due to the new timer, simulator class should not do time iteration once again.

This commit is contained in:
Liu Ming 2014-10-28 13:31:35 +08:00
parent 5242d6bbf7
commit c0a61c9655
3 changed files with 453 additions and 474 deletions

View File

@ -292,208 +292,206 @@ namespace Opm
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
// for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
initial_pressure = state.pressure();
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, poly_props_, allcells_,
state.pressure(), state.surfacevol(), state.saturation(),
state.concentration(), state.maxconcentration(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver
pressure_timer.start();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
initial_pressure = state.pressure();
// Stop timer and report
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Solve pressure equation.
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
computeFractionalFlow(props_, poly_props_, allcells_,
state.pressure(), state.surfacevol(), state.saturation(),
state.concentration(), state.maxconcentration(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver
pressure_timer.start();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
// Stop timer and report
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(props_, wells_, well_state, transport_src);
// Find inflow rate.
const double current_time = timer.simulationTimeElapsed();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], initial_pressure,
state.pressure(), &initial_porevol[0], &porevol[0],
&transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.surfacevol(),
state.concentration(), state.maxconcentration());
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
double substep_polyinj = 0.0;
double substep_polyprod = 0.0;
Opm::computeInjectedProduced(props_, poly_props_,
state,
transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced,
substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
polyinj += substep_polyinj;
polyprod += substep_polyprod;
if (gravity_ != 0 && use_segregation_split_) {
tsolver_.solveGravity(columns_, stepsize,
state.saturation(), state.surfacevol(),
state.concentration(), state.maxconcentration());
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
} while (!well_control_passed);
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), poly_props_.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(grid_, props_, poly_props_,
state, rock_comp_props_);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance: "
" water(surfvol) oil(surfvol) polymer(kg)\n";
std::cout << " In-place: "
<< std::setw(width) << inplace_surfvol[0]
<< std::setw(width) << inplace_surfvol[1]
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1]
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1]
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1]
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1]
<< std::setw(width) << tot_polyprod << std::endl;
const double balance[3] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1],
init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed };
std::cout << " Initial - inplace + inj - prod: "
<< std::setw(width) << balance[0]
<< std::setw(width) << balance[1]
<< std::setw(width) << balance[2]
<< std::endl;
std::cout << " Relative mass error: "
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
<< std::setw(width) << balance[2]/(init_polymass + tot_polyinj)
<< std::endl;
std::cout.precision(8);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(props_, wells_, well_state, transport_src);
// Find inflow rate.
const double current_time = timer.simulationTimeElapsed();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], initial_pressure,
state.pressure(), &initial_porevol[0], &porevol[0],
&transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.surfacevol(),
state.concentration(), state.maxconcentration());
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
double substep_polyinj = 0.0;
double substep_polyprod = 0.0;
Opm::computeInjectedProduced(props_, poly_props_,
state,
transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced,
substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
polyinj += substep_polyinj;
polyprod += substep_polyprod;
if (gravity_ != 0 && use_segregation_split_) {
tsolver_.solveGravity(columns_, stepsize,
state.saturation(), state.surfacevol(),
state.concentration(), state.maxconcentration());
}
// }
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), poly_props_.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(grid_, props_, poly_props_,
state, rock_comp_props_);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance: "
" water(surfvol) oil(surfvol) polymer(kg)\n";
std::cout << " In-place: "
<< std::setw(width) << inplace_surfvol[0]
<< std::setw(width) << inplace_surfvol[1]
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1]
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1]
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1]
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1]
<< std::setw(width) << tot_polyprod << std::endl;
const double balance[3] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1],
init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed };
std::cout << " Initial - inplace + inj - prod: "
<< std::setw(width) << balance[0]
<< std::setw(width) << balance[1]
<< std::setw(width) << balance[2]
<< std::endl;
std::cout << " Relative mass error: "
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
<< std::setw(width) << balance[2]/(init_polymass + tot_polyinj)
<< std::endl;
std::cout.precision(8);
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
if (output_) {
if (output_vtk_) {

View File

@ -315,196 +315,194 @@ namespace Opm
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
if (output_binary_) {
outputStateBinary(grid_, state, timer, output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
// Solve pressure.
if (check_well_controls_) {
computeFractionalFlow(props_, poly_props_, allcells_,
state.saturation(), state.concentration(), state.maxconcentration(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if rock is incompressible, and
// there are no pressure conditions (bcs or wells).
// It is deemed sufficient for now to renormalize
// using geometric volume instead of pore volume.
if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
&& allNeumannBCs(bcs_) && allRateWells(wells_)) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
if (output_binary_) {
outputStateBinary(grid_, state, timer, output_dir_);
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
// Solve pressure.
// Stop timer and report.
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
computeFractionalFlow(props_, poly_props_, allcells_,
state.saturation(), state.concentration(), state.maxconcentration(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if rock is incompressible, and
// there are no pressure conditions (bcs or wells).
// It is deemed sufficient for now to renormalize
// using geometric volume instead of pore volume.
if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
&& allNeumannBCs(bcs_) && allRateWells(wells_)) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
// Stop timer and report.
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Find inflow rate.
const double current_time = timer.simulationTimeElapsed();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
double substep_polyinj = 0.0;
double substep_polyprod = 0.0;
injected[0] = injected[1] = produced[0] = produced[1] = polyinj = polyprod = 0.0;
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &initial_porevol[0], &transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(props_, poly_props_,
state,
transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced, substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
polyinj += substep_polyinj;
polyprod += substep_polyprod;
if (use_segregation_split_) {
tsolver_.solveGravity(columns_, &porevol[0], stepsize,
state.saturation(), state.concentration(), state.maxconcentration());
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
} while (!well_control_passed);
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), poly_props_.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(props_, poly_props_, porevol, state.maxconcentration());
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nVolume and polymer mass balance: "
" water(pv) oil(pv) polymer(kg)\n";
std::cout << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed volumes: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init
<< std::setw(width) << tot_polyprod << std::endl;
std::cout << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init
<< std::setw(width) << (polymass + tot_polyprod - tot_polyinj + polymass_adsorbed) << std::endl;
std::cout << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::setw(width) << (init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed)
<< std::endl;
std::cout.precision(8);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.saturation(),
timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Find inflow rate.
const double current_time = timer.simulationTimeElapsed();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
double substep_polyinj = 0.0;
double substep_polyprod = 0.0;
injected[0] = injected[1] = produced[0] = produced[1] = polyinj = polyprod = 0.0;
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &initial_porevol[0], &transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(props_, poly_props_,
state,
transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced, substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
polyinj += substep_polyinj;
polyprod += substep_polyprod;
if (use_segregation_split_) {
tsolver_.solveGravity(columns_, &porevol[0], stepsize,
state.saturation(), state.concentration(), state.maxconcentration());
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), poly_props_.deadPoreVol());
polymass_adsorbed = Opm::computePolymerAdsorbed(props_, poly_props_, porevol, state.maxconcentration());
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
tot_polyinj += polyinj;
tot_polyprod += polyprod;
std::cout.precision(5);
const int width = 18;
std::cout << "\nVolume and polymer mass balance: "
" water(pv) oil(pv) polymer(kg)\n";
std::cout << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init
<< std::setw(width) << polymass << std::endl;
std::cout << " Adsorbed volumes: "
<< std::setw(width) << 0.0
<< std::setw(width) << 0.0
<< std::setw(width) << polymass_adsorbed << std::endl;
std::cout << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init
<< std::setw(width) << polyinj << std::endl;
std::cout << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init
<< std::setw(width) << polyprod << std::endl;
std::cout << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init
<< std::setw(width) << tot_polyinj << std::endl;
std::cout << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init
<< std::setw(width) << tot_polyprod << std::endl;
std::cout << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init
<< std::setw(width) << (polymass + tot_polyprod - tot_polyinj + polymass_adsorbed) << std::endl;
std::cout << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::setw(width) << (init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed)
<< std::endl;
std::cout.precision(8);
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.saturation(),
timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
if (output_) {
if (output_vtk_) {

View File

@ -267,122 +267,105 @@ namespace Opm
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
// while (!timer.done()) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
// outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
SimulatorReport sreport;
// Solve pressure equation.
// if (check_well_controls_) {
// computeFractionalFlow(props_, allcells_,
// state.pressure(), state.surfacevol(), state.saturation(),
// fractional_flows);
// wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
// }
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Process transport sources (to include bdy terms and well flows).
// Opm::computeTransportSource(props_, wells_, well_state, transport_src);
// Run solver.
const double current_time = timer.simulationTimeElapsed();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
solver_timer.start();
std::vector<double> initial_pressure = state.pressure();
solver_.step(timer.currentStepLength(), state, well_state, polymer_inflow_c, transport_src);
// Stop timer and report.
solver_timer.stop();
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
const double current_time = timer.simulationTimeElapsed();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
solver_timer.start();
std::vector<double> initial_pressure = state.pressure();
solver_.step(timer.currentStepLength(), state, well_state, polymer_inflow_c, transport_src);
// Stop timer and report.
solver_timer.stop();
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
stime += st;
sreport.pressure_time = st;
stime += st;
sreport.pressure_time = st;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0;
double polyprod = 0;
Opm::computeInjectedProduced(props_, polymer_props_,
state,
transport_src, polymer_inflow_c, timer.currentStepLength(),
injected, produced,
polyinj, polyprod);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance report.\n";
std::cout << " Injected reservoir volumes: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1] << std::endl;
std::cout << " Produced reservoir volumes: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1] << std::endl;
std::cout << " Total inj reservoir volumes: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1] << std::endl;
std::cout << " Total prod reservoir volumes: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1] << std::endl;
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWaterCut(watercut, output_dir_);
tstep_os.close();
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// advance to next timestep before reporting at this location
// ++timer;
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0;
double polyprod = 0;
// }
Opm::computeInjectedProduced(props_, polymer_props_,
state,
transport_src, polymer_inflow_c, timer.currentStepLength(),
injected, produced,
polyinj, polyprod);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance report.\n";
std::cout << " Injected reservoir volumes: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1] << std::endl;
std::cout << " Produced reservoir volumes: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1] << std::endl;
std::cout << " Total inj reservoir volumes: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1] << std::endl;
std::cout << " Total prod reservoir volumes: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1] << std::endl;
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWaterCut(watercut, output_dir_);
tstep_os.close();
}
total_timer.stop();