mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Updated comments
This commit is contained in:
parent
0caae966b8
commit
b87e9dad9a
@ -152,11 +152,6 @@ namespace bda
|
||||
)";
|
||||
}
|
||||
|
||||
|
||||
// b = mat * x
|
||||
// algorithm based on:
|
||||
// Optimization of Block Sparse Matrix-Vector Multiplication on Shared-MemoryParallel Architectures,
|
||||
// Ryan Eberhardt, Mark Hoemmen, 2016, https://doi.org/10.1109/IPDPSW.2016.42
|
||||
std::string get_spmv_blocked_string() {
|
||||
return R"(
|
||||
__kernel void spmv_blocked(
|
||||
@ -227,8 +222,6 @@ namespace bda
|
||||
|
||||
|
||||
|
||||
// ILU apply part 1: forward substitution
|
||||
// solves L*x=y where L is a lower triangular sparse blocked matrix
|
||||
std::string get_ILU_apply1_string(bool full_matrix) {
|
||||
std::string s = R"(
|
||||
__kernel void ILU_apply1(
|
||||
@ -305,8 +298,6 @@ namespace bda
|
||||
}
|
||||
|
||||
|
||||
// ILU apply part 2: backward substitution
|
||||
// solves U*x=y where L is a lower triangular sparse blocked matrix
|
||||
std::string get_ILU_apply2_string(bool full_matrix) {
|
||||
std::string s = R"(
|
||||
__kernel void ILU_apply2(
|
||||
@ -391,10 +382,6 @@ namespace bda
|
||||
return s;
|
||||
}
|
||||
|
||||
/// Generate string with the stdwell_apply kernels
|
||||
/// If reorder is true, the B/Ccols do not correspond with the x/y vector
|
||||
/// the x/y vector is reordered, use toOrder to address that
|
||||
/// \param[in] reorder whether the matrix is reordered or not
|
||||
std::string get_stdwell_apply_string(bool reorder) {
|
||||
std::string kernel_name = reorder ? "stdwell_apply" : "stdwell_apply_no_reorder";
|
||||
std::string s = "__kernel void " + kernel_name + R"((
|
||||
|
@ -44,30 +44,41 @@ using stdwell_apply_no_reorder_kernel_type = cl::make_kernel<cl::Buffer&, cl::Bu
|
||||
using ilu_decomp_kernel_type = cl::make_kernel<const unsigned int, const unsigned int, cl::Buffer&, cl::Buffer&,
|
||||
cl::Buffer&, cl::Buffer&, cl::Buffer&, const int, cl::LocalSpaceArg>;
|
||||
|
||||
/// Generate string with axpy kernel
|
||||
/// a = a + alpha * b
|
||||
std::string get_axpy_string();
|
||||
|
||||
// returns partial sums, instead of the final dot product
|
||||
/// returns partial sums, instead of the final dot product
|
||||
/// partial sums are added on CPU
|
||||
std::string get_dot_1_string();
|
||||
|
||||
// returns partial sums, instead of the final norm
|
||||
// the square root must be computed on CPU
|
||||
/// returns partial sums, instead of the final norm
|
||||
/// the square root must be computed on CPU
|
||||
std::string get_norm_string();
|
||||
|
||||
// p = (p - omega * v) * beta + r
|
||||
/// Generate string with custom kernel
|
||||
/// This kernel combines some ilubicgstab vector operations into 1
|
||||
/// p = (p - omega * v) * beta + r
|
||||
std::string get_custom_string();
|
||||
|
||||
// b = mat * x
|
||||
// algorithm based on:
|
||||
// Optimization of Block Sparse Matrix-Vector Multiplication on Shared-MemoryParallel Architectures,
|
||||
// Ryan Eberhardt, Mark Hoemmen, 2016, https://doi.org/10.1109/IPDPSW.2016.42
|
||||
/// b = mat * x
|
||||
/// algorithm based on:
|
||||
/// Optimization of Block Sparse Matrix-Vector Multiplication on Shared-MemoryParallel Architectures,
|
||||
/// Ryan Eberhardt, Mark Hoemmen, 2016, https://doi.org/10.1109/IPDPSW.2016.42
|
||||
std::string get_spmv_blocked_string();
|
||||
|
||||
// ILU apply part 1: forward substitution
|
||||
// solves L*x=y where L is a lower triangular sparse blocked matrix
|
||||
/// ILU apply part 1: forward substitution
|
||||
/// solves L*x=y where L is a lower triangular sparse blocked matrix
|
||||
/// this L can be it's own BSR matrix (if full_matrix is false),
|
||||
/// or it can be inside a normal, square matrix, in that case diagIndex indicates where the rows of L end
|
||||
/// \param[in] full_matrix whether the kernel should operate on a full (square) matrix or not
|
||||
std::string get_ILU_apply1_string(bool full_matrix);
|
||||
|
||||
// ILU apply part 2: backward substitution
|
||||
// solves U*x=y where L is a lower triangular sparse blocked matrix
|
||||
/// ILU apply part 2: backward substitution
|
||||
/// solves U*x=y where U is an upper triangular sparse blocked matrix
|
||||
/// this U can be it's own BSR matrix (if full_matrix is false),
|
||||
/// or it can be inside a normal, square matrix, in that case diagIndex indicates where the rows of U start
|
||||
/// \param[in] full_matrix whether the kernel should operate on a full (square) matrix or not
|
||||
std::string get_ILU_apply2_string(bool full_matrix);
|
||||
|
||||
/// Generate string with the stdwell_apply kernels
|
||||
@ -76,6 +87,8 @@ using ilu_decomp_kernel_type = cl::make_kernel<const unsigned int, const unsigne
|
||||
/// \param[in] reorder whether the matrix is reordered or not
|
||||
std::string get_stdwell_apply_string(bool reorder);
|
||||
|
||||
/// Generate string with the exact ilu decomposition kernel
|
||||
/// The kernel takes a full BSR matrix and performs inplace ILU decomposition
|
||||
std::string get_ilu_decomp_string();
|
||||
|
||||
} // end namespace bda
|
||||
|
Loading…
Reference in New Issue
Block a user