Add Restart Support for Numerical Aquifers

We assign cumulative production only on the process that connects to
the reservoir model.  As a tiny optimisation, we return 0.0 early
as the aquifer flux on processes that do not connect to the
reservoir.
This commit is contained in:
Bård Skaflestad 2021-06-22 16:09:39 +02:00
parent a0af111bd8
commit bbb0c7f263

View File

@ -22,9 +22,15 @@
#define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#include <opm/output/data/Aquifer.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/NumericalAquifer/SingleNumericalAquifer.hpp>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <unordered_map>
#include <utility>
#include <vector>
namespace Opm
{
@ -54,29 +60,49 @@ public:
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebos_simulator,
const int* global_cell)
: id_(aquifer.id())
, ebos_simulator_(ebos_simulator)
, flux_rate_(0.)
, cumulative_flux_(0.)
, global_cell_(global_cell)
, init_pressure_(aquifer.numCells(), 0.0)
: id_ (aquifer.id())
, ebos_simulator_ (ebos_simulator)
, flux_rate_ (0.0)
, cumulative_flux_(0.0)
, global_cell_ (global_cell)
, init_pressure_ (aquifer.numCells(), 0.0)
{
this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < aquifer.numCells(); ++idx) {
auto aquifer_on_process = false;
for (std::size_t idx = 0; idx < aquifer.numCells(); ++idx) {
const auto* cell = aquifer.getCellPrt(idx);
// Due to parallelisation, the cell might not exist in the current process
auto search = cartesian_to_compressed.find(cell->global_index);
if (search != cartesian_to_compressed.end()) {
this->cell_to_aquifer_cell_idx_[search->second] = idx;
aquifer_on_process = true;
}
}
if (aquifer_on_process) {
this->checkConnectsToReservoir();
}
}
void initFromRestart([[maybe_unused]]const data::Aquifers& aquiferSoln)
void initFromRestart(const data::Aquifers& aquiferSoln)
{
// NOT handling Restart for now
auto xaqPos = aquiferSoln.find(this->aquiferID());
if (xaqPos == aquiferSoln.end())
return;
if (this->connects_to_reservoir_) {
this->cumulative_flux_ = xaqPos->second.volume;
}
if (const auto* aqData = xaqPos->second.typeData.template get<data::AquiferType::Numerical>();
aqData != nullptr)
{
this->init_pressure_ = aqData->initPressure;
}
this->solution_set_from_restart_ = true;
}
void endTimeStep()
@ -102,6 +128,10 @@ public:
void initialSolutionApplied()
{
if (this->solution_set_from_restart_) {
return;
}
this->pressure_ = this->calculateAquiferPressure(this->init_pressure_);
this->flux_rate_ = 0.;
this->cumulative_flux_ = 0.;
@ -113,17 +143,41 @@ public:
}
private:
const size_t id_;
const std::size_t id_;
const Simulator& ebos_simulator_;
double flux_rate_; // aquifer influx rate
double cumulative_flux_; // cumulative aquifer influx
const int* global_cell_; // mapping to global index
std::vector<double> init_pressure_{};
double pressure_; // aquifer pressure
bool solution_set_from_restart_ {false};
bool connects_to_reservoir_ {false};
// TODO: maybe unordered_map can also do the work to save memory?
std::vector<int> cell_to_aquifer_cell_idx_;
void checkConnectsToReservoir()
{
ElementContext elem_ctx(this->ebos_simulator_);
auto elemIt = std::find_if(this->ebos_simulator_.gridView().template begin</*codim=*/0>(),
this->ebos_simulator_.gridView().template end</*codim=*/0>(),
[&elem_ctx, this](const auto& elem) -> bool
{
elem_ctx.updateStencil(elem);
const auto cell_index = elem_ctx
.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
return this->cell_to_aquifer_cell_idx_[cell_index] == 0;
});
assert ((elemIt != this->ebos_simulator_.gridView().template end</*codim=*/0>())
&& "Internal error locating numerical aquifer's connecting cell");
this->connects_to_reservoir_ =
elemIt->partitionType() == Dune::InteriorEntity;
}
double calculateAquiferPressure() const
{
auto capture = std::vector<double>(this->init_pressure_.size(), 0.0);
@ -183,21 +237,25 @@ private:
double calculateAquiferFluxRate() const
{
double aquifer_flux = 0.;
double aquifer_flux = 0.0;
ElementContext elem_ctx(this->ebos_simulator_);
if (! this->connects_to_reservoir_) {
return aquifer_flux;
}
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto &elem = *elemIt;
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
// elem_ctx.updatePrimaryStencil(elem);
elem_ctx.updateStencil(elem);
const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const std::size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
// we only need the first aquifer cell
if (idx != 0) {
@ -206,19 +264,19 @@ private:
elem_ctx.updateAllIntensiveQuantities();
elem_ctx.updateAllExtensiveQuantities();
const size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
const std::size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
// const auto &problem = elem_ctx.problem();
const auto &stencil = elem_ctx.stencil(0);
const auto& stencil = elem_ctx.stencil(0);
// const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0);
for (size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
const auto &face = stencil.interiorFace(face_idx);
for (std::size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
const auto& face = stencil.interiorFace(face_idx);
// dof index
const size_t i = face.interiorIndex();
const size_t j = face.exteriorIndex();
const std::size_t i = face.interiorIndex();
const std::size_t j = face.exteriorIndex();
// compressed index
// const size_t I = stencil.globalSpaceIndex(i);
const size_t J = stencil.globalSpaceIndex(j);
const std::size_t J = stencil.globalSpaceIndex(j);
assert(stencil.globalSpaceIndex(i) == cell_index);
@ -227,11 +285,11 @@ private:
if (this->cell_to_aquifer_cell_idx_[J] > 0) {
continue;
}
const auto &exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const double water_flux = Toolbox::value(exQuants.volumeFlux(waterPhaseIdx));
const size_t up_id = water_flux >= 0. ? i : j;
const auto &intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
const std::size_t up_id = water_flux >= 0.0 ? i : j;
const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
const double invB = Toolbox::value(intQuantsIn.fluidState().invB(waterPhaseIdx));
const double face_area = face.area();
aquifer_flux += water_flux * invB * face_area;