renaming well_solutions_ and well_variables

to give slightly easier understanding.
This commit is contained in:
Kai Bao 2017-08-21 15:41:25 +02:00
parent 25869026e5
commit bc78553686
5 changed files with 75 additions and 71 deletions

View File

@ -105,7 +105,7 @@ namespace Opm
const int num_cells);
virtual void setWellPrimaryVariables();
virtual void initPrimaryVariablesEvaluation() const;
// TODO: to check whether all the paramters are required
void computePerfRate(const IntensiveQuantities& intQuants,
@ -156,7 +156,7 @@ namespace Opm
const WellState& well_state,
std::vector<double>& well_potentials) const;
virtual void setWellSolutions(const WellState& well_state) const;
virtual void updatePrimaryVariables(const WellState& well_state) const;
protected:
@ -213,9 +213,14 @@ namespace Opm
mutable BVectorWell Bx_;
mutable BVectorWell invDrw_;
mutable std::vector<double> well_solutions_;
// the values for the primary varibles
// based on different solutioin strategies, the wells can have different primary variables
mutable std::vector<double> primary_variables_;
std::vector<EvalWell> well_variables_;
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
mutable std::vector<EvalWell> primary_variables_evaluation_;
// the saturations in the well bore under surface conditions at the beginning of the time step
std::vector<double> F0_;
// TODO: this function should be moved to the base class.

View File

@ -28,8 +28,8 @@ namespace Opm
: Base(well, time_step, wells)
, perf_densities_(number_of_perforations_)
, perf_pressure_diffs_(number_of_perforations_)
, well_solutions_(numWellEq, 0.0)
, well_variables_(numWellEq) // the number of the primary variables
, primary_variables_(numWellEq, 0.0)
, primary_variables_evaluation_(numWellEq) // the number of the primary variables
, F0_(numWellEq)
{
duneB_.setBuildMode( OffDiagMatWell::row_wise );
@ -101,17 +101,17 @@ namespace Opm
template<typename TypeTag>
void StandardWell<TypeTag>::
setWellPrimaryVariables()
initPrimaryVariablesEvaluation() const
{
// TODO: using numComp here is only to make the 2p + dummy phase work
// TODO: in theory, we should use numWellEq here.
// for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) {
for (int eqIdx = 0; eqIdx < numComponents(); ++eqIdx) {
assert( eqIdx < well_solutions_.size() );
assert( eqIdx < primary_variables_.size() );
well_variables_[eqIdx] = 0.0;
well_variables_[eqIdx].setValue(well_solutions_[eqIdx]);
well_variables_[eqIdx].setDerivative(numEq + eqIdx, 1.0);
primary_variables_evaluation_[eqIdx] = 0.0;
primary_variables_evaluation_[eqIdx].setValue(primary_variables_[eqIdx]);
primary_variables_evaluation_[eqIdx].setDerivative(numEq + eqIdx, 1.0);
}
}
@ -147,7 +147,7 @@ namespace Opm
return calculateBhpFromThp(rates, control);
}
return well_variables_[XvarWell];
return primary_variables_evaluation_[XvarWell];
}
@ -187,7 +187,7 @@ namespace Opm
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return comp_frac * well_variables_[XvarWell];
return comp_frac * primary_variables_evaluation_[XvarWell];
}
qs.setValue(comp_frac * target_rate);
@ -200,7 +200,7 @@ namespace Opm
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return well_variables_[XvarWell];
return primary_variables_evaluation_[XvarWell];
}
qs.setValue(target_rate);
return qs;
@ -208,7 +208,7 @@ namespace Opm
// Producers
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
return well_variables_[XvarWell] * wellVolumeFractionScaled(comp_idx);
return primary_variables_evaluation_[XvarWell] * wellVolumeFractionScaled(comp_idx);
}
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
@ -332,28 +332,28 @@ namespace Opm
wellVolumeFraction(const int compIdx) const
{
if (compIdx == Water) {
return well_variables_[WFrac];
return primary_variables_evaluation_[WFrac];
}
if (compIdx == Gas) {
return well_variables_[GFrac];
return primary_variables_evaluation_[GFrac];
}
if (has_solvent && compIdx == contiSolventEqIdx) {
return well_variables_[SFrac];
return primary_variables_evaluation_[SFrac];
}
// Oil fraction
EvalWell well_fraction = 1.0;
if (active()[Water]) {
well_fraction -= well_variables_[WFrac];
well_fraction -= primary_variables_evaluation_[WFrac];
}
if (active()[Gas]) {
well_fraction -= well_variables_[GFrac];
well_fraction -= primary_variables_evaluation_[GFrac];
}
if (has_solvent) {
well_fraction -= well_variables_[SFrac];
well_fraction -= primary_variables_evaluation_[SFrac];
}
return well_fraction;
}
@ -791,44 +791,44 @@ namespace Opm
const double dBHPLimit = param.dbhp_max_rel_;
const double dFLimit = param.dwell_fraction_max_;
const std::vector<double> xvar_well_old = well_solutions_;
const std::vector<double> xvar_well_old = primary_variables_;
// update the second and third well variable (The flux fractions)
std::vector<double> F(np,0.0);
if (active()[ Water ]) {
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac]),dFLimit);
well_solutions_[WFrac] = xvar_well_old[WFrac] - dx2_limited;
primary_variables_[WFrac] = xvar_well_old[WFrac] - dx2_limited;
}
if (active()[ Gas ]) {
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac]),dFLimit);
well_solutions_[GFrac] = xvar_well_old[GFrac] - dx3_limited;
primary_variables_[GFrac] = xvar_well_old[GFrac] - dx3_limited;
}
if (has_solvent) {
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]),dFLimit);
well_solutions_[SFrac] = xvar_well_old[SFrac] - dx4_limited;
primary_variables_[SFrac] = xvar_well_old[SFrac] - dx4_limited;
}
assert(active()[ Oil ]);
F[Oil] = 1.0;
if (active()[ Water ]) {
F[Water] = well_solutions_[WFrac];
F[Water] = primary_variables_[WFrac];
F[Oil] -= F[Water];
}
if (active()[ Gas ]) {
F[Gas] = well_solutions_[GFrac];
F[Gas] = primary_variables_[GFrac];
F[Oil] -= F[Gas];
}
double F_solvent = 0.0;
if (has_solvent) {
F_solvent = well_solutions_[SFrac];
F_solvent = primary_variables_[SFrac];
F[Oil] -= F_solvent;
}
@ -872,13 +872,13 @@ namespace Opm
}
if (active()[ Water ]) {
well_solutions_[WFrac] = F[Water];
primary_variables_[WFrac] = F[Water];
}
if (active()[ Gas ]) {
well_solutions_[GFrac] = F[Gas];
primary_variables_[GFrac] = F[Gas];
}
if(has_solvent) {
well_solutions_[SFrac] = F_solvent;
primary_variables_[SFrac] = F_solvent;
}
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
@ -915,18 +915,18 @@ namespace Opm
case THP: // The BHP and THP both uses the total rate as first well variable.
case BHP:
{
well_solutions_[XvarWell] = xvar_well_old[XvarWell] - dwells[0][XvarWell];
primary_variables_[XvarWell] = xvar_well_old[XvarWell] - dwells[0][XvarWell];
switch (well_type_) {
case INJECTOR:
for (int p = 0; p < np; ++p) {
const double comp_frac = comp_frac_[p];
well_state.wellRates()[index_of_well_ * np + p] = comp_frac * well_solutions_[XvarWell];
well_state.wellRates()[index_of_well_ * np + p] = comp_frac * primary_variables_[XvarWell];
}
break;
case PRODUCER:
for (int p = 0; p < np; ++p) {
well_state.wellRates()[index_of_well_ * np + p] = well_solutions_[XvarWell] * F[p];
well_state.wellRates()[index_of_well_ * np + p] = primary_variables_[XvarWell] * F[p];
}
break;
}
@ -956,8 +956,8 @@ namespace Opm
{
const int sign1 = dwells[0][XvarWell] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][XvarWell]),std::abs(xvar_well_old[XvarWell])*dBHPLimit);
well_solutions_[XvarWell] = std::max(xvar_well_old[XvarWell] - dx1_limited,1e5);
well_state.bhp()[index_of_well_] = well_solutions_[XvarWell];
primary_variables_[XvarWell] = std::max(xvar_well_old[XvarWell] - dx1_limited,1e5);
well_state.bhp()[index_of_well_] = primary_variables_[XvarWell];
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
if (well_type_ == PRODUCER) {
@ -1138,7 +1138,7 @@ namespace Opm
break;
} // end of switch
setWellSolutions(xw);
updatePrimaryVariables(xw);
}
@ -1857,7 +1857,7 @@ namespace Opm
template<typename TypeTag>
void
StandardWell<TypeTag>::
setWellSolutions(const WellState& well_state) const
updatePrimaryVariables(const WellState& well_state) const
{
const int np = number_of_phases_;
const int well_index = index_of_well_;
@ -1874,21 +1874,21 @@ namespace Opm
switch (well_controls_get_current_type(wc)) {
case THP:
case BHP: {
well_solutions_[XvarWell] = 0.0;
primary_variables_[XvarWell] = 0.0;
if (well_type_ == INJECTOR) {
for (int p = 0; p < np; ++p) {
well_solutions_[XvarWell] += well_state.wellRates()[np*well_index + p] * comp_frac_[p];
primary_variables_[XvarWell] += well_state.wellRates()[np*well_index + p] * comp_frac_[p];
}
} else {
for (int p = 0; p < np; ++p) {
well_solutions_[XvarWell] += g[p] * well_state.wellRates()[np*well_index + p];
primary_variables_[XvarWell] += g[p] * well_state.wellRates()[np*well_index + p];
}
}
break;
}
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
well_solutions_[XvarWell] = well_state.bhp()[well_index];
primary_variables_[XvarWell] = well_state.bhp()[well_index];
break;
} // end of switch
@ -1898,33 +1898,33 @@ namespace Opm
}
if(std::abs(tot_well_rate) > 0) {
if (active()[ Water ]) {
well_solutions_[WFrac] = g[Water] * well_state.wellRates()[np*well_index + Water] / tot_well_rate;
primary_variables_[WFrac] = g[Water] * well_state.wellRates()[np*well_index + Water] / tot_well_rate;
}
if (active()[ Gas ]) {
well_solutions_[GFrac] = g[Gas] * (well_state.wellRates()[np*well_index + Gas] - well_state.solventWellRate(well_index)) / tot_well_rate ;
primary_variables_[GFrac] = g[Gas] * (well_state.wellRates()[np*well_index + Gas] - well_state.solventWellRate(well_index)) / tot_well_rate ;
}
if (has_solvent) {
well_solutions_[SFrac] = g[Gas] * well_state.solventWellRate(well_index) / tot_well_rate ;
primary_variables_[SFrac] = g[Gas] * well_state.solventWellRate(well_index) / tot_well_rate ;
}
} else { // tot_well_rate == 0
if (well_type_ == INJECTOR) {
// only single phase injection handled
if (active()[Water]) {
if (distr[Water] > 0.0) {
well_solutions_[WFrac] = 1.0;
primary_variables_[WFrac] = 1.0;
} else {
well_solutions_[WFrac] = 0.0;
primary_variables_[WFrac] = 0.0;
}
}
if (active()[Gas]) {
if (distr[Gas] > 0.0) {
well_solutions_[GFrac] = 1.0 - wsolvent();
primary_variables_[GFrac] = 1.0 - wsolvent();
if (has_solvent) {
well_solutions_[SFrac] = wsolvent();
primary_variables_[SFrac] = wsolvent();
}
} else {
well_solutions_[GFrac] = 0.0;
primary_variables_[GFrac] = 0.0;
}
}
@ -1934,10 +1934,10 @@ namespace Opm
} else if (well_type_ == PRODUCER) { // producers
// TODO: the following are not addressed for the solvent case yet
if (active()[Water]) {
well_solutions_[WFrac] = 1.0 / np;
primary_variables_[WFrac] = 1.0 / np;
}
if (active()[Gas]) {
well_solutions_[GFrac] = 1.0 / np;
primary_variables_[GFrac] = 1.0 / np;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");

View File

@ -199,7 +199,7 @@ namespace Opm {
void updateGroupControls(WellState& well_state) const;
// setting the well_solutions_ based on well_state.
void setWellSolutions(const WellState& well_state) const;
void updatePrimaryVariables(const WellState& well_state) const;
void setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const;
@ -234,7 +234,7 @@ namespace Opm {
void computeAccumWells() const;
void setWellPrimaryVariables() const;
void initPrimaryVariablesEvaluation() const;
// The number of components in the model.
int numComponents() const

View File

@ -178,8 +178,8 @@ namespace Opm {
}
updateWellControls(well_state);
// Set the well primary variables
setWellPrimaryVariables();
// Set the well primary variables based on the value of well solutions
initPrimaryVariablesEvaluation();
if (iterationIdx == 0) {
computeWellConnectionPressures(ebosSimulator, well_state);
@ -377,10 +377,10 @@ namespace Opm {
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setWellPrimaryVariables() const
initPrimaryVariablesEvaluation() const
{
for (auto& well : well_container_) {
well->setWellPrimaryVariables();
well->initPrimaryVariablesEvaluation();
}
}
@ -445,7 +445,7 @@ namespace Opm {
if( wellsActive() )
{
updateWellControls(well_state);
setWellPrimaryVariables();
initPrimaryVariablesEvaluation();
}
} while (it < 15);
@ -455,7 +455,7 @@ namespace Opm {
OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations");
well_state = well_state0;
setWellSolutions(well_state);
updatePrimaryVariables(well_state);
// also recover the old well controls
for (int w = 0; w < nw; ++w) {
WellControls* wc = well_container_[w]->wellControls();
@ -569,11 +569,16 @@ namespace Opm {
const WellState& well_state,
std::vector<double>& well_potentials) const
{
updatePrimaryVariables(well_state);
computeWellConnectionPressures(ebosSimulator, well_state);
// initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials
// TODO: for computeWellPotentials, no derivative is required actually
initPrimaryVariablesEvaluation();
// number of wells and phases
const int nw = number_of_wells_;
const int np = number_of_phases_;
well_potentials.resize(nw * np, 0.0);
for (int w = 0; w < nw; ++w) {
@ -637,12 +642,6 @@ namespace Opm {
if (well_collection_->requireWellPotentials()) {
// calculate the well potentials
setWellSolutions(well_state);
computeWellConnectionPressures(ebos_simulator, well_state);
// set the well primary variables, which is used in computePerfRate for computeWellPotentials
// TODO: for computeWellPotentials, no derivative is required actually
setWellPrimaryVariables();
std::vector<double> well_potentials;
computeWellPotentials(ebos_simulator, well_state, well_potentials);
@ -940,10 +939,10 @@ namespace Opm {
template<typename TypeTag>
void
StandardWellsDense<TypeTag>::
setWellSolutions(const WellState& well_state) const
updatePrimaryVariables(const WellState& well_state) const
{
for (const auto& well : well_container_) {
well->setWellSolutions(well_state);
well->updatePrimaryVariables(well_state);
}
}

View File

@ -104,7 +104,7 @@ namespace Opm
const double gravity_arg,
const int num_cells);
virtual void setWellPrimaryVariables() = 0;
virtual void initPrimaryVariablesEvaluation() const = 0;
virtual bool getWellConvergence(Simulator& ebosSimulator,
const std::vector<double>& B_avg,
@ -153,7 +153,7 @@ namespace Opm
virtual void updateWellControl(WellState& xw,
wellhelpers::WellSwitchingLogger& logger) const = 0;
virtual void setWellSolutions(const WellState& well_state) const = 0;
virtual void updatePrimaryVariables(const WellState& well_state) const = 0;
protected: