Merge pull request #2254 from GitPaean/clang-format-aquifer

re-formatting aquifer files with clang-format
This commit is contained in:
Bård Skaflestad 2019-12-20 16:50:11 +01:00 committed by GitHub
commit b64116a70c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 679 additions and 685 deletions

View File

@ -31,40 +31,41 @@
namespace Opm
{
template<typename TypeTag>
class AquiferCarterTracy: public AquiferInterface<TypeTag>
{
public:
template <typename TypeTag>
class AquiferCarterTracy : public AquiferInterface<TypeTag>
{
public:
typedef AquiferInterface<TypeTag> Base;
using typename Base::Simulator;
using typename Base::ElementContext;
using typename Base::FluidSystem;
using typename Base::BlackoilIndices;
using typename Base::RateVector;
using typename Base::IntensiveQuantities;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::Scalar;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using Base::waterCompIdx;
using Base::waterPhaseIdx;
AquiferCarterTracy( const Aquancon::AquanconOutput& connection,
AquiferCarterTracy(const Aquancon::AquanconOutput& connection,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator,
const AquiferCT::AQUCT_data& aquct_data)
: Base(connection, cartesian_to_compressed, ebosSimulator)
, aquct_data_(aquct_data)
{}
{
}
void endTimeStep() override
{
for (const auto& Qai: Base::Qai_) {
Base::W_flux_ += Qai*Base::ebos_simulator_.timeStepSize();
for (const auto& Qai : Base::Qai_) {
Base::W_flux_ += Qai * Base::ebos_simulator_.timeStepSize();
}
}
protected:
protected:
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar beta_; // Influx constant
@ -81,15 +82,15 @@ namespace Opm
Base::cell_idx_ = connection.global_index;
auto globalCellIdx = ugrid.globalCell();
assert( Base::cell_idx_ == connection.global_index);
assert( (Base::cell_idx_.size() <= connection.influx_coeff.size()) );
assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
assert(Base::cell_idx_ == connection.global_index);
assert((Base::cell_idx_.size() <= connection.influx_coeff.size()));
assert((connection.influx_coeff.size() == connection.influx_multiplier.size()));
assert((connection.influx_multiplier.size() == connection.reservoir_face_dir.size()));
// We hack the cell depth values for now. We can actually get it from elementcontext pos
Base::cell_depth_.resize(Base::cell_idx_.size(), aquct_data_.d0);
Base::alphai_.resize(Base::cell_idx_.size(), 1.0);
Base::faceArea_connected_.resize(Base::cell_idx_.size(),0.0);
Base::faceArea_connected_.resize(Base::cell_idx_.size(), 0.0);
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
@ -100,41 +101,45 @@ namespace Opm
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
Base::cellToConnectionIdx_.resize(Base::ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx)
{
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
const int cell_index = Base::cartesian_to_compressed_.at(Base::cell_idx_[idx]);
Base::cellToConnectionIdx_[cell_index] = idx;
const auto cellFacesRange = cell2Faces[cell_index];
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
for (auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) {
// The index of the face in the compressed grid
const int faceIdx = *cellFaceIter;
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
switch(faceTag)
{
case 0: faceDirection = Opm::FaceDir::XMinus;
switch (faceTag) {
case 0:
faceDirection = Opm::FaceDir::XMinus;
break;
case 1: faceDirection = Opm::FaceDir::XPlus;
case 1:
faceDirection = Opm::FaceDir::XPlus;
break;
case 2: faceDirection = Opm::FaceDir::YMinus;
case 2:
faceDirection = Opm::FaceDir::YMinus;
break;
case 3: faceDirection = Opm::FaceDir::YPlus;
case 3:
faceDirection = Opm::FaceDir::YPlus;
break;
case 4: faceDirection = Opm::FaceDir::ZMinus;
case 4:
faceDirection = Opm::FaceDir::ZMinus;
break;
case 5: faceDirection = Opm::FaceDir::ZPlus;
case 5:
faceDirection = Opm::FaceDir::ZPlus;
break;
default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
default:
OPM_THROW(Opm::NumericalIssue,
"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
}
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
if (faceDirection == connection.reservoir_face_dir.at(idx)) {
Base::faceArea_connected_.at(idx) = Base::getFaceArea(faceCells, ugrid, faceIdx, idx, connection);
denom_face_areas += ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) );
denom_face_areas += (connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx));
}
}
auto cellCenter = grid.getCellCenter(Base::cell_idx_.at(idx));
@ -142,20 +147,18 @@ namespace Opm
}
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx)
{
Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)
? // Prevent no connection NaNs due to division by zero
0.
: ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) )/denom_face_areas;
: (connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx)) / denom_face_areas;
}
}
void assignRestartData(const data::AquiferData& /* xaq */) override
{
throw std::runtime_error {
"Restart-based initialization not currently supported "
"for Carter-Tracey analytic aquifers"
};
throw std::runtime_error {"Restart-based initialization not currently supported "
"for Carter-Tracey analytic aquifers"};
}
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
@ -167,7 +170,9 @@ namespace Opm
inline Scalar dpai(int idx)
{
Scalar dp = Base::pa0_ + Base::rhow_.at(idx).value()*Base::gravity_()*(Base::cell_depth_.at(idx) - aquct_data_.d0) - Base::pressure_previous_.at(idx);
Scalar dp = Base::pa0_
+ Base::rhow_.at(idx).value() * Base::gravity_() * (Base::cell_depth_.at(idx) - aquct_data_.d0)
- Base::pressure_previous_.at(idx);
return dp;
}
@ -179,43 +184,37 @@ namespace Opm
Scalar PItdprime = 0.;
Scalar PItd = 0.;
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
a = 1.0/Base::Tc_ * ( (beta_ * dpai(idx)) - (Base::W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
b = beta_ / (Base::Tc_ * ( PItd - td*PItdprime));
a = 1.0 / Base::Tc_ * ((beta_ * dpai(idx)) - (Base::W_flux_.value() * PItdprime)) / (PItd - td * PItdprime);
b = beta_ / (Base::Tc_ * (PItd - td * PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
Scalar a, b;
calculateEqnConstants(a,b,idx,simulator);
Base::Qai_.at(idx) = Base::alphai_.at(idx)*( a - b * ( Base::pressure_current_.at(idx) - Base::pressure_previous_.at(idx) ) );
calculateEqnConstants(a, b, idx, simulator);
Base::Qai_.at(idx)
= Base::alphai_.at(idx) * (a - b * (Base::pressure_current_.at(idx) - Base::pressure_previous_.at(idx)));
}
inline void calculateAquiferConstants() override
{
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h
* aquct_data_.theta * aquct_data_.phi_aq
* aquct_data_.C_t
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
Base::Tc_ = mu_w_ * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o
/ ( aquct_data_.k_a * aquct_data_.c1 );
Base::Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
/ (aquct_data_.k_a * aquct_data_.c1);
}
inline void calculateAquiferCondition() override
{
int pvttableIdx = aquct_data_.pvttableID - 1;
Base::rhow_.resize(Base::cell_idx_.size(),0.);
if (!aquct_data_.p0)
{
Base::rhow_.resize(Base::cell_idx_.size(), 0.);
if (!aquct_data_.p0) {
Base::pa0_ = calculateReservoirEquilibrium();
}
else
{
} else {
Base::pa0_ = *(aquct_data_.p0);
}
@ -230,13 +229,12 @@ namespace Opm
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign( iq0.fluidState() );
fs_aquifer.assign(iq0.fluidState());
Eval temperature_aq, pa0_mean;
temperature_aq = fs_aquifer.temperature(0);
pa0_mean = Base::pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
mu_w_ = mu_w_aquifer.value();
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
@ -266,14 +264,17 @@ namespace Opm
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
Base::rhow_[idx] = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - Base::rhow_[idx].value()*Base::gravity_()*(Base::cell_depth_[idx] - aquct_data_.d0))*Base::alphai_[idx] );
pw_aquifer.push_back(
(water_pressure_reservoir
- Base::rhow_[idx].value() * Base::gravity_() * (Base::cell_depth_[idx] - aquct_data_.d0))
* Base::alphai_[idx]);
}
// We take the average of the calculated equilibrium pressures.
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.) / pw_aquifer.size();
return aquifer_pres_avg;
}
}; // class AquiferCarterTracy
}; // class AquiferCarterTracy
} // namespace Opm
#endif

View File

@ -31,43 +31,44 @@ along with OPM. If not, see <http://www.gnu.org/licenses/>.
namespace Opm
{
template<typename TypeTag>
class AquiferFetkovich: public AquiferInterface<TypeTag>
{
template <typename TypeTag>
class AquiferFetkovich : public AquiferInterface<TypeTag>
{
public:
public:
typedef AquiferInterface<TypeTag> Base;
using typename Base::Simulator;
using typename Base::ElementContext;
using typename Base::FluidSystem;
using typename Base::BlackoilIndices;
using typename Base::RateVector;
using typename Base::IntensiveQuantities;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::Scalar;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using Base::waterCompIdx;
using Base::waterPhaseIdx;
AquiferFetkovich( const Aquancon::AquanconOutput& connection,
AquiferFetkovich(const Aquancon::AquanconOutput& connection,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator,
const Aquifetp::AQUFETP_data& aqufetp_data)
: Base(connection, cartesian_to_compressed, ebosSimulator)
, aqufetp_data_(aqufetp_data)
{}
{
}
void endTimeStep() override
{
for (const auto& Qai: Base::Qai_) {
Base::W_flux_ += Qai*Base::ebos_simulator_.timeStepSize();
for (const auto& Qai : Base::Qai_) {
Base::W_flux_ += Qai * Base::ebos_simulator_.timeStepSize();
aquifer_pressure_ = aquiferPressure();
}
}
protected:
protected:
// Aquifer Fetkovich Specific Variables
// TODO: using const reference here will cause segmentation fault, which is very strange
const Aquifetp::AQUFETP_data aqufetp_data_;
@ -82,15 +83,15 @@ namespace Opm
Base::cell_idx_ = connection.global_index;
auto globalCellIdx = ugrid.globalCell();
assert( Base::cell_idx_ == connection.global_index);
assert( (Base::cell_idx_.size() == connection.influx_coeff.size()) );
assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
assert(Base::cell_idx_ == connection.global_index);
assert((Base::cell_idx_.size() == connection.influx_coeff.size()));
assert((connection.influx_coeff.size() == connection.influx_multiplier.size()));
assert((connection.influx_multiplier.size() == connection.reservoir_face_dir.size()));
// We hack the cell depth values for now. We can actually get it from elementcontext pos
Base::cell_depth_.resize(Base::cell_idx_.size(), aqufetp_data_.d0);
Base::alphai_.resize(Base::cell_idx_.size(), 1.0);
Base::faceArea_connected_.resize(Base::cell_idx_.size(),0.0);
Base::faceArea_connected_.resize(Base::cell_idx_.size(), 0.0);
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
@ -101,41 +102,45 @@ namespace Opm
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
Base::cellToConnectionIdx_.resize(Base::ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx)
{
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
const int cell_index = Base::cartesian_to_compressed_.at(Base::cell_idx_[idx]);
Base::cellToConnectionIdx_[cell_index] = idx;
const auto cellFacesRange = cell2Faces[cell_index];
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
for (auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) {
// The index of the face in the compressed grid
const int faceIdx = *cellFaceIter;
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
switch(faceTag)
{
case 0: faceDirection = Opm::FaceDir::XMinus;
switch (faceTag) {
case 0:
faceDirection = Opm::FaceDir::XMinus;
break;
case 1: faceDirection = Opm::FaceDir::XPlus;
case 1:
faceDirection = Opm::FaceDir::XPlus;
break;
case 2: faceDirection = Opm::FaceDir::YMinus;
case 2:
faceDirection = Opm::FaceDir::YMinus;
break;
case 3: faceDirection = Opm::FaceDir::YPlus;
case 3:
faceDirection = Opm::FaceDir::YPlus;
break;
case 4: faceDirection = Opm::FaceDir::ZMinus;
case 4:
faceDirection = Opm::FaceDir::ZMinus;
break;
case 5: faceDirection = Opm::FaceDir::ZPlus;
case 5:
faceDirection = Opm::FaceDir::ZPlus;
break;
default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer problem. Make sure faceTag is correctly defined");
default:
OPM_THROW(Opm::NumericalIssue,
"Initialization of Aquifer problem. Make sure faceTag is correctly defined");
}
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
if (faceDirection == connection.reservoir_face_dir.at(idx)) {
Base::faceArea_connected_.at(idx) = Base::getFaceArea(faceCells, ugrid, faceIdx, idx, connection);
denom_face_areas += ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) );
denom_face_areas += (connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx));
}
}
auto cellCenter = grid.getCellCenter(Base::cell_idx_.at(idx));
@ -143,22 +148,19 @@ namespace Opm
}
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx)
{
Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)
? // Prevent no connection NaNs due to division by zero
0.
: ( connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx) )/denom_face_areas;
: (connection.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx)) / denom_face_areas;
}
}
void assignRestartData(const data::AquiferData& xaq) override
{
if (xaq.type != data::AquiferType::Fetkovich)
{
throw std::invalid_argument {
"Analytic aquifer data for unexpected aquifer type "
"passed to Fetkovich aquifer"
};
if (xaq.type != data::AquiferType::Fetkovich) {
throw std::invalid_argument {"Analytic aquifer data for unexpected aquifer type "
"passed to Fetkovich aquifer"};
}
this->aquifer_pressure_ = xaq.pressure;
@ -167,7 +169,7 @@ namespace Opm
inline Eval dpai(int idx)
{
const Eval dp = aquifer_pressure_ - Base::pressure_current_.at(idx)
+ Base::rhow_[idx] * Base::gravity_()*(Base::cell_depth_[idx] - aqufetp_data_.d0);
+ Base::rhow_[idx] * Base::gravity_() * (Base::cell_depth_[idx] - aqufetp_data_.d0);
return dp;
}
@ -175,39 +177,36 @@ namespace Opm
inline Scalar aquiferPressure()
{
Scalar Flux = Base::W_flux_.value();
Scalar pa_ = Base::pa0_ - Flux / ( aqufetp_data_.C_t * aqufetp_data_.V0 );
Scalar pa_ = Base::pa0_ - Flux / (aqufetp_data_.C_t * aqufetp_data_.V0);
return pa_;
}
inline void calculateAquiferConstants() override
{
Base::Tc_ = ( aqufetp_data_.C_t * aqufetp_data_.V0 ) / aqufetp_data_.J ;
Base::Tc_ = (aqufetp_data_.C_t * aqufetp_data_.V0) / aqufetp_data_.J;
}
// This function implements Eq 5.14 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
const Scalar td_Tc_ = simulator.timeStepSize() / Base::Tc_ ;
const Scalar td_Tc_ = simulator.timeStepSize() / Base::Tc_;
const Scalar coef = (1 - exp(-td_Tc_)) / td_Tc_;
Base::Qai_.at(idx) = Base::alphai_[idx] * aqufetp_data_.J * dpai(idx) * coef;
}
inline void calculateAquiferCondition() override
{
Base::rhow_.resize(Base::cell_idx_.size(),0.);
Base::rhow_.resize(Base::cell_idx_.size(), 0.);
if (this->solution_set_from_restart_) {
return;
}
if (!aqufetp_data_.p0)
{
if (!aqufetp_data_.p0) {
Base::pa0_ = calculateReservoirEquilibrium();
}
else
{
} else {
Base::pa0_ = *(aqufetp_data_.p0);
}
aquifer_pressure_ = Base::pa0_ ;
aquifer_pressure_ = Base::pa0_;
}
inline Scalar calculateReservoirEquilibrium() override
@ -234,7 +233,10 @@ namespace Opm
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
Base::rhow_[idx] = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - Base::rhow_[idx].value()*Base::gravity_()*(Base::cell_depth_[idx] - aqufetp_data_.d0))*Base::alphai_[idx] );
pw_aquifer.push_back(
(water_pressure_reservoir
- Base::rhow_[idx].value() * Base::gravity_() * (Base::cell_depth_[idx] - aqufetp_data_.d0))
* Base::alphai_[idx]);
}
// We take the average of the calculated equilibrium pressures.
@ -242,6 +244,6 @@ namespace Opm
const Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.) / sum_alpha;
return aquifer_pres_avg;
}
}; //Class AquiferFetkovich
}; // Class AquiferFetkovich
} // namespace Opm
#endif

View File

@ -22,28 +22,28 @@
#ifndef OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#define OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifetp.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <vector>
namespace Opm
{
template<typename TypeTag>
class AquiferInterface
{
public:
template <typename TypeTag>
class AquiferInterface
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
@ -59,28 +59,36 @@ namespace Opm
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval, FluidSystem, enableTemperature, enableEnergy, BlackoilIndices::gasEnabled, BlackoilIndices::numPhases> FluidState;
typedef Opm::BlackOilFluidState<Eval,
FluidSystem,
enableTemperature,
enableEnergy,
BlackoilIndices::gasEnabled,
BlackoilIndices::numPhases>
FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
// Constructor
AquiferInterface( const Aquancon::AquanconOutput& connection,
AquiferInterface(const Aquancon::AquanconOutput& connection,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator)
: connection_(connection)
, ebos_simulator_(ebosSimulator)
, cartesian_to_compressed_(cartesian_to_compressed)
{}
{
}
// Deconstructor
virtual ~AquiferInterface() {}
virtual ~AquiferInterface()
{
}
void initFromRestart(const std::vector<data::AquiferData>& aquiferSoln)
{
auto xaqPos = std::find_if(aquiferSoln.begin(), aquiferSoln.end(),
[this](const data::AquiferData& xaq) -> bool
{
auto xaqPos
= std::find_if(aquiferSoln.begin(), aquiferSoln.end(), [this](const data::AquiferData& xaq) -> bool {
return xaq.aquiferID == this->connection_.aquiferID;
});
@ -131,18 +139,18 @@ namespace Opm
if (idx < 0)
return;
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const
// pointer to IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
// This is the pressure at td + dt
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
updateCellPressure(pressure_current_, idx, intQuants);
updateCellDensity(idx, intQuants);
calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx]
+= Qai_[idx] / context.dofVolume(spaceIdx, timeIdx);
}
protected:
protected:
inline Scalar gravity_() const
{
return ebos_simulator_.problem().gravity()[2];
@ -151,12 +159,12 @@ namespace Opm
inline void initQuantities(const Aquancon::AquanconOutput& connection)
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
if (!this->solution_set_from_restart_)
{
if (!this->solution_set_from_restart_) {
W_flux_ = 0.;
}
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections
// function
initializeConnections(connection);
calculateAquiferCondition();
calculateAquiferConstants();
@ -166,13 +174,15 @@ namespace Opm
Qai_.resize(cell_idx_.size(), 0.0);
}
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
inline void
updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
inline void
updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
@ -184,27 +194,28 @@ namespace Opm
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
template<class faceCellType, class ugridType>
inline double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
const int faceIdx, const int idx,
template <class faceCellType, class ugridType>
inline double getFaceArea(const faceCellType& faceCells,
const ugridType& ugrid,
const int faceIdx,
const int idx,
const Aquancon::AquanconOutput& connection) const
{
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
// Do not make the connection if the product of the two cellIdx > 0. This is because the
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell
// adjoining)
double faceArea = 0.;
const auto cellNeighbour0 = faceCells(faceIdx,0);
const auto cellNeighbour1 = faceCells(faceIdx,1);
const auto cellNeighbour0 = faceCells(faceIdx, 0);
const auto cellNeighbour1 = faceCells(faceIdx, 1);
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
defaultFaceArea :
*(connection.influx_coeff.at(idx));
faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
if (cellNeighbour1 == 0){
faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
}
else if (cellNeighbour0 == 0){
faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
const auto calculatedFaceArea
= (!connection.influx_coeff.at(idx)) ? defaultFaceArea : *(connection.influx_coeff.at(idx));
faceArea = (cellNeighbour0 * cellNeighbour1 > 0) ? 0. : calculatedFaceArea;
if (cellNeighbour1 == 0) {
faceArea = (cellNeighbour0 < 0) ? faceArea : 0.;
} else if (cellNeighbour0 == 0) {
faceArea = (cellNeighbour1 < 0) ? faceArea : 0.;
}
return faceArea;
}
@ -232,9 +243,9 @@ namespace Opm
Eval W_flux_;
bool solution_set_from_restart_{false};
bool solution_set_from_restart_ {false};
virtual void initializeConnections(const Aquancon::AquanconOutput& connection) =0;
virtual void initializeConnections(const Aquancon::AquanconOutput& connection) = 0;
virtual void assignRestartData(const data::AquiferData& xaq) = 0;
@ -244,8 +255,8 @@ namespace Opm
virtual void calculateAquiferConstants() = 0;
virtual Scalar calculateReservoirEquilibrium() =0;
virtual Scalar calculateReservoirEquilibrium() = 0;
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
};
};
} // namespace Opm
#endif

View File

@ -26,9 +26,9 @@
#include <ebos/eclbaseaquifermodel.hh>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifetp.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/output/data/Aquifer.hpp>
@ -39,16 +39,17 @@
#include <vector>
namespace Opm {
namespace Opm
{
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilAquiferModel
{
/// Class for handling the blackoil well model.
template <typename TypeTag>
class BlackoilAquiferModel
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
public:
public:
explicit BlackoilAquiferModel(Simulator& simulator);
void initialSolutionApplied();
@ -59,10 +60,7 @@ namespace Opm {
void beginIteration();
// add the water rate due to aquifers to the source term.
template <class Context>
void addToSource(RateVector& rates,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const;
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) const;
void endIteration();
void endTimeStep();
void endEpisode();
@ -73,7 +71,7 @@ namespace Opm {
template <class Restarter>
void deserialize(Restarter& res);
protected:
protected:
// --------- Types ---------
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
@ -93,8 +91,7 @@ namespace Opm {
bool aquiferActive() const;
bool aquiferCarterTracyActive() const;
bool aquiferFetkovichActive() const;
};
};
} // namespace Opm

View File

@ -1,184 +1,170 @@
#include <opm/grid/utility/cartesianToCompressed.hpp>
namespace Opm {
namespace Opm
{
template<typename TypeTag>
BlackoilAquiferModel<TypeTag>::
BlackoilAquiferModel(Simulator& simulator)
template <typename TypeTag>
BlackoilAquiferModel<TypeTag>::BlackoilAquiferModel(Simulator& simulator)
: simulator_(simulator)
{
{
init();
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::initialSolutionApplied()
{
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->initialSolutionApplied();
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::initialSolutionApplied()
{
if (aquiferCarterTracyActive()) {
for (auto& aquifer : aquifers_CarterTracy) {
aquifer.initialSolutionApplied();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->initialSolutionApplied();
}
if (aquiferFetkovichActive()) {
for (auto& aquifer : aquifers_Fetkovich) {
aquifer.initialSolutionApplied();
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::initFromRestart(const std::vector<data::AquiferData>& aquiferSoln)
{
if(aquiferCarterTracyActive())
{
for (auto& aquifer : aquifers_CarterTracy)
{
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::initFromRestart(const std::vector<data::AquiferData>& aquiferSoln)
{
if (aquiferCarterTracyActive()) {
for (auto& aquifer : aquifers_CarterTracy) {
aquifer.initFromRestart(aquiferSoln);
}
}
if(aquiferFetkovichActive())
{
for (auto& aquifer : aquifers_Fetkovich)
{
if (aquiferFetkovichActive()) {
for (auto& aquifer : aquifers_Fetkovich) {
aquifer.initFromRestart(aquiferSoln);
}
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginEpisode()
{ }
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginEpisode()
{
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginIteration()
{ }
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginIteration()
{
}
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: beginTimeStep()
{
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->beginTimeStep();
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginTimeStep()
{
if (aquiferCarterTracyActive()) {
for (auto& aquifer : aquifers_CarterTracy) {
aquifer.beginTimeStep();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->beginTimeStep();
}
if (aquiferFetkovichActive()) {
for (auto& aquifer : aquifers_Fetkovich) {
aquifer.beginTimeStep();
}
}
}
template<typename TypeTag>
template<class Context>
void BlackoilAquiferModel<TypeTag>:: addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
if(aquiferCarterTracyActive())
{
for (auto& aquifer : aquifers_CarterTracy)
{
template <typename TypeTag>
template <class Context>
void
BlackoilAquiferModel<TypeTag>::addToSource(RateVector& rates,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
if (aquiferCarterTracyActive()) {
for (auto& aquifer : aquifers_CarterTracy) {
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
}
}
if(aquiferFetkovichActive())
{
for (auto& aquifer : aquifers_Fetkovich)
{
if (aquiferFetkovichActive()) {
for (auto& aquifer : aquifers_Fetkovich) {
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
}
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endIteration()
{ }
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endIteration()
{
}
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: endTimeStep()
{
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->endTimeStep();
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endTimeStep()
{
if (aquiferCarterTracyActive()) {
for (auto& aquifer : aquifers_CarterTracy) {
aquifer.endTimeStep();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->endTimeStep();
if (aquiferFetkovichActive()) {
for (auto& aquifer : aquifers_Fetkovich) {
aquifer.endTimeStep();
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endEpisode()
{ }
}
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endEpisode()
{
}
template <typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::serialize(Restarter& /* res */)
{
template <typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::serialize(Restarter& /* res */)
{
// TODO (?)
throw std::logic_error("BlackoilAquiferModel::serialize() is not yet implemented");
}
}
template<typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::deserialize(Restarter& /* res */)
{
template <typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::deserialize(Restarter& /* res */)
{
// TODO (?)
throw std::logic_error("BlackoilAquiferModel::deserialize() is not yet implemented");
}
}
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init()
{
// Initialize the aquifers in the deck
template <typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::init()
{
const auto& deck = this->simulator_.vanguard().deck();
if (deck.hasKeyword("AQUCT")) {
//updateConnectionIntensiveQuantities();
// updateConnectionIntensiveQuantities();
const auto& eclState = this->simulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
const AquiferCT aquiferct = AquiferCT(eclState,deck);
const AquiferCT aquiferct = AquiferCT(eclState, deck);
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connection.size() );
assert(aquifersData.size() == aquifer_connection.size());
const auto& ugrid = simulator_.vanguard().grid();
const auto& gridView = simulator_.gridView();
const int number_of_cells = gridView.size(0);
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
Opm::UgGridHelpers::globalCell(ugrid));
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells, Opm::UgGridHelpers::globalCell(ugrid));
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_CarterTracy.push_back(
AquiferCarterTracy<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
);
for (size_t i = 0; i < aquifersData.size(); ++i) {
aquifers_CarterTracy.push_back(AquiferCarterTracy<TypeTag>(
aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_, aquifersData.at(i)));
}
}
if(deck.hasKeyword("AQUFETP"))
{
//updateConnectionIntensiveQuantities();
if (deck.hasKeyword("AQUFETP")) {
// updateConnectionIntensiveQuantities();
const auto& eclState = this->simulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
@ -188,38 +174,35 @@ namespace Opm {
std::vector<Aquifetp::AQUFETP_data> aquifersData = aquifetp.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connection.size() );
assert(aquifersData.size() == aquifer_connection.size());
const auto& ugrid = simulator_.vanguard().grid();
const auto& gridView = simulator_.gridView();
const int number_of_cells = gridView.size(0);
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
Opm::UgGridHelpers::globalCell(ugrid));
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells, Opm::UgGridHelpers::globalCell(ugrid));
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_Fetkovich.push_back(
AquiferFetkovich<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
);
for (size_t i = 0; i < aquifersData.size(); ++i) {
aquifers_Fetkovich.push_back(AquiferFetkovich<TypeTag>(
aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_, aquifersData.at(i)));
}
}
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferActive() const
{
}
template <typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>::aquiferActive() const
{
return (aquiferCarterTracyActive() || aquiferFetkovichActive());
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferCarterTracyActive() const
{
}
template <typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>::aquiferCarterTracyActive() const
{
return !aquifers_CarterTracy.empty();
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferFetkovichActive() const
{
}
template <typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>::aquiferFetkovichActive() const
{
return !aquifers_Fetkovich.empty();
}
}
} // namespace Opm