Merge pull request #1019 from andlaus/flow_ebos-remove-geoprops

flow_ebos: remove the legacy geologic properties object
This commit is contained in:
Andreas Lauser 2017-05-19 18:49:21 +02:00 committed by GitHub
commit c3555a21d2
3 changed files with 223 additions and 110 deletions

View File

@ -83,6 +83,7 @@ namespace Properties {
NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem));
SET_BOOL_PROP(EclFlowProblem, DisableWells, true);
SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false);
SET_BOOL_PROP(EclFlowProblem, ExportGlobalTransmissibility, true);
// SWATINIT is done by the flow part of flow_ebos. this can be removed once the legacy
// code for fluid and satfunc handling gets fully retired.
@ -90,18 +91,6 @@ SET_BOOL_PROP(EclFlowProblem, EnableSwatinit, false);
}}
namespace Opm {
class ParameterGroup;
class DerivedGeology;
class RockCompressibility;
class NewtonIterationBlackoilInterface;
class VFPProperties;
class SimulationDataContainer;
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
@ -152,16 +141,14 @@ namespace Opm {
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
const ModelParameters& param,
const BlackoilPropsAdFromDeck& fluid,
const DerivedGeology& geo ,
const StandardWellsDense<TypeTag>& well_model,
const NewtonIterationBlackoilInterface& linsolver,
const bool terminal_output)
@ -169,7 +156,6 @@ namespace Opm {
, grid_(ebosSimulator_.gridManager().grid())
, istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) )
, fluid_ (fluid)
, geo_ (geo)
, vfp_properties_(
eclState().getTableManager().getVFPInjTables(),
eclState().getTableManager().getVFPProdTables())
@ -184,9 +170,6 @@ namespace Opm {
, dx_old_(AutoDiffGrid::numCells(grid_))
, isBeginReportStep_(false)
{
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
const std::vector<double> pv(geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
const std::vector<double> depth(geo_.z().data(), geo_.z().data() + geo_.z().size());
// Wells are active if they are active wells on at least
// one process.
int wellsActive = localWellsActive() ? 1 : 0;
@ -194,7 +177,6 @@ namespace Opm {
wellModel().setWellsActive( wellsActive );
// compute global sum of number of cells
global_nc_ = detail::countGlobalCells(grid_);
well_model_.init(fluid_.phaseUsage(), active_, &vfp_properties_, gravity, depth, pv, &rate_converter_, global_nc_);
if (!istlSolver_)
{
OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed");
@ -881,8 +863,6 @@ namespace Opm {
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const auto& pv = geo_.poreVolume();
const int numComp = numComponents();
Vector R_sum(numComp);
Vector B_avg(numComp);
@ -927,6 +907,16 @@ namespace Opm {
}
}
Vector pv_vector;
pv_vector.resize(nc);
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
for (int cellIdx = 0; cellIdx < nc; ++cellIdx) {
pv_vector[cellIdx] =
ebosProblem.porosity(cellIdx)*
ebosModel.dofTotalVolume(cellIdx);
}
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
//tempV.col(compIdx) = R2.col(compIdx).abs()/pv;
@ -934,11 +924,10 @@ namespace Opm {
Vector& R2_idx = R2[ compIdx ];
for( int cell_idx = 0; cell_idx < nc; ++cell_idx )
{
tempV_idx[ cell_idx ] = std::abs( R2_idx[ cell_idx ] ) / pv[ cell_idx ];
tempV_idx[ cell_idx ] = std::abs( R2_idx[ cell_idx ] ) / pv_vector[ cell_idx ];
}
}
Vector pv_vector (geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
Vector wellResidual = wellModel().residual();
const double pvSum = convergenceReduction(grid_.comm(), global_nc_, numComp,
@ -1416,8 +1405,8 @@ namespace Opm {
std::stringstream errlog;
errlog << "Finding the bubble point pressure failed for " << failed_cells_pb.size() << " cells [";
errlog << failed_cells_pb[0];
const int max_elems = std::min(max_num_cells_faillog, failed_cells_pb.size());
for (int i = 1; i < max_elems; ++i) {
const size_t max_elems = std::min(max_num_cells_faillog, failed_cells_pb.size());
for (size_t i = 1; i < max_elems; ++i) {
errlog << ", " << failed_cells_pb[i];
}
if (failed_cells_pb.size() > max_num_cells_faillog) {
@ -1430,8 +1419,8 @@ namespace Opm {
std::stringstream errlog;
errlog << "Finding the dew point pressure failed for " << failed_cells_pd.size() << " cells [";
errlog << failed_cells_pd[0];
const int max_elems = std::min(max_num_cells_faillog, failed_cells_pd.size());
for (int i = 1; i < max_elems; ++i) {
const size_t max_elems = std::min(max_num_cells_faillog, failed_cells_pd.size());
for (size_t i = 1; i < max_elems; ++i) {
errlog << ", " << failed_cells_pd[i];
}
if (failed_cells_pd.size() > max_num_cells_faillog) {
@ -1468,7 +1457,6 @@ namespace Opm {
const Grid& grid_;
const ISTLSolverType* istlSolver_;
const BlackoilPropsAdFromDeck& fluid_;
const DerivedGeology& geo_;
VFPProperties vfp_properties_;
// For each canonical phase -> true if active
const std::vector<bool> active_;

View File

@ -56,30 +56,6 @@
namespace Opm
{
/// \brief Gather cell data to global random access iterator
/// \tparam ConstIter The type of constant iterator.
/// \tparam Iter The type of the mutable iterator.
/// \param grid The distributed CpGrid where loadbalance has been run.
/// \param local The local container from which the data should be sent.
/// \param global The global container to gather to.
/// \warning The global container has to have the correct size!
template<class ConstIter, class Iter>
void gatherCellDataToGlobalIterator(const Dune::CpGrid& grid,
const ConstIter& local_begin,
const Iter& global_begin)
{
#if HAVE_MPI
FixedSizeIterCopyHandle<ConstIter,Iter> handle(local_begin,
global_begin);
const auto& gatherScatterInf = grid.cellScatterGatherInterface();
Dune::VariableSizeCommunicator<> comm(grid.comm(),
gatherScatterInf);
comm.backward(handle);
#endif
}
// The FlowMain class is the ebos based black-oil simulator.
class FlowMainEbos
{
@ -87,6 +63,7 @@ namespace Opm
typedef TTAG(EclFlowProblem) TypeTag;
typedef typename GET_PROP(TypeTag, MaterialLaw)::EclMaterialLawManager MaterialLawManager;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) EbosSimulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementMapper) ElementMapper;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
@ -446,9 +423,6 @@ namespace Opm
materialLawManager(),
grid));
// Geological properties
bool use_local_perm = param_.getDefault("use_local_perm", true);
geoprops_.reset(new DerivedGeology(grid, *fluidprops_, eclState(), use_local_perm, &ebosProblem().gravity()[0]));
}
const Deck& deck() const
@ -598,51 +572,13 @@ namespace Opm
{
bool output = param_.getDefault("output", true);
bool output_ecl = param_.getDefault("output_ecl", true);
if( output && output_ecl )
if( output && output_ecl && grid().comm().rank() == 0 )
{
const Grid& grid = this->globalGrid();
exportNncStructure_();
if( output_cout_ ){
const EclipseGrid& inputGrid = eclState().getInputGrid();
eclIO_.reset(new EclipseIO(eclState(), UgGridHelpers::createEclipseGrid( grid , inputGrid )));
}
const NNC* nnc = &geoprops_->nonCartesianConnections();
data::Solution globaltrans;
if ( must_distribute_ )
{
// dirty and dangerous hack!
// We rely on opmfil in GeoProps being hardcoded to true
// which prevents the pinch processing from running.
// Ergo the nncs are unchanged.
nnc = &eclState().getInputNNC();
// Gather the global simProps
data::Solution localtrans = geoprops_->simProps(this->grid());
for( const auto& localkeyval: localtrans)
{
auto& globalval = globaltrans[localkeyval.first].data;
const auto& localval = localkeyval.second.data;
if( output_cout_ )
{
globalval.resize( grid.size(0));
}
gatherCellDataToGlobalIterator(this->grid(), localval.begin(),
globalval.begin());
}
}
else
{
globaltrans = geoprops_->simProps(grid);
}
if( output_cout_ )
{
eclIO_->writeInitial(globaltrans,
*nnc);
}
const EclipseGrid& inputGrid = eclState().getInputGrid();
eclIO_.reset(new EclipseIO(eclState(), UgGridHelpers::createEclipseGrid( this->globalGrid() , inputGrid )));
eclIO_->writeInitial(computeLegacySimProps_(), nnc_);
}
}
@ -732,7 +668,6 @@ namespace Opm
// Create the simulator instance.
simulator_.reset(new Simulator(*ebosSimulator_,
param_,
*geoprops_,
*fluidprops_,
*fis_solver_,
FluidSystem::enableDissolvedGas(),
@ -819,6 +754,153 @@ namespace Opm
std::unordered_set<std::string> defunctWellNames() const
{ return ebosSimulator_->gridManager().defunctWellNames(); }
data::Solution computeLegacySimProps_()
{
const int* dims = UgGridHelpers::cartDims(grid());
const int globalSize = dims[0]*dims[1]*dims[2];
data::CellData tranx = {UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), data::TargetType::INIT};
data::CellData trany = {UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), data::TargetType::INIT};
data::CellData tranz = {UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), data::TargetType::INIT};
for (size_t i = 0; i < tranx.data.size(); ++i) {
tranx.data[0] = 0.0;
trany.data[0] = 0.0;
tranz.data[0] = 0.0;
}
const Grid& globalGrid = this->globalGrid();
const auto& globalGridView = globalGrid.leafGridView();
ElementMapper globalElemMapper(globalGridView);
const auto& cartesianCellIdx = globalGrid.globalCell();
const auto* globalTrans = &(ebosSimulator_->gridManager().globalTransmissibility());
if (grid().comm().size() < 2) {
// in the sequential case we must use the transmissibilites defined by
// the problem. (because in the sequential case, the grid manager does
// not compute "global" transmissibilities for performance reasons. in
// the parallel case, the problem's transmissibilities can't be used
// because this object refers to the distributed grid and we need the
// sequential version here.)
globalTrans = &ebosSimulator_->problem().eclTransmissibilities();
}
auto elemIt = globalGridView.template begin</*codim=*/0>();
const auto& elemEndIt = globalGridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
{
continue; // intersection is on the domain boundary
}
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
#else
unsigned c1 = globalElemMapper.map(is.inside());
unsigned c2 = globalElemMapper.map(is.outside());
#endif
if (c1 > c2)
{
continue; // we only need to handle each connection once, thank you.
}
int gc1 = std::min(cartesianCellIdx[c1], cartesianCellIdx[c2]);
int gc2 = std::max(cartesianCellIdx[c1], cartesianCellIdx[c2]);
if (gc2 - gc1 == 1) {
tranx.data[gc1] = globalTrans->transmissibility(c1, c2);
}
if (gc2 - gc1 == dims[0]) {
trany.data[gc1] = globalTrans->transmissibility(c1, c2);
}
if (gc2 - gc1 == dims[0]*dims[1]) {
tranz.data[gc1] = globalTrans->transmissibility(c1, c2);
}
}
}
return {{"TRANX" , tranx},
{"TRANY" , trany} ,
{"TRANZ" , tranz}};
}
void exportNncStructure_()
{
nnc_ = eclState().getInputNNC();
int nx = eclState().getInputGrid().getNX();
int ny = eclState().getInputGrid().getNY();
//int nz = eclState().getInputGrid().getNZ()
const Grid& globalGrid = this->globalGrid();
const auto& globalGridView = globalGrid.leafGridView();
ElementMapper globalElemMapper(globalGridView);
const auto* globalTrans = &(ebosSimulator_->gridManager().globalTransmissibility());
if (grid().comm().size() < 2) {
// in the sequential case we must use the transmissibilites defined by
// the problem. (because in the sequential case, the grid manager does
// not compute "global" transmissibilities for performance reasons. in
// the parallel case, the problem's transmissibilities can't be used
// because this object refers to the distributed grid and we need the
// sequential version here.)
globalTrans = &ebosSimulator_->problem().eclTransmissibilities();
}
auto elemIt = globalGridView.template begin</*codim=*/0>();
const auto& elemEndIt = globalGridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
{
continue; // intersection is on the domain boundary
}
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
#else
unsigned c1 = globalElemMapper.map(is.inside());
unsigned c2 = globalElemMapper.map(is.outside());
#endif
if (c1 > c2)
{
continue; // we only need to handle each connection once, thank you.
}
// TODO (?): use the cartesian index mapper to make this code work
// with grids other than Dune::CpGrid. The problem is that we need
// the a mapper for the sequential grid, not for the distributed one.
int cc1 = globalGrid.globalCell()[c1];
int cc2 = globalGrid.globalCell()[c2];
if (std::abs(cc1 - cc2) != 1 &&
std::abs(cc1 - cc2) != nx &&
std::abs(cc1 - cc2) != nx*ny)
{
nnc_.addNNC(cc1, cc2, globalTrans->transmissibility(c1, c2));
}
}
}
}
std::unique_ptr<EbosSimulator> ebosSimulator_;
int mpi_rank_ = 0;
bool output_cout_ = false;
@ -827,8 +909,8 @@ namespace Opm
bool output_to_files_ = false;
std::string output_dir_ = std::string(".");
std::unique_ptr<BlackoilPropsAdFromDeck> fluidprops_;
std::unique_ptr<DerivedGeology> geoprops_;
std::unique_ptr<ReservoirState> state_;
NNC nnc_;
std::unique_ptr<EclipseIO> eclIO_;
std::unique_ptr<OutputWriter> output_writer_;
boost::any parallel_information_;

View File

@ -86,7 +86,6 @@ public:
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] geo derived geological properties
/// \param[in] props fluid and rock properties
/// \param[in] linsolver linear solver
/// \param[in] has_disgas true for dissolved gas option
@ -96,7 +95,6 @@ public:
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator,
const ParameterGroup& param,
DerivedGeology& geo,
BlackoilPropsAdFromDeck& props,
NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
@ -109,7 +107,6 @@ public:
model_param_(param),
solver_param_(param),
props_(props),
geo_(geo),
solver_(linsolver),
has_disgas_(has_disgas),
has_vapoil_(has_vapoil),
@ -150,6 +147,8 @@ public:
ExtraData extra;
failureReport_ = SimulatorReport();
extractLegacyPoreVolume_();
extractLegacyDepth_();
if (output_writer_.isRestart()) {
// This is a restart, populate WellState and ReservoirState state objects from restart file
@ -253,8 +252,7 @@ public:
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
const WellModel well_model(wells, &(wells_manager.wellCollection()), model_param_, terminal_output_);
WellModel well_model(wells, &(wells_manager.wellCollection()), model_param_, terminal_output_);
auto solver = createSolver(well_model);
std::vector<std::vector<double>> currentFluidInPlace;
@ -419,12 +417,30 @@ protected:
const Wells* /* wells */)
{ }
std::unique_ptr<Solver> createSolver(const WellModel& well_model)
std::unique_ptr<Solver> createSolver(WellModel& well_model)
{
const auto& gridView = ebosSimulator_.gridView();
const PhaseUsage& phaseUsage = props_.phaseUsage();
const std::vector<bool> activePhases = detail::activePhases(phaseUsage);
const double gravity = ebosSimulator_.problem().gravity()[2];
// calculate the number of elements of the compressed sequential grid. this needs
// to be done in two steps because the dune communicator expects a reference as
// argument for sum()
int globalNumCells = gridView.size(/*codim=*/0);
globalNumCells = gridView.comm().sum(globalNumCells);
well_model.init(phaseUsage,
activePhases,
/*vfpProperties=*/nullptr,
gravity,
legacyDepth_,
legacyPoreVolume_,
rateConverter_.get(),
globalNumCells);
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
model_param_,
props_,
geo_,
well_model,
solver_,
terminal_output_));
@ -807,11 +823,40 @@ protected:
}
}
void extractLegacyPoreVolume_()
{
const auto& grid = ebosSimulator_.gridManager().grid();
const unsigned numCells = grid.size(/*codim=*/0);
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosModel = ebosSimulator_.model();
legacyPoreVolume_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
// todo (?): respect rock compressibility
legacyPoreVolume_[cellIdx] =
ebosModel.dofTotalVolume(cellIdx)
*ebosProblem.porosity(cellIdx);
}
}
void extractLegacyDepth_()
{
const auto& grid = ebosSimulator_.gridManager().grid();
const unsigned numCells = grid.size(/*codim=*/0);
legacyDepth_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
legacyDepth_[cellIdx] =
grid.cellCenterDepth(cellIdx);
}
}
// Data.
Simulator& ebosSimulator_;
std::vector<int> legacyCellPvtRegionIdx_;
std::vector<double> legacyPoreVolume_;
std::vector<double> legacyDepth_;
typedef RateConverter::SurfaceToReservoirVoidage<FluidSystem, std::vector<int> > RateConverterType;
typedef typename Solver::SolverParameters SolverParameters;
@ -823,8 +868,6 @@ protected:
// Observed objects.
BlackoilPropsAdFromDeck& props_;
// Solvers
DerivedGeology& geo_;
NewtonIterationBlackoilInterface& solver_;
// Misc. data
const bool has_disgas_;