Cleans up the Aquifer model classes.

This commit is contained in:
kel85uk 2018-04-26 16:22:26 +02:00
parent 2fe24e16cf
commit b7fbe66c91
5 changed files with 125 additions and 260 deletions

View File

@ -24,21 +24,14 @@
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <string>
#include <memory>
#include <vector>
#include <algorithm>
#include <map>
#include <cassert>
namespace Opm
{
@ -48,17 +41,11 @@ namespace Opm
{
public:
typedef BlackoilModelParameters ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
@ -71,73 +58,56 @@ namespace Opm
explicit AquiferCarterTracy( const AquiferCT::AQUCT_data& params, const Aquancon::AquanconOutput& connection,
const Scalar gravity, const Simulator& ebosSimulator )
AquiferCarterTracy( const AquiferCT::AQUCT_data& aquct_data,
const Aquancon::AquanconOutput& connection,
Simulator& ebosSimulator )
: ebos_simulator_ (ebosSimulator),
aquiferID_ (params.aquiferID),
inftableID_ (params.inftableID),
pvttableID_ (params.pvttableID),
phi_aq_ (params.phi_aq), //
d0_ (params.d0),
C_t_ (params.C_t), //
r_o_ (params.r_o), //
k_a_ (params.k_a), //
c1_ (params.c1),
h_ (params.h), //
theta_ (params.theta), //
c2_ (params.c2), //
aqutab_td_ (params.td),
aqutab_pi_ (params.pi),
pa0_ (params.p0),
gravity_ (gravity),
p0_defaulted_ (params.p0_defaulted)
aquct_data_ (aquct_data),
gravity_ (ebos_simulator_.problem().gravity()[2])
{
init_quantities(connection);
initQuantities(connection);
}
inline void assembleAquiferEq(Simulator& ebosSimulator, const SimulatorTimerInterface& timer)
inline void assembleAquiferEq(const SimulatorTimerInterface& timer)
{
dt_ = timer.currentStepLength();
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
auto& ebosJac = ebos_simulator_.model().linearizer().matrix();
auto& ebosResid = ebos_simulator_.model().linearizer().residual();
auto cellID = cell_idx_.begin();
size_t idx;
for ( idx = 0; cellID != cell_idx_.end(); ++cellID, ++idx )
size_t cellID;
for ( size_t idx = 0; idx < cell_idx_.size(); ++idx )
{
Eval qinflow = 0.0;
cellID = cell_idx_.at(idx);
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
const IntensiveQuantities intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellID, /*timeIdx=*/ 0));
// This is the pressure at td + dt
get_current_Pressure_cell(pressure_current_,idx,intQuants);
get_current_density_cell(rhow_,idx,intQuants);
calculate_inflow_rate(idx, timer);
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, timer);
qinflow = Qai_.at(idx);
ebosResid[*cellID][waterCompIdx] -= qinflow.value();
ebosResid[cellID][waterCompIdx] -= qinflow.value();
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx)
{
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[*cellID][*cellID][waterCompIdx][pvIdx] -= qinflow.derivative(pvIdx);
ebosJac[cellID][cellID][waterCompIdx][pvIdx] -= qinflow.derivative(pvIdx);
}
}
}
inline void before_time_step(Simulator& ebosSimulator, const SimulatorTimerInterface& timer)
inline void beforeTimeStep(const SimulatorTimerInterface& timer)
{
auto cellID = cell_idx_.begin();
size_t idx;
for ( idx = 0; cellID != cell_idx_.end(); ++cellID, ++idx )
{
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
get_current_Pressure_cell(pressure_previous_ ,idx,intQuants);
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
updateCellPressure(pressure_previous_ ,idx,intQuants);
}
}
inline void after_time_step(const SimulatorTimerInterface& timer)
inline void afterTimeStep(const SimulatorTimerInterface& timer)
{
for (auto Qai = Qai_.begin(); Qai != Qai_.end(); ++Qai)
{
@ -146,139 +116,117 @@ namespace Opm
}
inline const std::vector<int> cell_id() const
{
return cell_idx_;
}
inline const int& aquiferID() const
{
return aquiferID_;
}
private:
const Simulator& ebos_simulator_;
// Aquifer ID, and other IDs
int aquiferID_, inftableID_, pvttableID_;
Simulator& ebos_simulator_;
// Grid variables
std::vector<size_t> cell_idx_;
std::vector<Scalar> faceArea_connected_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Eval> pressure_previous_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar mu_w_ , //water viscosity
phi_aq_ , //aquifer porosity
d0_, // aquifer datum depth
C_t_ , //total compressibility
r_o_ , //aquifer inner radius
k_a_ , //aquifer permeability
c1_, // 0.008527 (METRIC, PVT-M); 0.006328 (FIELD); 3.6 (LAB)
h_ , //aquifer thickness
theta_ , //angle subtended by the aquifer boundary
c2_ ; //6.283 (METRIC, PVT-M); 1.1191 (FIELD); 6.283 (LAB).
beta_ , // Influx constant
Tc_ , // Time constant
pa0_ , // initial aquifer pressure
gravity_ ; // gravitational acceleration
// Variables for influence table
std::vector<Scalar> aqutab_td_, aqutab_pi_;
// Cumulative flux
Scalar dt_, pa0_, gravity_;
bool p0_defaulted_;
Eval W_flux_;
inline const double area_fraction(const size_t i)
{
return alphai_.at(i);
}
inline void get_influence_table_values(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
{
// We use the opm-common numeric linear interpolator
pitd = Opm::linearInterpolation(aqutab_td_, aqutab_pi_, td);
pitd_prime = Opm::linearInterpolationDerivative(aqutab_td_, aqutab_pi_, td);
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
}
inline void init_quantities(const Aquancon::AquanconOutput& connection)
inline void initQuantities(const Aquancon::AquanconOutput& connection)
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
W_flux_ = 0.;
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
initialize_connections(connection);
initializeConnections(connection);
calculate_aquifer_condition();
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(cell_idx_.size(), 0.);
pressure_current_.resize(cell_idx_.size(), 0.);
Qai_.resize(cell_idx_.size(), 0.0);
}
inline void get_current_Pressure_cell(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void get_current_density_cell(std::vector<Eval>& rho_water, const int idx, const IntensiveQuantities& intQuants)
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rho_water.at(idx) = fs.density(waterPhaseIdx);
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
inline Scalar dpai(int idx)
{
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - d0_) - pressure_previous_.at(idx).value();
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0) - pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculate_a_b_constants(Scalar& a, Scalar& b, const int idx, const SimulatorTimerInterface& timer)
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const SimulatorTimerInterface& timer)
{
Scalar beta = aquifer_influx_constant();
Scalar Tc = time_constant();
Scalar td_plus_dt = (timer.currentStepLength() + timer.simulationTimeElapsed()) / Tc;
Scalar td = timer.simulationTimeElapsed() / Tc;
const Scalar td_plus_dt = (timer.currentStepLength() + timer.simulationTimeElapsed()) / Tc_;
const Scalar td = timer.simulationTimeElapsed() / Tc_;
Scalar PItdprime = 0.;
Scalar PItd = 0.;
get_influence_table_values(PItd, PItdprime, td_plus_dt);
a = 1.0/Tc * ( (beta * dpai(idx)) - (W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
b = beta / (Tc * ( PItd - td*PItdprime));
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
a = 1.0/Tc_ * ( (beta_ * dpai(idx)) - (W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
b = beta_ / (Tc_ * ( PItd - td*PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculate_inflow_rate(int idx, const SimulatorTimerInterface& timer)
inline void calculateInflowRate(int idx, const SimulatorTimerInterface& timer)
{
Scalar a, b;
calculate_a_b_constants(a,b,idx,timer);
Qai_.at(idx) = area_fraction(idx)*( a - b * ( pressure_current_.at(idx) - pressure_previous_.at(idx).value() ) );
calculateEqnConstants(a,b,idx,timer);
Qai_.at(idx) = alphai_.at(idx)*( a - b * ( pressure_current_.at(idx) - pressure_previous_.at(idx) ) );
}
inline const Scalar time_constant() const
inline void calculateAquiferConstants()
{
Scalar Tc = mu_w_*phi_aq_*C_t_*r_o_*r_o_/(k_a_*c1_);
return Tc;
}
inline const Scalar aquifer_influx_constant() const
{
Scalar beta = c2_*h_*theta_*phi_aq_*C_t_*r_o_*r_o_;
return beta;
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h
* aquct_data_.theta * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
Tc_ = mu_w_ * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o
/ ( aquct_data_.k_a * aquct_data_.c1 );
}
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
inline void initialize_connections(const Aquancon::AquanconOutput& connection)
inline void initializeConnections(const Aquancon::AquanconOutput& connection)
{
const auto& eclState = ebos_simulator_.vanguard().eclState();
const auto& ugrid = ebos_simulator_.vanguard().grid();
@ -293,7 +241,7 @@ namespace Opm
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
// We hack the cell depth values for now. We can actually get it from elementcontext pos
cell_depth_.resize(cell_idx_.size(), d0_);
cell_depth_.resize(cell_idx_.size(), aquct_data_.d0);
alphai_.resize(cell_idx_.size(), 1.0);
faceArea_connected_.resize(cell_idx_.size(),0.0);
Scalar faceArea;
@ -301,14 +249,6 @@ namespace Opm
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::AutoDiffGrid::faceCells(ugrid);
for (auto influxCoeff: connection.influx_coeff){
std::cout << "influx_coeff = " << influxCoeff << std::endl;
}
for (auto influxMult: connection.influx_multiplier){
std::cout << "influx_multiplier = " << influxMult << std::endl;
}
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
@ -326,19 +266,22 @@ namespace Opm
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
if (faceTag == 0) // left
faceDirection = Opm::FaceDir::XMinus;
else if (faceTag == 1) // right
faceDirection = Opm::FaceDir::XPlus;
else if (faceTag == 2) // back
faceDirection = Opm::FaceDir::YMinus;
else if (faceTag == 3) // front
faceDirection = Opm::FaceDir::YPlus;
else if (faceTag == 4) // bottom
faceDirection = Opm::FaceDir::ZMinus;
else if (faceTag == 5) // top
faceDirection = Opm::FaceDir::ZPlus;
switch(faceTag)
{
case 0: faceDirection = Opm::FaceDir::XMinus;
break;
case 1: faceDirection = Opm::FaceDir::XPlus;
break;
case 2: faceDirection = Opm::FaceDir::YMinus;
break;
case 3: faceDirection = Opm::FaceDir::YPlus;
break;
case 4: faceDirection = Opm::FaceDir::ZMinus;
break;
case 5: faceDirection = Opm::FaceDir::ZPlus;
break;
default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
}
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
@ -360,16 +303,20 @@ namespace Opm
}
}
inline void calculate_aquifer_condition()
inline void calculateAquiferCondition()
{
int pvttableIdx = pvttableID_ - 1;
int pvttableIdx = aquct_data_.pvttableID - 1;
rhow_.resize(cell_idx_.size(),0.);
if (p0_defaulted_)
if (aquct_data_.p0 < 1.0)
{
pa0_ = calculate_reservoir_equilibrium(rhow_);
pa0_ = calculateReservoirEquilibrium();
}
else
{
pa0_ = aquct_data_.p0;
}
// Initialize a FluidState object first
@ -388,10 +335,11 @@ namespace Opm
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
inline Scalar calculate_reservoir_equilibrium(std::vector<Eval>& rho_water_reservoir)
inline Scalar calculateReservoirEquilibrium()
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector<Scalar> water_pressure_reservoir, pw_aquifer;
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
@ -399,9 +347,9 @@ namespace Opm
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellIDx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
water_pressure_reservoir.push_back( fs.pressure(waterPhaseIdx).value() );
rho_water_reservoir.at(idx) = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir.at(idx) - rho_water_reservoir.at(idx).value()*gravity_*(cell_depth_.at(idx) - d0_))*area_fraction(idx) );
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
rhow_.at(idx) = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0))*alphai_.at(idx) );
}
// We take the average of the calculated equilibrium pressures.

View File

@ -24,40 +24,12 @@
#ifndef OPM_BLACKOILAQUIFERMODEL_HEADER_INCLUDED
#define OPM_BLACKOILAQUIFERMODEL_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <tuple>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/AquiferCarterTracy.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Deck/DeckRecord.hpp>
#include <opm/parser/eclipse/Deck/DeckKeyword.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
namespace Opm {
/// Class for handling the blackoil well model.
@ -67,22 +39,13 @@ namespace Opm {
public:
// --------- Types ---------
typedef BlackoilModelParameters ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef AquiferCarterTracy<TypeTag> Aquifer_object;
BlackoilAquiferModel(Simulator& ebosSimulator,
const ModelParameters& param,
const bool terminal_output);
explicit BlackoilAquiferModel(Simulator& ebosSimulator);
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
@ -92,36 +55,22 @@ namespace Opm {
// called at the end of a time step
void timeStepSucceeded(const SimulatorTimerInterface& timer);
inline const Simulator& simulator() const
{
return ebosSimulator_;
}
// This initialization function is used to connect the parser objects with the ones needed by AquiferCarterTracy
void init(const Simulator& ebosSimulator, std::vector<Aquifer_object>& aquifers);
protected:
Simulator& ebosSimulator_;
const ModelParameters param_;
bool terminal_output_;
double gravity_;
std::vector<Aquifer_object> aquifers_;
// This initialization function is used to connect the parser objects with the ones needed by AquiferCarterTracy
void init();
void updateConnectionIntensiveQuantities() const;
int numAquifers() const;
void assembleAquiferEq(const SimulatorTimerInterface& timer);
// at the beginning of each time step (Not report step)
void prepareTimeStep(const SimulatorTimerInterface& timer);
const std::vector<Aquifer_object>& aquifers();
};

View File

@ -3,19 +3,10 @@ namespace Opm {
template<typename TypeTag>
BlackoilAquiferModel<TypeTag>::
BlackoilAquiferModel(Simulator& ebosSimulator,
const ModelParameters& param,
const bool terminal_output)
BlackoilAquiferModel(Simulator& ebosSimulator)
: ebosSimulator_(ebosSimulator)
, param_(param)
, terminal_output_(terminal_output)
{
// const auto& gridView = ebosSimulator_.gridView();
// number_of_cells_ = gridView.size(/*codim=*/0);
// global_nc_ = gridView.comm().sum(number_of_cells_);
gravity_ = ebosSimulator_.problem().gravity()[2];
init(ebosSimulator_, aquifers_);
init();
}
@ -26,7 +17,7 @@ namespace Opm {
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->after_time_step(timer);
aquifer->afterTimeStep(timer);
}
}
@ -65,16 +56,6 @@ namespace Opm {
}
}
// Protected function: Return number of aquifers in the model.
template<typename TypeTag>
int
BlackoilAquiferModel<TypeTag>:: numAquifers() const
{
return aquifers_.size();
}
// Protected function which calls the individual aquifer models
template<typename TypeTag>
void
@ -82,7 +63,7 @@ namespace Opm {
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->assembleAquiferEq(ebosSimulator_, timer);
aquifer->assembleAquiferEq(timer);
}
}
@ -95,42 +76,33 @@ namespace Opm {
// Here we can ask each carter tracy aquifers to get the current previous time step's pressure
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->before_time_step(ebosSimulator_, timer);
aquifer->beforeTimeStep(timer);
}
}
// Protected function: Returns a reference to the aquifers members in the model
template<typename TypeTag>
const std::vector< AquiferCarterTracy<TypeTag> >&
BlackoilAquiferModel<TypeTag>:: aquifers()
{
return aquifers_;
}
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init(const Simulator& ebosSimulator, std::vector< AquiferCarterTracy<TypeTag> >& aquifers)
BlackoilAquiferModel<TypeTag>:: init()
{
updateConnectionIntensiveQuantities();
const auto& deck = ebosSimulator.vanguard().deck();
const auto& eclState = ebosSimulator.vanguard().eclState();
const auto& deck = ebosSimulator_.vanguard().deck();
const auto& eclState = ebosSimulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
AquiferCT aquiferct = AquiferCT(eclState,deck);
Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
const AquiferCT aquiferct = AquiferCT(eclState,deck);
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connect.size() );
assert( aquifersData.size() == aquifer_connection.size() );
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers.push_back(
AquiferCarterTracy<TypeTag> (aquifersData.at(i), aquifer_connection.at(i), gravity_, ebosSimulator_)
aquifers_.push_back(
AquiferCarterTracy<TypeTag> (aquifersData.at(i), aquifer_connection.at(i), ebosSimulator_)
);
}
}

View File

@ -30,8 +30,6 @@
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellConnectionAuxiliaryModule.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
@ -349,7 +347,7 @@ namespace Opm {
const ReservoirState& reservoir_state,
WellState& well_state)
{
// DUNE_UNUSED_PARAMETER(timer);
DUNE_UNUSED_PARAMETER(timer);
DUNE_UNUSED_PARAMETER(reservoir_state);
DUNE_UNUSED_PARAMETER(well_state);
@ -372,8 +370,8 @@ namespace Opm {
ebosSimulator_.model().linearizer().linearize();
ebosSimulator_.problem().endIteration();
// -------- Well and aquifer common variables ----------
double dt = timer.currentStepLength();
// -------- Current time step length ----------
const double dt = timer.currentStepLength();
// -------- Aquifer models ----------
try
@ -381,9 +379,9 @@ namespace Opm {
// Modify the Jacobian and residuals according to the aquifer models
aquiferModel().assemble(timer, iterationIdx);
}
catch( const Dune::FMatrixError& e )
catch( ... )
{
OPM_THROW(Opm::NumericalProblem,"Error when assembling aquifer models");
OPM_THROW(Opm::NumericalIssue,"Error when assembling aquifer models");
}
// -------- Well equations ----------

View File

@ -30,8 +30,6 @@
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/SimFIBODetails.hpp>
#include <opm/autodiff/moduleVersion.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
#include <opm/grid/utility/StopWatch.hpp>
@ -191,7 +189,7 @@ public:
ebosSimulator_.model().addAuxiliaryModule(auxMod);
}
AquiferModel aquifer_model(ebosSimulator_, model_param_, terminal_output_);
AquiferModel aquifer_model(ebosSimulator_);
// Main simulation loop.
while (!timer.done()) {