer is only implemented in the use_column_solver case.");
}
}
} else {
THROW("Implicit transport solver not implemented for polymer.");
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), polyprop.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(*props, polyprop, porevol, state.maxconcentration());
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nVolume and polymer mass balance: "
" water(pv) oil(pv) polymer(kg)\n";
std::cout << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed volumes: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init
<< std::setw(width) << tot_polyprod << std::endl;
std::cout << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init
<< std::setw(width) << (polymass + tot_polyprod - tot_polyinj + polymass_adsorbed) << std::endl;
std::cout << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::setw(width) << (init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed)
<< std::endl;
std::cout.precision(8);
watercut.push(simtimer.currentTime() + simtimer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells->c_wells()) {
wellreport.push(*props, *wells->c_wells(), state.saturation(),
simtimer.currentTime() + simtimer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
}
total_timer.stop();
std::cout << "\n\n================ End of simulation ===============\n"
<< "Total time taken: " << total_timer.secsSinceStart()
<< "\n Pressure time: " << ptime
<< "\n Transport time: " << ttime << std::endl;
if (output) {
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir, reorder_model);
outputWaterCut(watercut, output_dir);
if (wells->c_wells()) {
outputWellReport(wellreport, output_dir);
}
}
}

View File

@@ -44,6 +44,7 @@
#include <opm/polymer/PolymerBlackoilState.hpp> #include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp> #include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/SimulatorCompressiblePolymer.hpp> #include <opm/polymer/SimulatorCompressiblePolymer.hpp>
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/polymer/PolymerProperties.hpp> #include <opm/polymer/PolymerProperties.hpp>
#include <boost/scoped_ptr.hpp> #include <boost/scoped_ptr.hpp>
@@ -237,12 +238,16 @@ main(int argc, char** argv)
SimulatorReport rep; SimulatorReport rep;
if (!use_deck) { if (!use_deck) {
// Simple simulation without a deck. // Simple simulation without a deck.
PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax()));
SimulatorCompressiblePolymer simulator(param, SimulatorCompressiblePolymer simulator(param,
*grid->c_grid(), *grid->c_grid(),
*props, *props,
poly_props, poly_props,
rock_comp->isActive() ? rock_comp.get() : 0, rock_comp->isActive() ? rock_comp.get() : 0,
0, // wells 0, // wells
polymer_inflow,
src, src,
bcs.c_bcs(), bcs.c_bcs(),
linsolver, linsolver,
@@ -262,6 +267,15 @@ main(int argc, char** argv)
deck->setCurrentEpoch(deck->numberOfEpochs() - 1); deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
simtimer.init(*deck); simtimer.init(*deck);
const double total_time = simtimer.totalTime(); const double total_time = simtimer.totalTime();
// Check for WPOLYMER presence in last epoch to decide
// polymer injection control type.
const bool use_wpolymer = deck->hasField("WPOLYMER");
if (use_wpolymer) {
if (param.has("poly_start_days")) {
MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. "
"You seem to be trying to control it via parameter poly_start_days (etc.) as well.");
}
}
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) { for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
// Set epoch index. // Set epoch index.
deck->setCurrentEpoch(epoch); deck->setCurrentEpoch(epoch);
@@ -283,8 +297,20 @@ main(int argc, char** argv)
<< "\n (number of steps: " << "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush; << simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, well_state // Create new wells, polymer inflow controls.
WellsManager wells(*deck, *grid->c_grid(), props->permeability()); WellsManager wells(*deck, *grid->c_grid(), props->permeability());
boost::scoped_ptr<PolymerInflowInterface> polymer_inflow;
if (use_wpolymer) {
if (wells.c_wells() == 0) {
THROW("Cannot control polymer injection via WPOLYMER without wells.");
}
polymer_inflow.reset(new PolymerInflowFromDeck(*deck, *wells.c_wells(), props->numCells()));
} else {
polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax())));
}
// @@@ HACK: we should really make a new well state and // @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch, // properly transfer old well state to it every epoch,
// since number of wells may change etc. // since number of wells may change etc.
@@ -299,6 +325,7 @@ main(int argc, char** argv)
poly_props, poly_props,
rock_comp->isActive() ? rock_comp.get() : 0, rock_comp->isActive() ? rock_comp.get() : 0,
wells.c_wells(), wells.c_wells(),
*polymer_inflow,
src, src,
bcs.c_bcs(), bcs.c_bcs(),
linsolver, linsolver,

View File

@@ -44,6 +44,7 @@
#include <opm/polymer/PolymerState.hpp> #include <opm/polymer/PolymerState.hpp>
#include <opm/core/simulator/WellState.hpp> #include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/SimulatorPolymer.hpp> #include <opm/polymer/SimulatorPolymer.hpp>
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/polymer/PolymerProperties.hpp> #include <opm/polymer/PolymerProperties.hpp>
#include <boost/scoped_ptr.hpp> #include <boost/scoped_ptr.hpp>
@@ -241,12 +242,16 @@ main(int argc, char** argv)
SimulatorReport rep; SimulatorReport rep;
if (!use_deck) { if (!use_deck) {
// Simple simulation without a deck. // Simple simulation without a deck.
PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax()));
SimulatorPolymer simulator(param, SimulatorPolymer simulator(param,
*grid->c_grid(), *grid->c_grid(),
*props, *props,
poly_props, poly_props,
rock_comp->isActive() ? rock_comp.get() : 0, rock_comp->isActive() ? rock_comp.get() : 0,
0, // wells 0, // wells
polymer_inflow,
src, src,
bcs.c_bcs(), bcs.c_bcs(),
linsolver, linsolver,
@@ -266,6 +271,15 @@ main(int argc, char** argv)
deck->setCurrentEpoch(deck->numberOfEpochs() - 1); deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
simtimer.init(*deck); simtimer.init(*deck);
const double total_time = simtimer.totalTime(); const double total_time = simtimer.totalTime();
// Check for WPOLYMER presence in last epoch to decide
// polymer injection control type.
const bool use_wpolymer = deck->hasField("WPOLYMER");
if (use_wpolymer) {
if (param.has("poly_start_days")) {
MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. "
"You seem to be trying to control it via parameter poly_start_days (etc.) as well.");
}
}
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) { for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
// Set epoch index. // Set epoch index.
deck->setCurrentEpoch(epoch); deck->setCurrentEpoch(epoch);
@@ -287,8 +301,20 @@ main(int argc, char** argv)
<< "\n (number of steps: " << "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush; << simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, well_state // Create new wells, polymer inflow controls.
WellsManager wells(*deck, *grid->c_grid(), props->permeability()); WellsManager wells(*deck, *grid->c_grid(), props->permeability());
boost::scoped_ptr<PolymerInflowInterface> polymer_inflow;
if (use_wpolymer) {
if (wells.c_wells() == 0) {
THROW("Cannot control polymer injection via WPOLYMER without wells.");
}
polymer_inflow.reset(new PolymerInflowFromDeck(*deck, *wells.c_wells(), props->numCells()));
} else {
polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax())));
}
// @@@ HACK: we should really make a new well state and // @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch, // properly transfer old well state to it every epoch,
// since number of wells may change etc. // since number of wells may change etc.
@@ -303,6 +329,7 @@ main(int argc, char** argv)
poly_props, poly_props,
rock_comp->isActive() ? rock_comp.get() : 0, rock_comp->isActive() ? rock_comp.get() : 0,
wells.c_wells(), wells.c_wells(),
*polymer_inflow,
src, src,
bcs.c_bcs(), bcs.c_bcs(),
linsolver, linsolver,

View File

@@ -211,6 +211,7 @@ main(int argc, char** argv)
const double ff = s; // Simplified a lot... const double ff = s; // Simplified a lot...
for (int conc = 0; conc < num_concs; ++conc) { for (int conc = 0; conc < num_concs; ++conc) {
const double c = poly_props.cMax()*double(conc)/double(num_concs - 1); const double c = poly_props.cMax()*double(conc)/double(num_concs - 1);
std::vector<double> polymer_inflow_c(num_cells, c);
// std::cout << "(s, c) = (" << s << ", " << c << ")\n"; // std::cout << "(s, c) = (" << s << ", " << c << ")\n";
transport_src[0] = src[0]*ff; transport_src[0] = src[0]*ff;
// Resetting the state for next run. // Resetting the state for next run.
@@ -223,8 +224,8 @@ main(int argc, char** argv)
reorder_model.solve(&state.faceflux()[0], reorder_model.solve(&state.faceflux()[0],
&porevol[0], &porevol[0],
&transport_src[0], &transport_src[0],
&polymer_inflow_c[0],
dt, dt,
c,
state.saturation(), state.saturation(),
state.concentration(), state.concentration(),
state.maxconcentration()); state.maxconcentration());

View File

@@ -0,0 +1,119 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/newwells.h>
#include <map>
namespace Opm
{
// ---------- Methods of PolymerInflowBasic ----------
/// Constructor.
/// @param[in] starttime Start time of injection in seconds.
/// @param[in] endtime End time of injection in seconds.
/// @param[in] amount Amount to be injected per second.
PolymerInflowBasic::PolymerInflowBasic(const double starttime,
const double endtime,
const double amount)
: stime_(starttime), etime_(endtime), amount_(amount)
{
}
void PolymerInflowBasic::getInflowValues(const double step_start,
const double step_end,
std::vector<double>& poly_inflow_c) const
{
const double eps = 1e-5*(step_end - step_start);
if (step_start + eps >= stime_ && step_end - eps <= etime_) {
std::fill(poly_inflow_c.begin(), poly_inflow_c.end(), amount_);
} else if (step_start + eps <= etime_ && step_end - eps >= stime_) {
MESSAGE("Warning: polymer injection set to change inside timestep. Using value at start of step.");
std::fill(poly_inflow_c.begin(), poly_inflow_c.end(), amount_);
} else {
std::fill(poly_inflow_c.begin(), poly_inflow_c.end(), 0.0);
}
}
// ---------- Methods of PolymerInflowFromDeck ----------
/// Constructor.
/// @param[in] deck Input deck expected to contain WPOLYMER.
PolymerInflowFromDeck::PolymerInflowFromDeck(const EclipseGridParser& deck,
const Wells& wells,
const int num_cells)
: sparse_inflow_(num_cells)
{
if (!deck.hasField("WPOLYMER")) {
MESSAGE("PolymerInflowFromDeck initialized without WPOLYMER in current epoch.");
return;
}
// Extract concentrations and put into cell->concentration map.
const std::vector<WpolymerLine>& wpl = deck.getWPOLYMER().wpolymer_;
const int num_wpl = wpl.size();
std::map<int, double> perfcell_conc;
for (int i = 0; i < num_wpl; ++i) {
// Only use well name and polymer concentration.
// That is, we ignore salt concentration and group
// names.
int wix = 0;
for (; wix < wells.number_of_wells; ++wix) {
if (wpl[i].well_ == wells.name[wix]) {
break;
}
}
if (wix == wells.number_of_wells) {
THROW("Could not find a match for well " << wpl[i].well_ << " from WPOLYMER.");
}
for (int j = wells.well_connpos[wix]; j < wells.well_connpos[wix+1]; ++j) {
const int perf_cell = wells.well_cells[j];
perfcell_conc[perf_cell] = wpl[i].polymer_concentration_;
}
}
// Build sparse vector from map.
std::map<int, double>::const_iterator it = perfcell_conc.begin();
for (; it != perfcell_conc.end(); ++it) {
sparse_inflow_.addElement(it->second, it->first);
}
}
void PolymerInflowFromDeck::getInflowValues(const double /*step_start*/,
const double /*step_end*/,
std::vector<double>& poly_inflow_c) const
{
// This method does not depend on the given time,
// instead one would have a new epoch (and create a new
// instance) for each change in WPOLYMER.
std::fill(poly_inflow_c.begin(), poly_inflow_c.end(), 0.0);
const int nnz = sparse_inflow_.nonzeroSize();
for (int i = 0; i < nnz; ++i) {
poly_inflow_c[sparse_inflow_.nonzeroIndex(i)] = sparse_inflow_.nonzeroElement(i) ;
}
}
} // namespace Opm

View File

@@ -0,0 +1,113 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_POLYMERINFLOW_HEADER_INCLUDED
#define OPM_POLYMERINFLOW_HEADER_INCLUDED
#include <opm/core/utility/SparseVector.hpp>
#include <vector>
struct Wells;
namespace Opm
{
class EclipseGridParser;
/// @brief Interface for classes encapsulating polymer inflow information.
class PolymerInflowInterface
{
public:
/// Virtual destructor for subclassing.
virtual ~PolymerInflowInterface() {}
/// Get inflow concentrations for all cells.
/// \param[in] step_start Start of timestep.
/// \param[in] step_end End of timestep.
/// \param[out] poly_inflow_c Injection concentrations to use for timestep, per cell.
/// Must be properly sized before calling.
virtual void getInflowValues(const double step_start,
const double step_end,
std::vector<double>& poly_inflow_c) const = 0;
};
/// @brief Basic polymer injection behaviour class.
/// This class gives all injectors the same polymer concentration,
/// during a single time interval. Amount and interval can be specified.
class PolymerInflowBasic : public PolymerInflowInterface
{
public:
/// Constructor.
/// \param[in] starttime Start time of injection in seconds.
/// \param[in] endtime End time of injection in seconds.
/// \param[in] amount Amount to be injected per second.
PolymerInflowBasic(const double starttime,
const double endtime,
const double amount);
/// Get inflow concentrations for all cells.
/// \param[in] step_start Start of timestep.
/// \param[in] step_end End of timestep.
/// \param[out] poly_inflow_c Injection concentrations to use for timestep, per cell.
/// Must be properly sized before calling.
virtual void getInflowValues(const double step_start,
const double step_end,
std::vector<double>& poly_inflow_c) const;
private:
double stime_;
double etime_;
double amount_;
};
/// @brief Polymer injection behaviour class using deck WPOLYMER.
/// This class reads the accumulated WPOLYMER lines from the deck,
/// and applies the last row given for each well.
class PolymerInflowFromDeck : public PolymerInflowInterface
{
public:
/// Constructor.
/// \param[in] deck Input deck expected to contain WPOLYMER.
/// \param[in] wells Wells structure.
/// \param[in] num_cells Number of cells in grid.
PolymerInflowFromDeck(const EclipseGridParser& deck,
const Wells& wells,
const int num_cells);
/// Get inflow concentrations for all cells.
/// \param[in] step_start Start of timestep.
/// \param[in] step_end End of timestep.
/// \param[out] poly_inflow_c Injection concentrations to use for timestep, per cell.
/// Must be properly sized before calling.
virtual void getInflowValues(const double /*step_start*/,
const double /*step_end*/,
std::vector<double>& poly_inflow_c) const;
private:
SparseVector<double> sparse_inflow_;
};
} // namespace Opm
#endif // OPM_POLYMERINFLOW_HEADER_INCLUDED

View File

@@ -48,6 +48,7 @@
#include <opm/polymer/PolymerBlackoilState.hpp> #include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp> #include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/TransportModelCompressiblePolymer.hpp> #include <opm/polymer/TransportModelCompressiblePolymer.hpp>
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/polymer/PolymerProperties.hpp> #include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/polymerUtilities.hpp> #include <opm/polymer/polymerUtilities.hpp>
@@ -92,6 +93,7 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,
@@ -118,6 +120,7 @@ namespace Opm
const PolymerProperties& poly_props_; const PolymerProperties& poly_props_;
const RockCompressibility* rock_comp_props_; const RockCompressibility* rock_comp_props_;
const Wells* wells_; const Wells* wells_;
const PolymerInflowInterface& polymer_inflow_;
const std::vector<double>& src_; const std::vector<double>& src_;
const FlowBoundaryConditions* bcs_; const FlowBoundaryConditions* bcs_;
const LinearSolverInterface& linsolver_; const LinearSolverInterface& linsolver_;
@@ -129,7 +132,6 @@ namespace Opm
std::vector< std::vector<int> > columns_; std::vector< std::vector<int> > columns_;
// Misc. data // Misc. data
std::vector<int> allcells_; std::vector<int> allcells_;
PolymerInflow poly_inflow_;
}; };
@@ -141,12 +143,14 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,
const double* gravity) const double* gravity)
{ {
pimpl_.reset(new Impl(param, grid, props, poly_props, rock_comp_props, wells, src, bcs, linsolver, gravity)); pimpl_.reset(new Impl(param, grid, props, poly_props, rock_comp_props,
wells, polymer_inflow, src, bcs, linsolver, gravity));
} }
@@ -170,6 +174,7 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,
@@ -179,6 +184,7 @@ namespace Opm
poly_props_(poly_props), poly_props_(poly_props),
rock_comp_props_(rock_comp_props), rock_comp_props_(rock_comp_props),
wells_(wells), wells_(wells),
polymer_inflow_(polymer_inflow),
src_(src), src_(src),
bcs_(bcs), bcs_(bcs),
linsolver_(linsolver), linsolver_(linsolver),
@@ -191,10 +197,7 @@ namespace Opm
tsolver_(grid, props, poly_props, *rock_comp_props, tsolver_(grid, props, poly_props, *rock_comp_props,
TransportModelCompressiblePolymer::Bracketing, TransportModelCompressiblePolymer::Bracketing,
param.getDefault("nl_tolerance", 1e-9), param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30)), param.getDefault("nl_maxiter", 30))
poly_inflow_(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax()))
{ {
// For output. // For output.
output_ = param.getDefault("output", true); output_ = param.getDefault("output", true);
@@ -244,7 +247,8 @@ namespace Opm
PolymerBlackoilState& state, PolymerBlackoilState& state,
WellState& well_state) WellState& well_state)
{ {
std::vector<double> transport_src; std::vector<double> transport_src(grid_.number_of_cells);
std::vector<double> polymer_inflow_c(grid_.number_of_cells);
// Initialisation. // Initialisation.
std::vector<double> initial_pressure; std::vector<double> initial_pressure;
@@ -320,12 +324,7 @@ namespace Opm
// Find inflow rate. // Find inflow rate.
const double current_time = timer.currentTime(); const double current_time = timer.currentTime();
double stepsize = timer.currentStepLength(); double stepsize = timer.currentStepLength();
const double inflowc0 = poly_inflow_(current_time + 1e-5*stepsize); polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
const double inflowc1 = poly_inflow_(current_time + (1.0 - 1e-5)*stepsize);
if (inflowc0 != inflowc1) {
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
}
const double inflow_c = inflowc0;
// Solve transport. // Solve transport.
transport_timer.start(); transport_timer.start();
@@ -340,7 +339,7 @@ namespace Opm
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) { for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], initial_pressure, tsolver_.solve(&state.faceflux()[0], initial_pressure,
state.pressure(), &initial_porevol[0], &porevol[0], state.pressure(), &initial_porevol[0], &porevol[0],
&transport_src[0], stepsize, inflow_c, &transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.surfacevol(), state.saturation(), state.surfacevol(),
state.concentration(), state.maxconcentration()); state.concentration(), state.maxconcentration());
double substep_injected[2] = { 0.0 }; double substep_injected[2] = { 0.0 };
@@ -350,7 +349,7 @@ namespace Opm
Opm::computeInjectedProduced(props_, poly_props_, Opm::computeInjectedProduced(props_, poly_props_,
state.pressure(), state.surfacevol(), state.saturation(), state.pressure(), state.surfacevol(), state.saturation(),
state.concentration(), state.maxconcentration(), state.concentration(), state.maxconcentration(),
transport_src, stepsize, inflow_c, transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced, substep_injected, substep_produced,
substep_polyinj, substep_polyprod); substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0]; injected[0] += substep_injected[0];

View File

@@ -33,6 +33,7 @@ namespace Opm
class BlackoilPropertiesInterface; class BlackoilPropertiesInterface;
class PolymerProperties; class PolymerProperties;
class RockCompressibility; class RockCompressibility;
class PolymerInflowInterface;
class LinearSolverInterface; class LinearSolverInterface;
class SimulatorTimer; class SimulatorTimer;
class PolymerBlackoilState; class PolymerBlackoilState;
@@ -64,6 +65,7 @@ namespace Opm
/// \param[in] poly_props polymer properties /// \param[in] poly_props polymer properties
/// \param[in] rock_comp if non-null, rock compressibility properties /// \param[in] rock_comp if non-null, rock compressibility properties
/// \param[in] wells if non-null, wells data structure /// \param[in] wells if non-null, wells data structure
/// \param[in] polymer_inflow polymer inflow controls
/// \param[in] src source terms /// \param[in] src source terms
/// \param[in] bcs boundary conditions, treat as all noflow if null /// \param[in] bcs boundary conditions, treat as all noflow if null
/// \param[in] linsolver linear solver /// \param[in] linsolver linear solver
@@ -74,6 +76,7 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,

View File

@@ -46,6 +46,7 @@
#include <opm/polymer/PolymerState.hpp> #include <opm/polymer/PolymerState.hpp>
#include <opm/core/simulator/WellState.hpp> #include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/TransportModelPolymer.hpp> #include <opm/polymer/TransportModelPolymer.hpp>
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/polymer/PolymerProperties.hpp> #include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/polymerUtilities.hpp> #include <opm/polymer/polymerUtilities.hpp>
@@ -89,6 +90,7 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,
@@ -115,6 +117,7 @@ namespace Opm
const PolymerProperties& poly_props_; const PolymerProperties& poly_props_;
const RockCompressibility* rock_comp_props_; const RockCompressibility* rock_comp_props_;
const Wells* wells_; const Wells* wells_;
const PolymerInflowInterface& polymer_inflow_;
const std::vector<double>& src_; const std::vector<double>& src_;
const FlowBoundaryConditions* bcs_; const FlowBoundaryConditions* bcs_;
const LinearSolverInterface& linsolver_; const LinearSolverInterface& linsolver_;
@@ -126,7 +129,6 @@ namespace Opm
std::vector< std::vector<int> > columns_; std::vector< std::vector<int> > columns_;
// Misc. data // Misc. data
std::vector<int> allcells_; std::vector<int> allcells_;
PolymerInflow poly_inflow_;
}; };
@@ -138,12 +140,14 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,
const double* gravity) const double* gravity)
{ {
pimpl_.reset(new Impl(param, grid, props, poly_props, rock_comp_props, wells, src, bcs, linsolver, gravity)); pimpl_.reset(new Impl(param, grid, props, poly_props, rock_comp_props,
wells, polymer_inflow, src, bcs, linsolver, gravity));
} }
@@ -167,6 +171,7 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,
@@ -176,6 +181,7 @@ namespace Opm
poly_props_(poly_props), poly_props_(poly_props),
rock_comp_props_(rock_comp_props), rock_comp_props_(rock_comp_props),
wells_(wells), wells_(wells),
polymer_inflow_(polymer_inflow),
src_(src), src_(src),
bcs_(bcs), bcs_(bcs),
linsolver_(linsolver), linsolver_(linsolver),
@@ -187,10 +193,7 @@ namespace Opm
gravity, wells, src, bcs), gravity, wells, src, bcs),
tsolver_(grid, props, poly_props, TransportModelPolymer::Bracketing, tsolver_(grid, props, poly_props, TransportModelPolymer::Bracketing,
param.getDefault("nl_tolerance", 1e-9), param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30)), param.getDefault("nl_maxiter", 30))
poly_inflow_(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", poly_props.cMax()))
{ {
// For output. // For output.
output_ = param.getDefault("output", true); output_ = param.getDefault("output", true);
@@ -240,7 +243,8 @@ namespace Opm
PolymerState& state, PolymerState& state,
WellState& well_state) WellState& well_state)
{ {
std::vector<double> transport_src; std::vector<double> transport_src(grid_.number_of_cells);
std::vector<double> polymer_inflow_c(grid_.number_of_cells);
// Initialisation. // Initialisation.
std::vector<double> porevol; std::vector<double> porevol;
@@ -316,12 +320,7 @@ namespace Opm
// Find inflow rate. // Find inflow rate.
const double current_time = timer.currentTime(); const double current_time = timer.currentTime();
double stepsize = timer.currentStepLength(); double stepsize = timer.currentStepLength();
const double inflowc0 = poly_inflow_(current_time + 1e-5*stepsize); polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
const double inflowc1 = poly_inflow_(current_time + (1.0 - 1e-5)*stepsize);
if (inflowc0 != inflowc1) {
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
}
const double inflow_c = inflowc0;
// Solve transport. // Solve transport.
transport_timer.start(); transport_timer.start();
@@ -335,11 +334,11 @@ namespace Opm
double substep_polyprod = 0.0; double substep_polyprod = 0.0;
injected[0] = injected[1] = produced[0] = produced[1] = polyinj = polyprod = 0.0; injected[0] = injected[1] = produced[0] = produced[1] = polyinj = polyprod = 0.0;
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) { for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &porevol[0], &transport_src[0], stepsize, inflow_c, tsolver_.solve(&state.faceflux()[0], &porevol[0], &transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.concentration(), state.maxconcentration()); state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(props_, poly_props_, Opm::computeInjectedProduced(props_, poly_props_,
state.saturation(), state.concentration(), state.maxconcentration(), state.saturation(), state.concentration(), state.maxconcentration(),
transport_src, stepsize, inflow_c, transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced, substep_polyinj, substep_polyprod); substep_injected, substep_produced, substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0]; injected[0] += substep_injected[0];
injected[1] += substep_injected[1]; injected[1] += substep_injected[1];

View File

@@ -33,6 +33,7 @@ namespace Opm
class IncompPropertiesInterface; class IncompPropertiesInterface;
class PolymerProperties; class PolymerProperties;
class RockCompressibility; class RockCompressibility;
class PolymerInflowInterface;
class LinearSolverInterface; class LinearSolverInterface;
class SimulatorTimer; class SimulatorTimer;
class PolymerState; class PolymerState;
@@ -64,6 +65,7 @@ namespace Opm
/// \param[in] poly_props polymer properties /// \param[in] poly_props polymer properties
/// \param[in] rock_comp if non-null, rock compressibility properties /// \param[in] rock_comp if non-null, rock compressibility properties
/// \param[in] wells if non-null, wells data structure /// \param[in] wells if non-null, wells data structure
/// \param[in] polymer_inflow polymer inflow controls
/// \param[in] src source terms /// \param[in] src source terms
/// \param[in] bcs boundary conditions, treat as all noflow if null /// \param[in] bcs boundary conditions, treat as all noflow if null
/// \param[in] linsolver linear solver /// \param[in] linsolver linear solver
@@ -74,6 +76,7 @@ namespace Opm
const PolymerProperties& poly_props, const PolymerProperties& poly_props,
const RockCompressibility* rock_comp_props, const RockCompressibility* rock_comp_props,
const Wells* wells, const Wells* wells,
const PolymerInflowInterface& polymer_inflow,
const std::vector<double>& src, const std::vector<double>& src,
const FlowBoundaryConditions* bcs, const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver, LinearSolverInterface& linsolver,

View File

@@ -168,8 +168,8 @@ namespace Opm
porevolume0_(0), porevolume0_(0),
porevolume_(0), porevolume_(0),
source_(0), source_(0),
polymer_inflow_c_(0),
dt_(0.0), dt_(0.0),
inflow_c_(0.0),
tol_(tol), tol_(tol),
maxit_(maxit), maxit_(maxit),
method_(method), method_(method),
@@ -220,8 +220,8 @@ namespace Opm
const double* porevolume0, const double* porevolume0,
const double* porevolume, const double* porevolume,
const double* source, const double* source,
const double* polymer_inflow_c,
const double dt, const double dt,
const double inflow_c,
std::vector<double>& saturation, std::vector<double>& saturation,
std::vector<double>& surfacevol, std::vector<double>& surfacevol,
std::vector<double>& concentration, std::vector<double>& concentration,
@@ -232,7 +232,7 @@ namespace Opm
porevolume_ = porevolume; porevolume_ = porevolume;
source_ = source; source_ = source;
dt_ = dt; dt_ = dt;
inflow_c_ = inflow_c; polymer_inflow_c_ = polymer_inflow_c;
toWaterSat(saturation, saturation_); toWaterSat(saturation, saturation_);
concentration_ = &concentration[0]; concentration_ = &concentration[0];
cmax_ = &cmax[0]; cmax_ = &cmax[0];
@@ -363,7 +363,7 @@ namespace Opm
bool src_is_inflow = src_flux < 0.0; bool src_is_inflow = src_flux < 0.0;
B_cell0 = 1.0/tm.A0_[np*np*cell + 0]; B_cell0 = 1.0/tm.A0_[np*np*cell + 0];
B_cell = 1.0/tm.A_[np*np*cell + 0]; B_cell = 1.0/tm.A_[np*np*cell + 0];
// Not clear why we multiply by B_cell source terms. // influx = src_is_inflow ? B_cell*src_flux : 0.0; // Use this after changing transport source.
influx = src_is_inflow ? src_flux : 0.0; influx = src_is_inflow ? src_flux : 0.0;
outflux = !src_is_inflow ? src_flux : 0.0; outflux = !src_is_inflow ? src_flux : 0.0;
porevolume0 = tm.porevolume0_[cell]; porevolume0 = tm.porevolume0_[cell];
@@ -376,7 +376,7 @@ namespace Opm
rhor = tm.polyprops_.rockDensity(); rhor = tm.polyprops_.rockDensity();
tm.polyprops_.adsorption(c0, cmax0, ads0); tm.polyprops_.adsorption(c0, cmax0, ads0);
double mc; double mc;
tm.computeMc(tm.inflow_c_, mc); tm.computeMc(tm.polymer_inflow_c_[cell_index], mc);
influx_polymer = src_is_inflow ? src_flux*mc : 0.0; influx_polymer = src_is_inflow ? src_flux*mc : 0.0;
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) { for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
int f = tm.grid_.cell_faces[i]; int f = tm.grid_.cell_faces[i];

View File

@@ -78,9 +78,14 @@ namespace Opm
/// \param[in] pressure Array with pressure. /// \param[in] pressure Array with pressure.
/// \param[in] porevolume0 Array with pore volume at start of timestep. /// \param[in] porevolume0 Array with pore volume at start of timestep.
/// \param[in] porevolume Array with pore volume. /// \param[in] porevolume Array with pore volume.
/// \param[in] source Transport source term. /// \param[in] source Transport source term, to be interpreted by sign:
/// (+) Inflow, value is first phase flow (water)
/// per second, in *surface* volumes (unlike the
/// incompressible version).
/// (-) Outflow, value is total flow of all phases
/// per second, in reservoir volumes.
/// \param[in] polymer_inflow_c Array of inflow polymer concentrations per cell.
/// \param[in] dt Time step. /// \param[in] dt Time step.
/// \param[in] inflow_c Inflow polymer.
/// \param[in, out] saturation Phase saturations. /// \param[in, out] saturation Phase saturations.
/// \param[in, out] surfacevol Surface volumes. /// \param[in, out] surfacevol Surface volumes.
/// \param[in, out] concentration Polymer concentration. /// \param[in, out] concentration Polymer concentration.
@@ -91,8 +96,8 @@ namespace Opm
const double* porevolume0, const double* porevolume0,
const double* porevolume, const double* porevolume,
const double* source, const double* source,
const double* polymer_inflow_c,
const double dt, const double dt,
const double inflow_c,
std::vector<double>& saturation, std::vector<double>& saturation,
std::vector<double>& surfacevol, std::vector<double>& surfacevol,
std::vector<double>& concentration, std::vector<double>& concentration,
@@ -134,8 +139,8 @@ namespace Opm
const double* porevolume0_; // one volume per cell const double* porevolume0_; // one volume per cell
const double* porevolume_; // one volume per cell const double* porevolume_; // one volume per cell
const double* source_; // one source per cell const double* source_; // one source per cell
const double* polymer_inflow_c_;
double dt_; double dt_;
double inflow_c_;
double tol_; double tol_;
double maxit_; double maxit_;
SingleCellMethod method_; SingleCellMethod method_;

View File

@@ -189,8 +189,8 @@ namespace Opm
maxit_(maxit), maxit_(maxit),
darcyflux_(0), darcyflux_(0),
source_(0), source_(0),
polymer_inflow_c_(0),
dt_(0.0), dt_(0.0),
inflow_c_(0.0),
concentration_(0), concentration_(0),
cmax_(0), cmax_(0),
fractionalflow_(grid.number_of_cells, -1.0), fractionalflow_(grid.number_of_cells, -1.0),
@@ -232,8 +232,8 @@ namespace Opm
void TransportModelPolymer::solve(const double* darcyflux, void TransportModelPolymer::solve(const double* darcyflux,
const double* porevolume, const double* porevolume,
const double* source, const double* source,
const double* polymer_inflow_c,
const double dt, const double dt,
const double inflow_c,
std::vector<double>& saturation, std::vector<double>& saturation,
std::vector<double>& concentration, std::vector<double>& concentration,
std::vector<double>& cmax) std::vector<double>& cmax)
@@ -241,8 +241,8 @@ namespace Opm
darcyflux_ = darcyflux; darcyflux_ = darcyflux;
porevolume_ = porevolume; porevolume_ = porevolume;
source_ = source; source_ = source;
polymer_inflow_c_ = polymer_inflow_c;
dt_ = dt; dt_ = dt;
inflow_c_ = inflow_c;
toWaterSat(saturation, saturation_); toWaterSat(saturation, saturation_);
concentration_ = &concentration[0]; concentration_ = &concentration[0];
cmax_ = &cmax[0]; cmax_ = &cmax[0];
@@ -350,7 +350,7 @@ namespace Opm
bool src_is_inflow = dflux < 0.0; bool src_is_inflow = dflux < 0.0;
influx = src_is_inflow ? dflux : 0.0; influx = src_is_inflow ? dflux : 0.0;
double mc; double mc;
tm.computeMc(tm.inflow_c_, mc); tm.computeMc(tm.polymer_inflow_c_[cell_index], mc);
influx_polymer = src_is_inflow ? dflux*mc : 0.0; influx_polymer = src_is_inflow ? dflux*mc : 0.0;
outflux = !src_is_inflow ? dflux : 0.0; outflux = !src_is_inflow ? dflux : 0.0;
comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water. comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.

View File

@@ -67,17 +67,21 @@ namespace Opm
/// Using implicit Euler scheme, reordered. /// Using implicit Euler scheme, reordered.
/// \param[in] darcyflux Array of signed face fluxes. /// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes. /// \param[in] porevolume Array of pore volumes.
/// \param[in] source Transport source term. /// \param[in] source Transport source term, to be interpreted by sign:
/// (+) Inflow, value is first phase flow (water)
/// per second, in reservoir volumes.
/// (-) Outflow, value is total flow of all phases
/// per second, in reservoir volumes.
/// \param[in] polymer_inflow_c Array of inflow polymer concentrations per cell.
/// \param[in] dt Time step. /// \param[in] dt Time step.
/// \param[in] inflow_c Time step.
/// \param[in, out] saturation Phase saturations. /// \param[in, out] saturation Phase saturations.
/// \param[in, out] concentration Polymer concentration. /// \param[in, out] concentration Polymer concentration.
/// \param[in, out] cmax Highest concentration that has occured in a given cell. /// \param[in, out] cmax Highest concentration that has occured in a given cell.
void solve(const double* darcyflux, void solve(const double* darcyflux,
const double* porevolume, const double* porevolume,
const double* source, const double* source,
const double* polymer_inflow_c,
const double dt, const double dt,
const double inflow_c,
std::vector<double>& saturation, std::vector<double>& saturation,
std::vector<double>& concentration, std::vector<double>& concentration,
std::vector<double>& cmax); std::vector<double>& cmax);
@@ -149,8 +153,8 @@ namespace Opm
const double* darcyflux_; // one flux per grid face const double* darcyflux_; // one flux per grid face
const double* source_; // one source per cell const double* source_; // one source per cell
const double* polymer_inflow_c_;
double dt_; double dt_;
double inflow_c_;
std::vector<double> saturation_; // one per cell, only water saturation! std::vector<double> saturation_; // one per cell, only water saturation!
double* concentration_; double* concentration_;
double* cmax_; double* cmax_;

View File

@@ -103,8 +103,8 @@ namespace Opm
/// @param[in] c polymer concentration /// @param[in] c polymer concentration
/// @param[in] cmax polymer maximum concentration /// @param[in] cmax polymer maximum concentration
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow. /// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] inj_c injected concentration by cell
/// @param[in] dt timestep used /// @param[in] dt timestep used
/// @param[in] inj_c injected concentration
/// @param[out] injected must point to a valid array with P elements, /// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size(). /// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements. /// @param[out] produced must also point to a valid array with P elements.
@@ -116,8 +116,8 @@ namespace Opm
const std::vector<double>& c, const std::vector<double>& c,
const std::vector<double>& cmax, const std::vector<double>& cmax,
const std::vector<double>& src, const std::vector<double>& src,
const std::vector<double>& inj_c,
const double dt, const double dt,
const double inj_c,
double* injected, double* injected,
double* produced, double* produced,
double& polyinj, double& polyinj,
@@ -139,7 +139,7 @@ namespace Opm
for (int cell = 0; cell < num_cells; ++cell) { for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) { if (src[cell] > 0.0) {
injected[0] += src[cell]*dt; injected[0] += src[cell]*dt;
polyinj += src[cell]*dt*inj_c; polyinj += src[cell]*dt*inj_c[cell];
} else if (src[cell] < 0.0) { } else if (src[cell] < 0.0) {
const double flux = -src[cell]*dt; const double flux = -src[cell]*dt;
const double* sat = &s[np*cell]; const double* sat = &s[np*cell];
@@ -170,15 +170,13 @@ namespace Opm
/// @param[in] c polymer concentration /// @param[in] c polymer concentration
/// @param[in] cmax polymer maximum concentration /// @param[in] cmax polymer maximum concentration
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow. /// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] inj_c injected concentration by cell
/// @param[in] dt timestep used /// @param[in] dt timestep used
/// @param[in] inj_c injected concentration
///
/// @param[out] injected must point to a valid array with P elements, /// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size(). /// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements. /// @param[out] produced must also point to a valid array with P elements.
/// @param[out] polyinj injected mass of polymer /// @param[out] polyinj injected mass of polymer
/// @param[out] polyprod produced mass of polymer /// @param[out] polyprod produced mass of polymer
void computeInjectedProduced(const BlackoilPropertiesInterface& props, void computeInjectedProduced(const BlackoilPropertiesInterface& props,
const Opm::PolymerProperties& polyprops, const Opm::PolymerProperties& polyprops,
const std::vector<double>& press, const std::vector<double>& press,
@@ -187,8 +185,8 @@ namespace Opm
const std::vector<double>& c, const std::vector<double>& c,
const std::vector<double>& cmax, const std::vector<double>& cmax,
const std::vector<double>& src, const std::vector<double>& src,
const std::vector<double>& inj_c,
const double dt, const double dt,
const double inj_c,
double* injected, double* injected,
double* produced, double* produced,
double& polyinj, double& polyinj,
@@ -210,7 +208,7 @@ namespace Opm
for (int cell = 0; cell < num_cells; ++cell) { for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) { if (src[cell] > 0.0) {
injected[0] += src[cell]*dt; injected[0] += src[cell]*dt;
polyinj += src[cell]*dt*inj_c; polyinj += src[cell]*dt*inj_c[cell];
} else if (src[cell] < 0.0) { } else if (src[cell] < 0.0) {
const double flux = -src[cell]*dt; const double flux = -src[cell]*dt;
const double* sat = &s[np*cell]; const double* sat = &s[np*cell];

View File

@@ -27,6 +27,7 @@
#include <opm/polymer/PolymerProperties.hpp> #include <opm/polymer/PolymerProperties.hpp>
#include <opm/polymer/PolymerBlackoilState.hpp> #include <opm/polymer/PolymerBlackoilState.hpp>
#include <opm/core/fluid/RockCompressibility.hpp> #include <opm/core/fluid/RockCompressibility.hpp>
#include <opm/core/utility/SparseVector.hpp>
#include <vector> #include <vector>
@@ -77,8 +78,8 @@ namespace Opm
/// @param[in] s saturation values (for all P phases) /// @param[in] s saturation values (for all P phases)
/// @param[in] c polymer concentration /// @param[in] c polymer concentration
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow. /// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] inj_c injected concentration by cell
/// @param[in] dt timestep used /// @param[in] dt timestep used
/// @param[in] inj_c injected concentration
/// @param[out] injected must point to a valid array with P elements, /// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size(). /// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements. /// @param[out] produced must also point to a valid array with P elements.
@@ -90,8 +91,8 @@ namespace Opm
const std::vector<double>& c, const std::vector<double>& c,
const std::vector<double>& cmax, const std::vector<double>& cmax,
const std::vector<double>& src, const std::vector<double>& src,
const std::vector<double>& inj_c,
const double dt, const double dt,
const double inj_c,
double* injected, double* injected,
double* produced, double* produced,
double& polyinj, double& polyinj,
@@ -111,8 +112,8 @@ namespace Opm
/// @param[in] c polymer concentration /// @param[in] c polymer concentration
/// @param[in] cmax polymer maximum concentration /// @param[in] cmax polymer maximum concentration
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow. /// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] inj_c injected concentration by cell
/// @param[in] dt timestep used /// @param[in] dt timestep used
/// @param[in] inj_c injected concentration
/// ///
/// @param[out] injected must point to a valid array with P elements, /// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size(). /// where P = s.size()/src.size().
@@ -127,9 +128,9 @@ namespace Opm
const std::vector<double>& s, const std::vector<double>& s,
const std::vector<double>& c, const std::vector<double>& c,
const std::vector<double>& cmax, const std::vector<double>& cmax,
const std::vector<double>& src, const std::vector<double>& src,
const double dt, const std::vector<double>& inj_c,
const double inj_c, const double dt,
double* injected, double* injected,
double* produced, double* produced,
double& polyinj, double& polyinj,
@@ -172,35 +173,6 @@ namespace Opm
const RockCompressibility* rock_comp); const RockCompressibility* rock_comp);
/// @brief Functor giving the injected amount of polymer as a function of time.
class PolymerInflow
{
public:
/// Constructor.
/// @param[in] starttime Start time of injection in seconds.
/// @param[in] endtime End time of injection in seconds.
/// @param[in] amount Amount to be injected per second.
PolymerInflow(const double starttime,
const double endtime,
const double amount)
: stime_(starttime), etime_(endtime), amount_(amount)
{
}
/// Get the current injection rate.
/// @param[in] time Current time in seconds.
double operator()(double time)
{
if (time >= stime_ && time < etime_) {
return amount_;
} else {
return 0.0;
}
}
private:
double stime_;
double etime_;
double amount_;
};
} // namespace Opm } // namespace Opm