Merge pull request #2949 from totto82/msw_operability2

Check operability for MSW
This commit is contained in:
Bård Skaflestad 2020-12-09 15:06:21 +01:00 committed by GitHub
commit b83f8f0397
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 422 additions and 236 deletions

View File

@ -343,8 +343,11 @@ namespace Opm {
// do the initialization for all the wells
// TODO: to see whether we can postpone of the intialization of the well containers to
// optimize the usage of the following several member variables
std::vector< Scalar > B_avg(numComponents(), Scalar() );
computeAverageFormationFactor(B_avg);
for (auto& well : well_container_) {
well->init(&phase_usage_, depth_, gravity_, local_num_cells_);
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg);
}
// update the updated cell flag
@ -440,7 +443,7 @@ namespace Opm {
WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger);
// some preparation before the well can be used
well->init(&phase_usage_, depth_, gravity_, local_num_cells_);
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg);
const Well& wellEcl = schedule().getWell(well_name, timeStepIdx);
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx), schedule(), timeStepIdx, well_efficiency_factor);
@ -2680,9 +2683,11 @@ namespace Opm {
this->previous_well_state_ = this->well_state_;
well_container_ = createWellContainer(timeStepIdx);
std::vector< Scalar > B_avg(numComponents(), Scalar() );
// we don't plan to iterate so just passing trivial B_avg
// for now
for (auto& well : well_container_) {
well->init(&phase_usage_, depth_, gravity_, local_num_cells_);
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg);
}
std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);

View File

@ -113,7 +113,8 @@ namespace Opm
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells) override;
const int num_cells,
const std::vector< Scalar >& B_avg) override;
virtual void initPrimaryVariablesEvaluation() const override;
@ -230,6 +231,9 @@ namespace Opm
using Base::perf_depth_;
using Base::num_components_;
using Base::connectionRates_;
using Base::ipr_a_;
using Base::ipr_b_;
using Base::changed_to_stopped_this_step_;
// protected functions from the Base class
using Base::phaseUsage;
@ -239,7 +243,8 @@ namespace Opm
using Base::getAllowCrossFlow;
using Base::scalingFactor;
using Base::wellIsStopped_;
using Base::updateWellOperability;
using Base::checkWellOperability;
// TODO: trying to use the information from the Well opm-parser as much
// as possible, it will possibly be re-implemented later for efficiency reason.
@ -431,12 +436,6 @@ namespace Opm
// handling the overshooting and undershooting of the fractions
void processFractions(const int seg) const;
// checking the operability of the well based on current reservoir condition
// it is not implemented for multisegment well yet
virtual void checkWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger) override;
void updateWellStateFromPrimaryVariables(WellState& well_state, Opm::DeferredLogger& deferred_logger) const;
bool frictionalPressureLossConsidered() const;
@ -458,10 +457,6 @@ namespace Opm
WellState& well_state,
Opm::DeferredLogger& deferred_logger) override;
virtual void wellTestingPhysical(const Simulator& simulator, const std::vector<double>& B_avg,
const double simulation_time, const int report_step,
WellState& well_state, WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger) override;
virtual void updateWaterThroughput(const double dt, WellState& well_state) const override;
EvalWell getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const;
@ -517,6 +512,16 @@ namespace Opm
void assembleValvePressureEq(const int seg, WellState& well_state) const;
EvalWell pressureDropValve(const int seg) const;
// check whether the well is operable under BHP limit with current reservoir condition
virtual void checkOperabilityUnderBHPLimitProducer(const WellState& well_state, const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) override;
// check whether the well is operable under THP limit with current reservoir condition
virtual void checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, const WellState& well_state, Opm::DeferredLogger& deferred_logger) override;
// updating the inflow based on the current reservoir condition
virtual void updateIPR(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) const override;
};
}

View File

@ -135,9 +135,10 @@ namespace Opm
init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells)
const int num_cells,
const std::vector< Scalar >& B_avg)
{
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells, B_avg);
// TODO: for StandardWell, we need to update the perf depth here using depth_arg.
// for MultisegmentWell, it is much more complicated.
@ -264,6 +265,8 @@ namespace Opm
Opm::DeferredLogger& deferred_logger)
{
checkWellOperability(ebosSimulator, well_state, deferred_logger);
const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_;
if (use_inner_iterations) {
this->iterateWellEquations(ebosSimulator, B_avg, dt, well_state, deferred_logger);
@ -624,6 +627,8 @@ namespace Opm
MultisegmentWell<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
if ( param_.matrix_add_well_contributions_ )
{
// Contributions are already in the matrix itself
@ -649,6 +654,8 @@ namespace Opm
MultisegmentWell<TypeTag>::
apply(BVector& r) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
// invDrw_ = duneD^-1 * resWell_
const BVectorWell invDrw = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_);
// r = r - duneC_^T * invDrw
@ -726,6 +733,8 @@ namespace Opm
WellState& well_state,
Opm::DeferredLogger& deferred_logger) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
BVectorWell xw(1);
recoverSolutionWell(x, xw);
updateWellState(xw, well_state, deferred_logger);
@ -820,7 +829,6 @@ namespace Opm
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
@ -856,6 +864,7 @@ namespace Opm
well_state_copy.currentProductionControls()[index_of_well_] = Well::ProducerCMode::BHP;
}
well_state_copy.bhp()[well_copy.index_of_well_] = bhp;
well_copy.calculateExplicitQuantities(ebosSimulator, well_state_copy, deferred_logger);
const double dt = ebosSimulator.timeStepSize();
// iterate to get a solution at the given bhp.
@ -932,6 +941,7 @@ namespace Opm
{
// TODO: to test using rate conversion coefficients to see if it will be better than
// this default one
if (!this->isOperable() && !this->wellIsStopped()) return;
const Well& well = Base::wellEcl();
@ -1005,6 +1015,8 @@ namespace Opm
MultisegmentWell<TypeTag>::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
duneB_.mmv(x, resWell);
@ -1021,6 +1033,8 @@ namespace Opm
MultisegmentWell<TypeTag>::
solveEqAndUpdateWellState(WellState& well_state, Opm::DeferredLogger& deferred_logger)
{
if (!this->isOperable() && !this->wellIsStopped()) return;
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
const BVectorWell dx_well = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_);
@ -1113,6 +1127,8 @@ namespace Opm
Opm::DeferredLogger& deferred_logger,
const double relaxation_factor) const
{
if (!this->isOperable() && !this->wellIsStopped()) return;
const double dFLimit = param_.dwell_fraction_max_;
const double max_pressure_change = param_.max_pressure_change_ms_wells_;
const std::vector<std::array<double, numWellEq> > old_primary_variables = primary_variables_;
@ -2374,33 +2390,201 @@ namespace Opm
}
template <typename TypeTag>
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
checkWellOperability(const Simulator& /* ebos_simulator */,
const WellState& /* well_state */,
Opm::DeferredLogger& deferred_logger)
checkOperabilityUnderBHPLimitProducer(const WellState& /*well_state*/, const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger)
{
const bool checkOperability = EWOMS_GET_PARAM(TypeTag, bool, EnableWellOperabilityCheck);
if (!checkOperability) {
return;
}
const auto& summaryState = ebos_simulator.vanguard().summaryState();
const double bhp_limit = Base::mostStrictBhpFromBhpLimits(summaryState);
// Crude but works: default is one atmosphere.
// TODO: a better way to detect whether the BHP is defaulted or not
const bool bhp_limit_not_defaulted = bhp_limit > 1.5 * unit::barsa;
if ( bhp_limit_not_defaulted || !this->wellHasTHPConstraints(summaryState) ) {
// if the BHP limit is not defaulted or the well does not have a THP limit
// we need to check the BHP limit
// focusing on PRODUCER for now
double temp = 0;
for (int p = 0; p < number_of_phases_; ++p) {
temp += ipr_a_[p] - ipr_b_[p] * bhp_limit;
}
if (temp < 0.) {
this->operability_status_.operable_under_only_bhp_limit = false;
}
// checking whether running under BHP limit will violate THP limit
if (this->operability_status_.operable_under_only_bhp_limit && this->wellHasTHPConstraints(summaryState)) {
// option 1: calculate well rates based on the BHP limit.
// option 2: stick with the above IPR curve
// we use IPR here
std::vector<double> well_rates_bhp_limit;
computeWellRatesWithBhp(ebos_simulator, Base::B_avg_, bhp_limit, well_rates_bhp_limit, deferred_logger);
const double thp = calculateThpFromBhp(well_rates_bhp_limit, bhp_limit, deferred_logger);
const double thp_limit = this->getTHPConstraint(summaryState);
if (thp < thp_limit) {
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
} else {
// defaulted BHP and there is a THP constraint
// default BHP limit is about 1 atm.
// when applied the hydrostatic pressure correction dp,
// most likely we get a negative value (bhp + dp)to search in the VFP table,
// which is not desirable.
// we assume we can operate under defaulted BHP limit and will violate the THP limit
// when operating under defaulted BHP limit.
this->operability_status_.operable_under_only_bhp_limit = true;
this->operability_status_.obey_thp_limit_under_bhp_limit = false;
}
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
updateIPR(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) const
{
// TODO: not handling solvent related here for now
// TODO: it only handles the producers for now
// the formular for the injectors are not formulated yet
if (this->isInjector()) {
return;
}
if (!this->underPredictionMode() ) {
return;
}
// initialize all the values to be zero to begin with
std::fill(ipr_a_.begin(), ipr_a_.end(), 0.);
std::fill(ipr_b_.begin(), ipr_b_.end(), 0.);
const std::string msg = "Support of well operability checking for multisegment wells is not implemented "
"yet, checkWellOperability() for " + name() + " will do nothing";
deferred_logger.warning("NO_OPERATABILITY_CHECKING_MS_WELLS", msg);
const int nseg = numberOfSegments();
double seg_bhp_press_diff = 0;
double ref_depth = ref_depth_;
for (int seg = 0; seg < nseg; ++seg) {
// calculating the perforation rate for each perforation that belongs to this segment
const double segment_depth = segmentSet()[seg].depth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth, segment_depth, segment_densities_[seg].value(), gravity_);
ref_depth = segment_depth;
seg_bhp_press_diff += dp;
for (const int perf : segment_perforations_[seg]) {
//std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.0});
std::vector<EvalWell> mob(num_components_, 0.0);
// TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration
getMobility(ebos_simulator, perf, mob);
const int cell_idx = well_cells_[perf];
const auto& int_quantities = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = int_quantities.fluidState();
// the pressure of the reservoir grid block the well connection is in
// pressure difference between the segment and the perforation
const double perf_seg_press_diff = gravity_ * segment_densities_[seg].value() * perforation_segment_depth_diffs_[perf];
// pressure difference between the perforation and the grid cell
const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf];
const double pressure_cell = fs.pressure(FluidSystem::oilPhaseIdx).value();
// calculating the b for the connection
std::vector<double> b_perf(num_components_);
for (size_t phase = 0; phase < FluidSystem::numPhases; ++phase) {
if (!FluidSystem::phaseIsActive(phase)) {
continue;
}
const unsigned comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phase));
b_perf[comp_idx] = fs.invB(phase).value();
}
// the pressure difference between the connection and BHP
const double h_perf = cell_perf_press_diff + perf_seg_press_diff + seg_bhp_press_diff;
const double pressure_diff = pressure_cell - h_perf;
// Let us add a check, since the pressure is calculated based on zero value BHP
// it should not be negative anyway. If it is negative, we might need to re-formulate
// to taking into consideration the crossflow here.
if (pressure_diff <= 0.) {
deferred_logger.warning("NON_POSITIVE_DRAWDOWN_IPR",
"non-positive drawdown found when updateIPR for well " + name());
}
// the well index associated with the connection
const double tw_perf = well_index_[perf]*ebos_simulator.problem().template rockCompTransMultiplier<double>(int_quantities, cell_idx);
// TODO: there might be some indices related problems here
// phases vs components
// ipr values for the perforation
std::vector<double> ipr_a_perf(ipr_a_.size());
std::vector<double> ipr_b_perf(ipr_b_.size());
for (int p = 0; p < number_of_phases_; ++p) {
const double tw_mob = tw_perf * mob[p].value() * b_perf[p];
ipr_a_perf[p] += tw_mob * pressure_diff;
ipr_b_perf[p] += tw_mob;
}
// we need to handle the rs and rv when both oil and gas are present
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oil_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const double rs = (fs.Rs()).value();
const double rv = (fs.Rv()).value();
const double dis_gas_a = rs * ipr_a_perf[oil_comp_idx];
const double vap_oil_a = rv * ipr_a_perf[gas_comp_idx];
ipr_a_perf[gas_comp_idx] += dis_gas_a;
ipr_a_perf[oil_comp_idx] += vap_oil_a;
const double dis_gas_b = rs * ipr_b_perf[oil_comp_idx];
const double vap_oil_b = rv * ipr_b_perf[gas_comp_idx];
ipr_b_perf[gas_comp_idx] += dis_gas_b;
ipr_b_perf[oil_comp_idx] += vap_oil_b;
}
for (int p = 0; p < number_of_phases_; ++p) {
// TODO: double check the indices here
ipr_a_[ebosCompIdxToFlowCompIdx(p)] += ipr_a_perf[p];
ipr_b_[ebosCompIdxToFlowCompIdx(p)] += ipr_b_perf[p];
}
}
}
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, const WellState& /*well_state*/, Opm::DeferredLogger& deferred_logger)
{
const auto& summaryState = ebos_simulator.vanguard().summaryState();
const auto obtain_bhp = computeBhpAtThpLimitProd(ebos_simulator, Base::B_avg_, summaryState, deferred_logger);
if (obtain_bhp) {
this->operability_status_.can_obtain_bhp_with_thp_limit = true;
const double bhp_limit = Base::mostStrictBhpFromBhpLimits(summaryState);
this->operability_status_.obey_bhp_limit_with_thp_limit = (*obtain_bhp >= bhp_limit);
const double thp_limit = this->getTHPConstraint(summaryState);
if (*obtain_bhp < thp_limit) {
const std::string msg = " obtained bhp " + std::to_string(unit::convert::to(*obtain_bhp, unit::barsa))
+ " bars is SMALLER than thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bars as a producer for well " + name();
deferred_logger.debug(msg);
}
} else {
// Shutting wells that can not find bhp value from thp
// when under THP control
this->operability_status_.can_obtain_bhp_with_thp_limit = false;
this->operability_status_.obey_bhp_limit_with_thp_limit = false;
if (!this->wellIsStopped()) {
const double thp_limit = this->getTHPConstraint(summaryState);
deferred_logger.debug(" could not find bhp value at thp limit "
+ std::to_string(unit::convert::to(thp_limit, unit::barsa))
+ " bar for well " + name() + ", the well might need to be closed ");
}
}
}
@ -2503,6 +2687,8 @@ namespace Opm
WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
if (!this->isOperable() && !this->wellIsStopped()) return true;
const int max_iter_number = param_.max_inner_iter_ms_wells_;
const WellState well_state0 = well_state;
const std::vector<Scalar> residuals0 = getWellResiduals(B_avg);
@ -2620,6 +2806,8 @@ namespace Opm
Opm::DeferredLogger& deferred_logger)
{
if (!this->isOperable() && !this->wellIsStopped()) return;
// update the upwinding segments
updateUpwindingSegments();
@ -2847,20 +3035,6 @@ namespace Opm
}
template<typename TypeTag>
void
MultisegmentWell<TypeTag>::
wellTestingPhysical(const Simulator& /* simulator */, const std::vector<double>& /* B_avg */,
const double /* simulation_time */, const int /* report_step */,
WellState& /* well_state */, WellTestState& /* welltest_state */, Opm::DeferredLogger& deferred_logger)
{
const std::string msg = "Support of well testing for physical limits for multisegment wells is not "
"implemented yet, wellTestingPhysical() for " + name() + " will do nothing";
deferred_logger.warning("NO_WELLTESTPHYSICAL_CHECKING_MS_WELLS", msg);
}
template<typename TypeTag>

View File

@ -174,7 +174,8 @@ namespace Opm
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells) override;
const int num_cells,
const std::vector< Scalar >& B_avg) override;
virtual void initPrimaryVariablesEvaluation() const override;
@ -337,6 +338,8 @@ namespace Opm
using Base::wfoam;
using Base::scalingFactor;
using Base::mostStrictBhpFromBhpLimits;
using Base::updateWellOperability;
using Base::checkWellOperability;
// protected member variables from the Base class
using Base::current_step_;
@ -359,6 +362,9 @@ namespace Opm
using Base::perf_rep_radius_;
using Base::perf_length_;
using Base::bore_diameters_;
using Base::ipr_a_;
using Base::ipr_b_;
using Base::changed_to_stopped_this_step_;
using Base::wellIsStopped_;
@ -397,14 +403,6 @@ namespace Opm
// the saturations in the well bore under surface conditions at the beginning of the time step
std::vector<double> F0_;
// the vectors used to describe the inflow performance relationship (IPR)
// Q = IPR_A - BHP * IPR_B
// TODO: it minght need to go to WellInterface, let us implement it in StandardWell first
// it is only updated and used for producers for now
mutable std::vector<double> ipr_a_;
mutable std::vector<double> ipr_b_;
bool changed_to_stopped_this_step_ = false;
// Enable GLIFT debug mode. This will enable output of logging messages.
bool glift_debug = false;
@ -523,14 +521,6 @@ namespace Opm
// handle the non reasonable fractions due to numerical overshoot
void processFractions() const;
// updating the inflow based on the current reservoir condition
void updateIPR(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) const;
// update the operability status of the well is operable under the current reservoir condition
// mostly related to BHP limit and THP limit
virtual void checkWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger) override;
virtual void assembleWellEqWithoutIteration(const Simulator& ebosSimulator,
const double dt,
@ -553,17 +543,14 @@ namespace Opm
EvalWell& cq_s_zfrac_effective,
Opm::DeferredLogger& deferred_logger) const;
// check whether the well is operable under the current reservoir condition
// mostly related to BHP limit and THP limit
void updateWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger);
// check whether the well is operable under BHP limit with current reservoir condition
void checkOperabilityUnderBHPLimitProducer(const WellState& well_state, const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger);
virtual void checkOperabilityUnderBHPLimitProducer(const WellState& well_state, const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) override;
// check whether the well is operable under THP limit with current reservoir condition
void checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, const WellState& well_state, Opm::DeferredLogger& deferred_logger);
virtual void checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, const WellState& well_state, Opm::DeferredLogger& deferred_logger) override;
// updating the inflow based on the current reservoir condition
virtual void updateIPR(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) const override;
// for a well, when all drawdown are in the wrong direction, then this well will not
// be able to produce/inject .
@ -594,11 +581,6 @@ namespace Opm
static double relaxationFactorRate(const std::vector<double>& primary_variables,
const BVectorWell& dwells);
virtual void wellTestingPhysical(const Simulator& simulator, const std::vector<double>& B_avg,
const double simulation_time, const int report_step,
WellState& well_state, WellTestState& welltest_state,
Opm::DeferredLogger& deferred_logger) override;
// calculate the skin pressure based on water velocity, throughput and polymer concentration.
// throughput is used to describe the formation damage during water/polymer injection.
// calculated skin pressure will be applied to the drawdown during perforation rate calculation

View File

@ -49,8 +49,6 @@ namespace Opm
, perf_pressure_diffs_(number_of_perforations_)
, parallelB_(duneB_, pw_info)
, F0_(numWellConservationEq)
, ipr_a_(number_of_phases_)
, ipr_b_(number_of_phases_)
{
assert(num_components_ == numWellConservationEq);
@ -69,9 +67,10 @@ namespace Opm
init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells)
const int num_cells,
const std::vector< Scalar >& B_avg)
{
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells, B_avg);
perf_depth_.resize(number_of_perforations_, 0.);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
@ -1680,88 +1679,6 @@ namespace Opm
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
const bool checkOperability = EWOMS_GET_PARAM(TypeTag, bool, EnableWellOperabilityCheck);
if (!checkOperability) {
return;
}
// focusing on PRODUCER for now
if (this->isInjector()) {
return;
}
if (!this->underPredictionMode() ) {
return;
}
if (this->wellIsStopped() && !changed_to_stopped_this_step_) {
return;
}
const bool old_well_operable = this->operability_status_.isOperable();
updateWellOperability(ebos_simulator, well_state, deferred_logger);
const bool well_operable = this->operability_status_.isOperable();
if (!well_operable && old_well_operable) {
if (well_ecl_.getAutomaticShutIn()) {
deferred_logger.info(" well " + name() + " gets SHUT during iteration ");
} else {
if (!this->wellIsStopped()) {
deferred_logger.info(" well " + name() + " gets STOPPED during iteration ");
this->stopWell();
changed_to_stopped_this_step_ = true;
}
}
} else if (well_operable && !old_well_operable) {
deferred_logger.info(" well " + name() + " gets REVIVED during iteration ");
this->openWell();
changed_to_stopped_this_step_ = false;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
this->operability_status_.reset();
updateIPR(ebos_simulator, deferred_logger);
// checking the BHP limit related
checkOperabilityUnderBHPLimitProducer(well_state, ebos_simulator, deferred_logger);
const auto& summaryState = ebos_simulator.vanguard().summaryState();
// checking whether the well can operate under the THP constraints.
if (this->wellHasTHPConstraints(summaryState)) {
checkOperabilityUnderTHPLimitProducer(ebos_simulator, well_state, deferred_logger);
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
@ -3346,70 +3263,6 @@ namespace Opm
template<typename TypeTag>
void
StandardWell<TypeTag>::
wellTestingPhysical(const Simulator& ebos_simulator, const std::vector<double>& B_avg,
const double /* simulation_time */, const int /* report_step */,
WellState& well_state, WellTestState& welltest_state,
Opm::DeferredLogger& deferred_logger)
{
deferred_logger.info(" well " + name() + " is being tested for physical limits");
// some most difficult things are the explicit quantities, since there is no information
// in the WellState to do a decent initialization
// TODO: Let us assume that the simulator is updated
// Let us try to do a normal simualtion running, to keep checking the operability status
// If the well is not operable during any of the time. It means it does not pass the physical
// limit test.
// create a copy of the well_state to use. If the operability checking is sucessful, we use this one
// to replace the original one
WellState well_state_copy = well_state;
// TODO: well state for this well is kind of all zero status
// we should be able to provide a better initialization
calculateExplicitQuantities(ebos_simulator, well_state_copy, deferred_logger);
updateWellOperability(ebos_simulator, well_state_copy, deferred_logger);
if ( !this->isOperable() ) {
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
deferred_logger.debug(msg);
return;
}
updateWellStateWithTarget(ebos_simulator, well_state_copy, deferred_logger);
calculateExplicitQuantities(ebos_simulator, well_state_copy, deferred_logger);
const double dt = ebos_simulator.timeStepSize();
const bool converged = this->iterateWellEquations(ebos_simulator, B_avg, dt, well_state_copy, deferred_logger);
if (!converged) {
const std::string msg = " well " + name() + " did not get converged during well testing for physical reason";
deferred_logger.debug(msg);
return;
}
if (this->isOperable() ) {
welltest_state.openWell(name(), WellTestConfig::PHYSICAL );
const std::string msg = " well " + name() + " is re-opened through well testing for physical reason";
deferred_logger.info(msg);
well_state = well_state_copy;
} else {
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
deferred_logger.debug(msg);
}
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::

View File

@ -158,7 +158,8 @@ namespace Opm
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells);
const int num_cells,
const std::vector< Scalar >& B_avg);
virtual void initPrimaryVariablesEvaluation() const = 0;
@ -271,7 +272,14 @@ namespace Opm
void updatePerforatedCell(std::vector<bool>& is_cell_perforated);
virtual void checkWellOperability(const Simulator& ebos_simulator, const WellState& well_state, Opm::DeferredLogger& deferred_logger) = 0;
void checkWellOperability(const Simulator& ebos_simulator, const WellState& well_state, Opm::DeferredLogger& deferred_logger);
// check whether the well is operable under the current reservoir condition
// mostly related to BHP limit and THP limit
void updateWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger);
// whether the well is operable
bool isOperable() const;
@ -411,6 +419,17 @@ namespace Opm
std::optional<double> dynamic_thp_limit_;
std::vector< Scalar > B_avg_;
// the vectors used to describe the inflow performance relationship (IPR)
// Q = IPR_A - BHP * IPR_B
// TODO: it minght need to go to WellInterface, let us implement it in StandardWell first
// it is only updated and used for producers for now
mutable std::vector<double> ipr_a_;
mutable std::vector<double> ipr_b_;
bool changed_to_stopped_this_step_ = false;
const PhaseUsage& phaseUsage() const;
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
@ -476,13 +495,22 @@ namespace Opm
OperabilityStatus operability_status_;
// check whether the well is operable under BHP limit with current reservoir condition
virtual void checkOperabilityUnderBHPLimitProducer(const WellState& well_state, const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) =0;
// check whether the well is operable under THP limit with current reservoir condition
virtual void checkOperabilityUnderTHPLimitProducer(const Simulator& ebos_simulator, const WellState& well_state, Opm::DeferredLogger& deferred_logger) =0;
virtual void updateIPR(const Simulator& ebos_simulator, Opm::DeferredLogger& deferred_logger) const=0;
void wellTestingEconomic(const Simulator& simulator, const std::vector<double>& B_avg,
const double simulation_time, const WellState& well_state,
WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger);
virtual void wellTestingPhysical(const Simulator& simulator, const std::vector<double>& B_avg,
void wellTestingPhysical(const Simulator& simulator, const std::vector<double>& B_avg,
const double simulation_time, const int report_step,
WellState& well_state, WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger) = 0;
WellState& well_state, WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger);
virtual void assembleWellEqWithoutIteration(const Simulator& ebosSimulator,

View File

@ -51,6 +51,8 @@ namespace Opm
, index_of_well_(index_of_well)
, first_perf_(first_perf_index)
, perf_data_(&perf_data)
, ipr_a_(number_of_phases_)
, ipr_b_(number_of_phases_)
{
assert(well.name()==pw_info.name());
assert(std::is_sorted(perf_data.begin(), perf_data.end(),
@ -122,10 +124,12 @@ namespace Opm
init(const PhaseUsage* phase_usage_arg,
const std::vector<double>& /* depth_arg */,
const double gravity_arg,
const int /* num_cells */)
const int /* num_cells */,
const std::vector< Scalar >& B_avg)
{
phase_usage_ = phase_usage_arg;
gravity_ = gravity_arg;
B_avg_ = B_avg;
}
@ -1409,6 +1413,141 @@ namespace Opm
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
wellTestingPhysical(const Simulator& ebos_simulator, const std::vector<double>& B_avg,
const double /* simulation_time */, const int /* report_step */,
WellState& well_state, WellTestState& welltest_state,
Opm::DeferredLogger& deferred_logger)
{
deferred_logger.info(" well " + name() + " is being tested for physical limits");
// some most difficult things are the explicit quantities, since there is no information
// in the WellState to do a decent initialization
// TODO: Let us assume that the simulator is updated
// Let us try to do a normal simualtion running, to keep checking the operability status
// If the well is not operable during any of the time. It means it does not pass the physical
// limit test.
// create a copy of the well_state to use. If the operability checking is sucessful, we use this one
// to replace the original one
WellState well_state_copy = well_state;
// TODO: well state for this well is kind of all zero status
// we should be able to provide a better initialization
calculateExplicitQuantities(ebos_simulator, well_state_copy, deferred_logger);
updateWellOperability(ebos_simulator, well_state_copy, deferred_logger);
if ( !this->isOperable() ) {
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
deferred_logger.debug(msg);
return;
}
updateWellStateWithTarget(ebos_simulator, well_state_copy, deferred_logger);
calculateExplicitQuantities(ebos_simulator, well_state_copy, deferred_logger);
const double dt = ebos_simulator.timeStepSize();
const bool converged = this->iterateWellEquations(ebos_simulator, B_avg, dt, well_state_copy, deferred_logger);
if (!converged) {
const std::string msg = " well " + name() + " did not get converged during well testing for physical reason";
deferred_logger.debug(msg);
return;
}
if (this->isOperable() ) {
welltest_state.openWell(name(), WellTestConfig::PHYSICAL );
const std::string msg = " well " + name() + " is re-opened through well testing for physical reason";
deferred_logger.info(msg);
well_state = well_state_copy;
} else {
const std::string msg = " well " + name() + " is not operable during well testing for physical reason";
deferred_logger.debug(msg);
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
checkWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
const bool checkOperability = EWOMS_GET_PARAM(TypeTag, bool, EnableWellOperabilityCheck);
if (!checkOperability) {
return;
}
// focusing on PRODUCER for now
if (this->isInjector()) {
return;
}
if (!this->underPredictionMode() ) {
return;
}
if (this->wellIsStopped() && !changed_to_stopped_this_step_) {
return;
}
const bool old_well_operable = this->operability_status_.isOperable();
updateWellOperability(ebos_simulator, well_state, deferred_logger);
const bool well_operable = this->operability_status_.isOperable();
if (!well_operable && old_well_operable) {
if (well_ecl_.getAutomaticShutIn()) {
deferred_logger.info(" well " + name() + " gets SHUT during iteration ");
} else {
if (!this->wellIsStopped()) {
deferred_logger.info(" well " + name() + " gets STOPPED during iteration ");
this->stopWell();
changed_to_stopped_this_step_ = true;
}
}
} else if (well_operable && !old_well_operable) {
deferred_logger.info(" well " + name() + " gets REVIVED during iteration ");
this->openWell();
changed_to_stopped_this_step_ = false;
}
}
template<typename TypeTag>
void
WellInterface<TypeTag>::
updateWellOperability(const Simulator& ebos_simulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
this->operability_status_.reset();
const Well::ProducerCMode& current_control = well_state.currentProductionControls()[this->index_of_well_];
// Operability checking is not free
// Only check wells under BHP and THP control
if(current_control == Well::ProducerCMode::BHP || current_control == Well::ProducerCMode::THP) {
updateIPR(ebos_simulator, deferred_logger);
checkOperabilityUnderBHPLimitProducer(well_state, ebos_simulator, deferred_logger);
}
// we do some extra checking for wells under THP control.
if (current_control == Well::ProducerCMode::THP) {
checkOperabilityUnderTHPLimitProducer(ebos_simulator, well_state, deferred_logger);
}
}