Add Water Phase Saturation Function Consistency Checks

This commit introduces a set of consistency checks for the water
phase saturation functions.  These plug into the framework
introduced in commit c3939c544 (PR #5438).  We implement the
following three checks

  - 0 <= SWL < 1
  - 0 < SWU <= 1
  - SWL <= SWCR < SWU

which collectively enable a non-negative oil saturation in the two
phase oil/water system.
This commit is contained in:
Bård Skaflestad 2024-09-03 16:35:50 +02:00
parent f4801ec787
commit be64ef3ef6
4 changed files with 1094 additions and 0 deletions

View File

@ -202,6 +202,7 @@ if (HAVE_ECL_INPUT)
opm/simulators/utils/satfunc/OilPhaseConsistencyChecks.cpp
opm/simulators/utils/satfunc/PhaseCheckBase.cpp
opm/simulators/utils/satfunc/SatfuncConsistencyChecks.cpp
opm/simulators/utils/satfunc/WaterPhaseConsistencyChecks.cpp
)
endif()
@ -389,6 +390,7 @@ if (HAVE_ECL_INPUT)
tests/test_OilSatfuncConsistencyChecks.cpp
tests/test_SatfuncConsistencyChecks.cpp
tests/test_SatfuncConsistencyChecks_parallel.cpp
tests/test_WaterSatfuncConsistencyChecks.cpp
)
endif()
@ -996,6 +998,7 @@ if (HAVE_ECL_INPUT)
opm/simulators/utils/satfunc/OilPhaseConsistencyChecks.hpp
opm/simulators/utils/satfunc/PhaseCheckBase.hpp
opm/simulators/utils/satfunc/SatfuncConsistencyChecks.hpp
opm/simulators/utils/satfunc/WaterPhaseConsistencyChecks.hpp
)
endif()

View File

@ -0,0 +1,128 @@
/*
Copyright 2024 Equinor AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/utils/satfunc/WaterPhaseConsistencyChecks.hpp>
#include <opm/simulators/utils/satfunc/PhaseCheckBase.hpp>
#include <opm/material/fluidmatrixinteractions/EclEpsScalingPoints.hpp>
// ---------------------------------------------------------------------------
template <typename Scalar>
void Opm::Satfunc::PhaseChecks::Water::SWmin<Scalar>::
testImpl(const EclEpsScalingPointsInfo<Scalar>& endPoints)
{
// 0 <= SWL < 1
this->swl_ = endPoints.Swl;
if (! std::isfinite(this->swl_)) {
this->setViolated();
this->setCritical();
return;
}
const auto low = this->swl_ < Scalar{0};
const auto high = ! (this->swl_ < Scalar{1});
if (low || high) {
this->setViolated();
this->setCritical();
}
}
// ---------------------------------------------------------------------------
template <typename Scalar>
void Opm::Satfunc::PhaseChecks::Water::SWmax<Scalar>::
testImpl(const EclEpsScalingPointsInfo<Scalar>& endPoints)
{
// 0 < SWU <= 1
this->swu_ = endPoints.Swu;
if (! std::isfinite(this->swu_)) {
this->setViolated();
this->setCritical();
return;
}
const auto low = ! (this->swu_ > Scalar{0});
const auto high = this->swu_ > Scalar{1};
if (low || high) {
this->setViolated();
this->setCritical();
}
}
// ---------------------------------------------------------------------------
template <typename Scalar>
void Opm::Satfunc::PhaseChecks::Water::SWcr<Scalar>::
testImpl(const EclEpsScalingPointsInfo<Scalar>& endPoints)
{
// SWL <= SWCR < SWU
this->swl_ = endPoints.Swl;
this->swcr_ = endPoints.Swcr;
this->swu_ = endPoints.Swu;
if (! std::isfinite(this->swl_) ||
! std::isfinite(this->swcr_) ||
! std::isfinite(this->swu_))
{
this->setViolated();
this->setCritical();
return;
}
const auto low = this->swcr_ < this->swl_;
const auto high = ! (this->swcr_ < this->swu_);
if (low || high) {
this->setViolated();
this->setCritical();
}
}
// ===========================================================================
// Explicit Specialisations of Individual Check Templates
//
// No other code below this separator
// ===========================================================================
template class Opm::Satfunc::PhaseChecks::Water::SWmin<float>;
template class Opm::Satfunc::PhaseChecks::Water::SWmin<double>;
// ---------------------------------------------------------------------------
template class Opm::Satfunc::PhaseChecks::Water::SWmax<float>;
template class Opm::Satfunc::PhaseChecks::Water::SWmax<double>;
// ---------------------------------------------------------------------------
template class Opm::Satfunc::PhaseChecks::Water::SWcr<float>;
template class Opm::Satfunc::PhaseChecks::Water::SWcr<double>;

View File

@ -0,0 +1,205 @@
/*
Copyright 2024 Equinor AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef WATER_PHASE_CONSISTENCY_CHECKS_HPP_INCLUDED
#define WATER_PHASE_CONSISTENCY_CHECKS_HPP_INCLUDED
#include <opm/simulators/utils/satfunc/PhaseCheckBase.hpp>
#include <opm/simulators/utils/satfunc/SatfuncConsistencyChecks.hpp>
#include <cstddef>
#include <string>
namespace Opm::Satfunc::PhaseChecks::Water {
/// Verify that minimum gas saturation is in valid range
///
/// \tparam Scalar Element type. Typically \c float or \c double.
template <typename Scalar>
class SWmin : public PhaseCheckBase<Scalar>
{
public:
/// Number of \c Scalar values involved in the check.
std::size_t numExportedCheckValues() const override { return 1; };
/// Get a linearised copy of the \c Scalar values involved in the check.
///
/// \param[in,out] exportedCheckValues Pointer to contiguous
/// sequence of at least numExportedCheckValues() \c Scalars.
void exportCheckValues(Scalar* exportedCheckValues) const override
{
exportedCheckValues[0] = this->swl_;
}
/// Descriptive textual summary of this check.
std::string description() const override
{
return { "Non-negative minimum water saturation" };
}
/// Textual representation of the consistency condition.
std::string condition() const override
{
return { "0 <= SWL < 1" };
}
/// Retrieve names of the exported check values.
///
/// \param[in,out] headers Pointer to contiguous sequence of at
/// least numExportedCheckValues() strings.
void columnNames(std::string* headers) const override
{
headers[0] = "SWL";
}
private:
/// Minimum (connate) water saturation.
Scalar swl_;
/// Run check against a set of saturation function end-points.
///
/// \param[in] endPoints Set of saturation function end-points.
/// Might for instance be the scaled end-points of the drainage
/// functions in a single grid block or the unscaled end-points
/// of the tabulated saturation functions in a single saturation
/// region.
void testImpl(const EclEpsScalingPointsInfo<Scalar>& endPoints) override;
};
/// Verify that maximum gas saturation is in valid range.
///
/// \tparam Scalar Element type. Typically \c float or \c double.
template <typename Scalar>
class SWmax : public PhaseCheckBase<Scalar>
{
public:
/// Number of \c Scalar values involved in the check.
std::size_t numExportedCheckValues() const override { return 1; };
/// Get a linearised copy of the \c Scalar values involved in the check.
///
/// \param[in,out] exportedCheckValues Pointer to contiguous
/// sequence of at least numExportedCheckValues() \c Scalars.
void exportCheckValues(Scalar* exportedCheckValues) const override
{
exportedCheckValues[0] = this->swu_;
}
/// Descriptive textual summary of this check.
std::string description() const override
{
return { "Positive maximum water saturation" };
}
/// Textual representation of the consistency condition.
std::string condition() const override
{
return { "0 < SWU <= 1" };
}
/// Retrieve names of the exported check values.
///
/// \param[in,out] headers Pointer to contiguous sequence of at
/// least numExportedCheckValues() strings.
void columnNames(std::string* headers) const override
{
headers[0] = "SWU";
}
private:
/// Maximum water saturation.
Scalar swu_;
/// Run check against a set of saturation function end-points.
///
/// \param[in] endPoints Set of saturation function end-points.
/// Might for instance be the scaled end-points of the drainage
/// functions in a single grid block or the unscaled end-points
/// of the tabulated saturation functions in a single saturation
/// region.
void testImpl(const EclEpsScalingPointsInfo<Scalar>& endPoints) override;
};
/// Verify that critical gas saturation is in valid range.
///
/// \tparam Scalar Element type. Typically \c float or \c double.
template <typename Scalar>
class SWcr : public PhaseCheckBase<Scalar>
{
public:
/// Number of \c Scalar values involved in the check.
std::size_t numExportedCheckValues() const override { return 3; };
/// Get a linearised copy of the \c Scalar values involved in the check.
///
/// \param[in,out] exportedCheckValues Pointer to contiguous
/// sequence of at least numExportedCheckValues() \c Scalars.
void exportCheckValues(Scalar* exportedCheckValues) const override
{
exportedCheckValues[0] = this->swl_;
exportedCheckValues[1] = this->swcr_;
exportedCheckValues[2] = this->swu_;
}
/// Descriptive textual summary of this check.
std::string description() const override
{
return { "Mobile water saturation" };
}
/// Textual representation of the consistency condition.
std::string condition() const override
{
return { "SWL <= SWCR < SWU" };
}
/// Retrieve names of the exported check values.
///
/// \param[in,out] headers Pointer to contiguous sequence of at
/// least numExportedCheckValues() strings.
void columnNames(std::string* headers) const override
{
headers[0] = "SWL";
headers[1] = "SWCR";
headers[2] = "SWU";
}
private:
/// Minimum (connate) water saturation.
Scalar swl_;
/// Critical water saturation.
Scalar swcr_;
/// Maximum water saturation.
Scalar swu_;
/// Run check against a set of saturation function end-points.
///
/// \param[in] endPoints Set of saturation function end-points.
/// Might for instance be the scaled end-points of the drainage
/// functions in a single grid block or the unscaled end-points
/// of the tabulated saturation functions in a single saturation
/// region.
void testImpl(const EclEpsScalingPointsInfo<Scalar>& endPoints) override;
};
} // namespace Opm::Satfunc::PhaseChecks::Water
#endif // WATER_PHASE_CONSISTENCY_CHECKS_HPP_INCLUDED

View File

@ -0,0 +1,758 @@
/*
Copyright 2024 Equinor AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE TestWaterPhaseConsistencyChecks
#ifndef HAVE_MPI
// Suppress GCC diagnostics of the form
//
// warning: "HAVE_MPI" is not defined, evaluates to 0
//
// when compiling with "-Wundef".
#define HAVE_MPI 0
#endif // HAVE_MPI
#include <boost/test/unit_test.hpp>
#include <opm/simulators/utils/satfunc/WaterPhaseConsistencyChecks.hpp>
#include <opm/material/fluidmatrixinteractions/EclEpsScalingPoints.hpp>
#include <limits>
#include <string>
#include <vector>
// ###########################################################################
namespace Checks = Opm::Satfunc::PhaseChecks::Water;
// ===========================================================================
BOOST_AUTO_TEST_SUITE(Sw_min)
BOOST_AUTO_TEST_CASE(All_Good)
{
auto check = Checks::SWmin<float>{};
BOOST_CHECK_EQUAL(check.numExportedCheckValues(), std::size_t{1});
{
auto column = std::string{};
check.columnNames(&column);
BOOST_CHECK_EQUAL(column, "SWL");
}
{
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swl = 0.125f; // >= 0 && < 1
check.test(endPoints);
}
{
auto value = -0.1f;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, 0.125f, 1.0e-6f);
}
BOOST_CHECK_MESSAGE(! check.isViolated(), "Test must not be violated");
BOOST_CHECK_MESSAGE(! check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Non_Finite)
{
// NaN
if constexpr (std::numeric_limits<float>::has_quiet_NaN) {
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swl = std::numeric_limits<float>::quiet_NaN();
auto check = Checks::SWmin<float>{};
check.test(endPoints);
auto value = -0.1f;
check.exportCheckValues(&value);
BOOST_CHECK_MESSAGE(std::isnan(value), "Swl value must be NaN");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
// Inf
if constexpr (std::numeric_limits<float>::has_infinity) {
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swl = std::numeric_limits<float>::infinity();
auto check = Checks::SWmin<float>{};
check.test(endPoints);
auto value = -0.1f;
check.exportCheckValues(&value);
BOOST_CHECK_MESSAGE(std::isinf(value), "Swl value must be Inf");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
}
BOOST_AUTO_TEST_CASE(Negative)
{
auto check = Checks::SWmin<double>{};
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = -0.01; // < 0
check.test(endPoints);
{
auto value = 1.0;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, -0.01, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Is_One)
{
auto check = Checks::SWmin<double>{};
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 1.0; // >= 1
check.test(endPoints);
{
auto value = 0.0;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, 1.0, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Exceeds_One)
{
auto check = Checks::SWmin<double>{};
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 1.2; // >= 1
check.test(endPoints);
{
auto value = 0.0;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, 1.2, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must be violated at critical level");
}
BOOST_AUTO_TEST_SUITE_END() // Sw_min
// ---------------------------------------------------------------------------
BOOST_AUTO_TEST_SUITE(Sw_max)
BOOST_AUTO_TEST_CASE(All_Good)
{
auto check = Checks::SWmax<float>{};
BOOST_CHECK_EQUAL(check.numExportedCheckValues(), std::size_t{1});
{
auto column = std::string{};
check.columnNames(&column);
BOOST_CHECK_EQUAL(column, "SWU");
}
{
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swu = 0.125f; // >= 0 && < 1
check.test(endPoints);
}
{
auto value = -0.1f;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, 0.125f, 1.0e-6f);
}
BOOST_CHECK_MESSAGE(! check.isViolated(), "Test must not be violated");
BOOST_CHECK_MESSAGE(! check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_CASE(All_Good_Swu_Is_One)
{
auto check = Checks::SWmax<double>{};
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swu = 1.0; // <= 1
check.test(endPoints);
{
auto value = 0.0;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, 1.0, 1.0e-8);
}
BOOST_CHECK_MESSAGE(! check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(! check.isCritical(), "Test must be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Non_Finite)
{
// NaN
if constexpr (std::numeric_limits<float>::has_quiet_NaN) {
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swu = std::numeric_limits<float>::quiet_NaN();
auto check = Checks::SWmax<float>{};
check.test(endPoints);
auto value = -0.1f;
check.exportCheckValues(&value);
BOOST_CHECK_MESSAGE(std::isnan(value), "Swu value must be NaN");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
// Inf
if constexpr (std::numeric_limits<float>::has_infinity) {
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swu = std::numeric_limits<float>::infinity();
auto check = Checks::SWmax<float>{};
check.test(endPoints);
auto value = -0.1f;
check.exportCheckValues(&value);
BOOST_CHECK_MESSAGE(std::isinf(value), "Swu value must be Inf");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
}
BOOST_AUTO_TEST_CASE(Negative)
{
auto check = Checks::SWmax<double>{};
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swu = -0.01; // < 0
check.test(endPoints);
{
auto value = 1.0;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, -0.01, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Zero)
{
auto check = Checks::SWmax<double>{};
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swu = 0.0; // <= 0
check.test(endPoints);
{
auto value = 1.0;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, 0.0, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Exceeds_One)
{
auto check = Checks::SWmax<double>{};
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swu = 1.2; // >= 1
check.test(endPoints);
{
auto value = 0.0;
check.exportCheckValues(&value);
BOOST_CHECK_CLOSE(value, 1.2, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must be violated at critical level");
}
BOOST_AUTO_TEST_SUITE_END() // Sw_max
// ---------------------------------------------------------------------------
BOOST_AUTO_TEST_SUITE(Sw_cr)
BOOST_AUTO_TEST_CASE(All_Good)
{
auto check = Checks::SWcr<double>{};
BOOST_CHECK_EQUAL(check.numExportedCheckValues(), std::size_t{3});
{
auto columns = std::vector<std::string>(3);
check.columnNames(columns.data());
BOOST_CHECK_EQUAL(columns[0], "SWL");
BOOST_CHECK_EQUAL(columns[1], "SWCR");
BOOST_CHECK_EQUAL(columns[2], "SWU");
}
{
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 0.09;
endPoints.Swcr = 0.12;
endPoints.Swu = 0.9;
check.test(endPoints);
}
{
auto values = std::vector<double>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE(values[0], 0.09, 1.0e-8);
BOOST_CHECK_CLOSE(values[1], 0.12, 1.0e-8);
BOOST_CHECK_CLOSE(values[2], 0.90, 1.0e-8);
}
BOOST_CHECK_MESSAGE(! check.isViolated(), "Test must not be violated");
BOOST_CHECK_MESSAGE(! check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_CASE(All_Good_Swcr_Same_As_Swl)
{
auto check = Checks::SWcr<double>{};
{
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 0.01;
endPoints.Swcr = 0.01;
endPoints.Swu = 0.9;
check.test(endPoints);
}
{
auto values = std::vector<double>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE(values[0], 0.01, 1.0e-8);
BOOST_CHECK_CLOSE(values[1], 0.01, 1.0e-8);
BOOST_CHECK_CLOSE(values[2], 0.90, 1.0e-8);
}
BOOST_CHECK_MESSAGE(! check.isViolated(), "Test must not be violated");
BOOST_CHECK_MESSAGE(! check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Non_Finite)
{
// NaN
if constexpr (std::numeric_limits<float>::has_quiet_NaN) {
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swl = std::numeric_limits<float>::quiet_NaN();
endPoints.Swcr = 0.125f;
endPoints.Swu = 0.75f;
auto check = Checks::SWcr<float>{};
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isnan(values[0]), "Swl value must be NaN");
BOOST_CHECK_CLOSE (values[1], 0.125f, 1.0e-6f);
BOOST_CHECK_CLOSE (values[2], 0.75f, 1.0e-6f);
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = 0.01f;
endPoints.Swcr = std::numeric_limits<float>::quiet_NaN();
endPoints.Swu = 0.75;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE (values[0], 0.01f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isnan(values[1]), "Swcr value must be NaN");
BOOST_CHECK_CLOSE (values[2], 0.75f, 1.0e-6f);
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = 0.01f;
endPoints.Swcr = 0.125f;
endPoints.Swu = std::numeric_limits<float>::quiet_NaN();
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE (values[0], 0.01f, 1.0e-6f);
BOOST_CHECK_CLOSE (values[1], 0.125f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isnan(values[2]), "Swu value must be NaN");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = std::numeric_limits<float>::quiet_NaN();
endPoints.Swcr = std::numeric_limits<float>::quiet_NaN();
endPoints.Swu = 0.75f;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isnan(values[0]), "Swl value must be NaN");
BOOST_CHECK_MESSAGE(std::isnan(values[1]), "Swcr value must be NaN");
BOOST_CHECK_CLOSE (values[2], 0.75f, 1.0e-6f);
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = std::numeric_limits<float>::quiet_NaN();
endPoints.Swcr = 0.125f;
endPoints.Swu = std::numeric_limits<float>::quiet_NaN();;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isnan(values[0]), "Swl value must be NaN");
BOOST_CHECK_CLOSE (values[1], 0.125f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isnan(values[2]), "Swu value must be NaN");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = 0.01f;
endPoints.Swcr = std::numeric_limits<float>::quiet_NaN();
endPoints.Swu = std::numeric_limits<float>::quiet_NaN();;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE (values[0], 0.01f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isnan(values[1]), "Swcr value must be NaN");
BOOST_CHECK_MESSAGE(std::isnan(values[2]), "Swu value must be NaN");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = std::numeric_limits<float>::quiet_NaN();
endPoints.Swcr = std::numeric_limits<float>::quiet_NaN();
endPoints.Swu = std::numeric_limits<float>::quiet_NaN();;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isnan(values[0]), "Swcr value must be NaN");
BOOST_CHECK_MESSAGE(std::isnan(values[1]), "Swcr value must be NaN");
BOOST_CHECK_MESSAGE(std::isnan(values[2]), "Swu value must be NaN");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
}
// Inf
if constexpr (std::numeric_limits<float>::has_infinity) {
auto endPoints = Opm::EclEpsScalingPointsInfo<float>{};
endPoints.Swl = std::numeric_limits<float>::infinity();
endPoints.Swcr = 0.125f;
endPoints.Swu = 0.75f;
auto check = Checks::SWcr<float>{};
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isinf(values[0]), "Swl value must be Inf");
BOOST_CHECK_CLOSE (values[1], 0.125f, 1.0e-6f);
BOOST_CHECK_CLOSE (values[2], 0.75f, 1.0e-6f);
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = 0.01f;
endPoints.Swcr = std::numeric_limits<float>::infinity();
endPoints.Swu = 0.75;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE (values[0], 0.01f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isinf(values[1]), "Swcr value must be Inf");
BOOST_CHECK_CLOSE (values[2], 0.75f, 1.0e-6f);
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = 0.01f;
endPoints.Swcr = 0.125f;
endPoints.Swu = std::numeric_limits<float>::infinity();
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE (values[0], 0.01f, 1.0e-6f);
BOOST_CHECK_CLOSE (values[1], 0.125f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isinf(values[2]), "Swu value must be Inf");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = std::numeric_limits<float>::infinity();
endPoints.Swcr = std::numeric_limits<float>::infinity();
endPoints.Swu = 0.75f;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isinf(values[0]), "Swl value must be Inf");
BOOST_CHECK_MESSAGE(std::isinf(values[1]), "Swcr value must be Inf");
BOOST_CHECK_CLOSE (values[2], 0.75f, 1.0e-6f);
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = std::numeric_limits<float>::infinity();
endPoints.Swcr = 0.125f;
endPoints.Swu = std::numeric_limits<float>::infinity();;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isinf(values[0]), "Swl value must be Inf");
BOOST_CHECK_CLOSE (values[1], 0.125f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isinf(values[2]), "Swu value must be Inf");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = 0.01f;
endPoints.Swcr = std::numeric_limits<float>::infinity();
endPoints.Swu = std::numeric_limits<float>::infinity();;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE (values[0], 0.01f, 1.0e-6f);
BOOST_CHECK_MESSAGE(std::isinf(values[1]), "Swcr value must be Inf");
BOOST_CHECK_MESSAGE(std::isinf(values[2]), "Swu value must be Inf");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
endPoints.Swl = std::numeric_limits<float>::infinity();
endPoints.Swcr = std::numeric_limits<float>::infinity();
endPoints.Swu = std::numeric_limits<float>::infinity();;
check.test(endPoints);
{
auto values = std::vector<float>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_MESSAGE(std::isinf(values[0]), "Swcr value must be Inf");
BOOST_CHECK_MESSAGE(std::isinf(values[1]), "Swcr value must be Inf");
BOOST_CHECK_MESSAGE(std::isinf(values[2]), "Swu value must be Inf");
BOOST_CHECK_MESSAGE(check.isViolated(), "Check must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Check must be violated at critical level");
}
}
}
BOOST_AUTO_TEST_CASE(Swcr_TooSmall)
{
auto check = Checks::SWcr<double>{};
{
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 0.15;
endPoints.Swcr = 0.125;
endPoints.Swu = 0.9;
check.test(endPoints);
}
{
auto values = std::vector<double>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE(values[0], 0.15, 1.0e-8);
BOOST_CHECK_CLOSE(values[1], 0.125, 1.0e-8);
BOOST_CHECK_CLOSE(values[2], 0.9, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Swcr_TooLarge)
{
auto check = Checks::SWcr<double>{};
{
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 0.15;
endPoints.Swcr = 0.65;
endPoints.Swu = 0.6;
check.test(endPoints);
}
{
auto values = std::vector<double>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE(values[0], 0.15, 1.0e-8);
BOOST_CHECK_CLOSE(values[1], 0.65, 1.0e-8);
BOOST_CHECK_CLOSE(values[2], 0.6, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Swcr_Same_As_Swu)
{
auto check = Checks::SWcr<double>{};
{
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 0.15;
endPoints.Swcr = 0.65;
endPoints.Swu = 0.65;
check.test(endPoints);
}
{
auto values = std::vector<double>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE(values[0], 0.15, 1.0e-8);
BOOST_CHECK_CLOSE(values[1], 0.65, 1.0e-8);
BOOST_CHECK_CLOSE(values[2], 0.65, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_CASE(Swu_TooSmall)
{
auto check = Checks::SWcr<double>{};
{
auto endPoints = Opm::EclEpsScalingPointsInfo<double>{};
endPoints.Swl = 0.15;
endPoints.Swcr = 0.15;
endPoints.Swu = 0.10;
check.test(endPoints);
}
{
auto values = std::vector<double>(3);
check.exportCheckValues(values.data());
BOOST_CHECK_CLOSE(values[0], 0.15, 1.0e-8);
BOOST_CHECK_CLOSE(values[1], 0.15, 1.0e-8);
BOOST_CHECK_CLOSE(values[2], 0.10, 1.0e-8);
}
BOOST_CHECK_MESSAGE(check.isViolated(), "Test must be violated");
BOOST_CHECK_MESSAGE(check.isCritical(), "Test must not be violated at critical level");
}
BOOST_AUTO_TEST_SUITE_END() // So_min