mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
puting computeWellFlux in StandardWells
This commit is contained in:
parent
e9e1b9fda8
commit
c398a6e424
@ -397,13 +397,6 @@ namespace Opm {
|
|||||||
SolutionState& state,
|
SolutionState& state,
|
||||||
WellState& well_state);
|
WellState& well_state);
|
||||||
|
|
||||||
void
|
|
||||||
computeWellFlux(const SolutionState& state,
|
|
||||||
const std::vector<ADB>& mob_perfcells,
|
|
||||||
const std::vector<ADB>& b_perfcells,
|
|
||||||
V& aliveWells,
|
|
||||||
std::vector<ADB>& cq_s) const;
|
|
||||||
|
|
||||||
void
|
void
|
||||||
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
|
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
|
||||||
const SolutionState& state,
|
const SolutionState& state,
|
||||||
|
@ -858,7 +858,7 @@ namespace detail {
|
|||||||
}
|
}
|
||||||
V aliveWells;
|
V aliveWells;
|
||||||
std::vector<ADB> cq_s;
|
std::vector<ADB> cq_s;
|
||||||
asImpl().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
asImpl().stdWells().computeWellFlux(state, fluid_.phaseUsage(), active_, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
||||||
asImpl().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
|
asImpl().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
|
||||||
asImpl().addWellFluxEq(cq_s, state);
|
asImpl().addWellFluxEq(cq_s, state);
|
||||||
asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state);
|
asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state);
|
||||||
@ -1024,158 +1024,6 @@ namespace detail {
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <class Grid, class Implementation>
|
|
||||||
void
|
|
||||||
BlackoilModelBase<Grid, Implementation>::computeWellFlux(const SolutionState& state,
|
|
||||||
const std::vector<ADB>& mob_perfcells,
|
|
||||||
const std::vector<ADB>& b_perfcells,
|
|
||||||
V& aliveWells,
|
|
||||||
std::vector<ADB>& cq_s) const
|
|
||||||
{
|
|
||||||
if( ! localWellsActive() ) return ;
|
|
||||||
|
|
||||||
const int np = wells().number_of_phases;
|
|
||||||
const int nw = wells().number_of_wells;
|
|
||||||
const int nperf = wells().well_connpos[nw];
|
|
||||||
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
||||||
V Tw = Eigen::Map<const V>(wells().WI, nperf);
|
|
||||||
const std::vector<int>& well_cells = stdWells().wellOps().well_cells;
|
|
||||||
|
|
||||||
// pressure diffs computed already (once per step, not changing per iteration)
|
|
||||||
const V& cdp = asImpl().stdWells().wellPerforationPressureDiffs();
|
|
||||||
// Extract needed quantities for the perforation cells
|
|
||||||
const ADB& p_perfcells = subset(state.pressure, well_cells);
|
|
||||||
const ADB& rv_perfcells = subset(state.rv, well_cells);
|
|
||||||
const ADB& rs_perfcells = subset(state.rs, well_cells);
|
|
||||||
|
|
||||||
// Perforation pressure
|
|
||||||
const ADB perfpressure = (stdWells().wellOps().w2p * state.bhp) + cdp;
|
|
||||||
|
|
||||||
// Pressure drawdown (also used to determine direction of flow)
|
|
||||||
const ADB drawdown = p_perfcells - perfpressure;
|
|
||||||
|
|
||||||
// Compute vectors with zero and ones that
|
|
||||||
// selects the wanted quantities.
|
|
||||||
|
|
||||||
// selects injection perforations
|
|
||||||
V selectInjectingPerforations = V::Zero(nperf);
|
|
||||||
// selects producing perforations
|
|
||||||
V selectProducingPerforations = V::Zero(nperf);
|
|
||||||
for (int c = 0; c < nperf; ++c){
|
|
||||||
if (drawdown.value()[c] < 0)
|
|
||||||
selectInjectingPerforations[c] = 1;
|
|
||||||
else
|
|
||||||
selectProducingPerforations[c] = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Handle cross flow
|
|
||||||
const V numInjectingPerforations = (stdWells().wellOps().p2w * ADB::constant(selectInjectingPerforations)).value();
|
|
||||||
const V numProducingPerforations = (stdWells().wellOps().p2w * ADB::constant(selectProducingPerforations)).value();
|
|
||||||
for (int w = 0; w < nw; ++w) {
|
|
||||||
if (!wells().allow_cf[w]) {
|
|
||||||
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
|
||||||
// Crossflow is not allowed; reverse flow is prevented.
|
|
||||||
// At least one of the perforation must be open in order to have a meeningful
|
|
||||||
// equation to solve. For the special case where all perforations have reverse flow,
|
|
||||||
// and the target rate is non-zero all of the perforations are keept open.
|
|
||||||
if (wells().type[w] == INJECTOR && numInjectingPerforations[w] > 0) {
|
|
||||||
selectProducingPerforations[perf] = 0.0;
|
|
||||||
} else if (wells().type[w] == PRODUCER && numProducingPerforations[w] > 0 ){
|
|
||||||
selectInjectingPerforations[perf] = 0.0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// HANDLE FLOW INTO WELLBORE
|
|
||||||
// compute phase volumetric rates at standard conditions
|
|
||||||
std::vector<ADB> cq_ps(np, ADB::null());
|
|
||||||
for (int phase = 0; phase < np; ++phase) {
|
|
||||||
const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown);
|
|
||||||
cq_ps[phase] = b_perfcells[phase] * cq_p;
|
|
||||||
}
|
|
||||||
if (active_[Oil] && active_[Gas]) {
|
|
||||||
const int oilpos = pu.phase_pos[Oil];
|
|
||||||
const int gaspos = pu.phase_pos[Gas];
|
|
||||||
const ADB cq_psOil = cq_ps[oilpos];
|
|
||||||
const ADB cq_psGas = cq_ps[gaspos];
|
|
||||||
cq_ps[gaspos] += rs_perfcells * cq_psOil;
|
|
||||||
cq_ps[oilpos] += rv_perfcells * cq_psGas;
|
|
||||||
}
|
|
||||||
|
|
||||||
// HANDLE FLOW OUT FROM WELLBORE
|
|
||||||
// Using total mobilities
|
|
||||||
ADB total_mob = mob_perfcells[0];
|
|
||||||
for (int phase = 1; phase < np; ++phase) {
|
|
||||||
total_mob += mob_perfcells[phase];
|
|
||||||
}
|
|
||||||
// injection perforations total volume rates
|
|
||||||
const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown);
|
|
||||||
|
|
||||||
// compute wellbore mixture for injecting perforations
|
|
||||||
// The wellbore mixture depends on the inflow from the reservoar
|
|
||||||
// and the well injection rates.
|
|
||||||
|
|
||||||
// compute avg. and total wellbore phase volumetric rates at standard conds
|
|
||||||
const DataBlock compi = Eigen::Map<const DataBlock>(wells().comp_frac, nw, np);
|
|
||||||
std::vector<ADB> wbq(np, ADB::null());
|
|
||||||
ADB wbqt = ADB::constant(V::Zero(nw));
|
|
||||||
for (int phase = 0; phase < np; ++phase) {
|
|
||||||
const ADB& q_ps = stdWells().wellOps().p2w * cq_ps[phase];
|
|
||||||
const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw));
|
|
||||||
Selector<double> injectingPhase_selector(q_s.value(), Selector<double>::GreaterZero);
|
|
||||||
const int pos = pu.phase_pos[phase];
|
|
||||||
wbq[phase] = (compi.col(pos) * injectingPhase_selector.select(q_s,ADB::constant(V::Zero(nw)))) - q_ps;
|
|
||||||
wbqt += wbq[phase];
|
|
||||||
}
|
|
||||||
// compute wellbore mixture at standard conditions.
|
|
||||||
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
|
|
||||||
std::vector<ADB> cmix_s(np, ADB::null());
|
|
||||||
for (int phase = 0; phase < np; ++phase) {
|
|
||||||
const int pos = pu.phase_pos[phase];
|
|
||||||
cmix_s[phase] = stdWells().wellOps().w2p * notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
|
|
||||||
}
|
|
||||||
|
|
||||||
// compute volume ratio between connection at standard conditions
|
|
||||||
ADB volumeRatio = ADB::constant(V::Zero(nperf));
|
|
||||||
const ADB d = V::Constant(nperf,1.0) - rv_perfcells * rs_perfcells;
|
|
||||||
for (int phase = 0; phase < np; ++phase) {
|
|
||||||
ADB tmp = cmix_s[phase];
|
|
||||||
|
|
||||||
if (phase == Oil && active_[Gas]) {
|
|
||||||
const int gaspos = pu.phase_pos[Gas];
|
|
||||||
tmp -= rv_perfcells * cmix_s[gaspos] / d;
|
|
||||||
}
|
|
||||||
if (phase == Gas && active_[Oil]) {
|
|
||||||
const int oilpos = pu.phase_pos[Oil];
|
|
||||||
tmp -= rs_perfcells * cmix_s[oilpos] / d;
|
|
||||||
}
|
|
||||||
volumeRatio += tmp / b_perfcells[phase];
|
|
||||||
}
|
|
||||||
|
|
||||||
// injecting connections total volumerates at standard conditions
|
|
||||||
ADB cqt_is = cqt_i/volumeRatio;
|
|
||||||
|
|
||||||
// connection phase volumerates at standard conditions
|
|
||||||
cq_s.resize(np, ADB::null());
|
|
||||||
for (int phase = 0; phase < np; ++phase) {
|
|
||||||
cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is;
|
|
||||||
}
|
|
||||||
|
|
||||||
// check for dead wells (used in the well controll equations)
|
|
||||||
aliveWells = V::Constant(nw, 1.0);
|
|
||||||
for (int w = 0; w < nw; ++w) {
|
|
||||||
if (wbqt.value()[w] == 0) {
|
|
||||||
aliveWells[w] = 0.0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <class Grid, class Implementation>
|
template <class Grid, class Implementation>
|
||||||
void BlackoilModelBase<Grid, Implementation>::updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
|
void BlackoilModelBase<Grid, Implementation>::updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
|
||||||
const SolutionState& state,
|
const SolutionState& state,
|
||||||
@ -1587,7 +1435,7 @@ namespace detail {
|
|||||||
|
|
||||||
SolutionState wellSolutionState = state0;
|
SolutionState wellSolutionState = state0;
|
||||||
asImpl().variableStateExtractWellsVars(indices, vars, wellSolutionState);
|
asImpl().variableStateExtractWellsVars(indices, vars, wellSolutionState);
|
||||||
asImpl().computeWellFlux(wellSolutionState, mob_perfcells_const, b_perfcells_const, aliveWells, cq_s);
|
asImpl().stdWells().computeWellFlux(wellSolutionState, fluid_.phaseUsage(), active_, mob_perfcells_const, b_perfcells_const, aliveWells, cq_s);
|
||||||
asImpl().updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
|
asImpl().updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
|
||||||
asImpl().addWellFluxEq(cq_s, wellSolutionState);
|
asImpl().addWellFluxEq(cq_s, wellSolutionState);
|
||||||
asImpl().addWellControlEq(wellSolutionState, well_state, aliveWells);
|
asImpl().addWellControlEq(wellSolutionState, well_state, aliveWells);
|
||||||
|
@ -107,6 +107,16 @@ namespace Opm {
|
|||||||
std::vector<ADB>& mob_perfcells,
|
std::vector<ADB>& mob_perfcells,
|
||||||
std::vector<ADB>& b_perfcells) const;
|
std::vector<ADB>& b_perfcells) const;
|
||||||
|
|
||||||
|
template <class SolutionState>
|
||||||
|
void computeWellFlux(const SolutionState& state,
|
||||||
|
const Opm::PhaseUsage& phase_usage,
|
||||||
|
const std::vector<bool>& active,
|
||||||
|
const std::vector<ADB>& mob_perfcells,
|
||||||
|
const std::vector<ADB>& b_perfcells,
|
||||||
|
Vector& aliveWells,
|
||||||
|
std::vector<ADB>& cq_s) const;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
bool wells_active_;
|
bool wells_active_;
|
||||||
|
@ -310,4 +310,158 @@ namespace Opm
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template <class SolutionState>
|
||||||
|
void
|
||||||
|
StandardWells::
|
||||||
|
computeWellFlux(const SolutionState& state,
|
||||||
|
const Opm::PhaseUsage& pu,
|
||||||
|
const std::vector<bool>& active,
|
||||||
|
const std::vector<ADB>& mob_perfcells,
|
||||||
|
const std::vector<ADB>& b_perfcells,
|
||||||
|
Vector& aliveWells,
|
||||||
|
std::vector<ADB>& cq_s) const
|
||||||
|
{
|
||||||
|
if( ! localWellsActive() ) return ;
|
||||||
|
|
||||||
|
const int np = wells().number_of_phases;
|
||||||
|
const int nw = wells().number_of_wells;
|
||||||
|
const int nperf = wells().well_connpos[nw];
|
||||||
|
Vector Tw = Eigen::Map<const Vector>(wells().WI, nperf);
|
||||||
|
const std::vector<int>& well_cells = wellOps().well_cells;
|
||||||
|
|
||||||
|
// pressure diffs computed already (once per step, not changing per iteration)
|
||||||
|
const Vector& cdp = wellPerforationPressureDiffs();
|
||||||
|
// Extract needed quantities for the perforation cells
|
||||||
|
const ADB& p_perfcells = subset(state.pressure, well_cells);
|
||||||
|
const ADB& rv_perfcells = subset(state.rv, well_cells);
|
||||||
|
const ADB& rs_perfcells = subset(state.rs, well_cells);
|
||||||
|
|
||||||
|
// Perforation pressure
|
||||||
|
const ADB perfpressure = (wellOps().w2p * state.bhp) + cdp;
|
||||||
|
|
||||||
|
// Pressure drawdown (also used to determine direction of flow)
|
||||||
|
const ADB drawdown = p_perfcells - perfpressure;
|
||||||
|
|
||||||
|
// Compute vectors with zero and ones that
|
||||||
|
// selects the wanted quantities.
|
||||||
|
|
||||||
|
// selects injection perforations
|
||||||
|
Vector selectInjectingPerforations = Vector::Zero(nperf);
|
||||||
|
// selects producing perforations
|
||||||
|
Vector selectProducingPerforations = Vector::Zero(nperf);
|
||||||
|
for (int c = 0; c < nperf; ++c){
|
||||||
|
if (drawdown.value()[c] < 0)
|
||||||
|
selectInjectingPerforations[c] = 1;
|
||||||
|
else
|
||||||
|
selectProducingPerforations[c] = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle cross flow
|
||||||
|
const Vector numInjectingPerforations = (wellOps().p2w * ADB::constant(selectInjectingPerforations)).value();
|
||||||
|
const Vector numProducingPerforations = (wellOps().p2w * ADB::constant(selectProducingPerforations)).value();
|
||||||
|
for (int w = 0; w < nw; ++w) {
|
||||||
|
if (!wells().allow_cf[w]) {
|
||||||
|
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
||||||
|
// Crossflow is not allowed; reverse flow is prevented.
|
||||||
|
// At least one of the perforation must be open in order to have a meeningful
|
||||||
|
// equation to solve. For the special case where all perforations have reverse flow,
|
||||||
|
// and the target rate is non-zero all of the perforations are keept open.
|
||||||
|
if (wells().type[w] == INJECTOR && numInjectingPerforations[w] > 0) {
|
||||||
|
selectProducingPerforations[perf] = 0.0;
|
||||||
|
} else if (wells().type[w] == PRODUCER && numProducingPerforations[w] > 0 ){
|
||||||
|
selectInjectingPerforations[perf] = 0.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// HANDLE FLOW INTO WELLBORE
|
||||||
|
// compute phase volumetric rates at standard conditions
|
||||||
|
std::vector<ADB> cq_ps(np, ADB::null());
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown);
|
||||||
|
cq_ps[phase] = b_perfcells[phase] * cq_p;
|
||||||
|
}
|
||||||
|
if (active[Oil] && active[Gas]) {
|
||||||
|
const int oilpos = pu.phase_pos[Oil];
|
||||||
|
const int gaspos = pu.phase_pos[Gas];
|
||||||
|
const ADB cq_psOil = cq_ps[oilpos];
|
||||||
|
const ADB cq_psGas = cq_ps[gaspos];
|
||||||
|
cq_ps[gaspos] += rs_perfcells * cq_psOil;
|
||||||
|
cq_ps[oilpos] += rv_perfcells * cq_psGas;
|
||||||
|
}
|
||||||
|
|
||||||
|
// HANDLE FLOW OUT FROM WELLBORE
|
||||||
|
// Using total mobilities
|
||||||
|
ADB total_mob = mob_perfcells[0];
|
||||||
|
for (int phase = 1; phase < np; ++phase) {
|
||||||
|
total_mob += mob_perfcells[phase];
|
||||||
|
}
|
||||||
|
// injection perforations total volume rates
|
||||||
|
const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown);
|
||||||
|
|
||||||
|
// compute wellbore mixture for injecting perforations
|
||||||
|
// The wellbore mixture depends on the inflow from the reservoar
|
||||||
|
// and the well injection rates.
|
||||||
|
|
||||||
|
// compute avg. and total wellbore phase volumetric rates at standard conds
|
||||||
|
const DataBlock compi = Eigen::Map<const DataBlock>(wells().comp_frac, nw, np);
|
||||||
|
std::vector<ADB> wbq(np, ADB::null());
|
||||||
|
ADB wbqt = ADB::constant(Vector::Zero(nw));
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
const ADB& q_ps = wellOps().p2w * cq_ps[phase];
|
||||||
|
const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw));
|
||||||
|
Selector<double> injectingPhase_selector(q_s.value(), Selector<double>::GreaterZero);
|
||||||
|
const int pos = pu.phase_pos[phase];
|
||||||
|
wbq[phase] = (compi.col(pos) * injectingPhase_selector.select(q_s,ADB::constant(Vector::Zero(nw)))) - q_ps;
|
||||||
|
wbqt += wbq[phase];
|
||||||
|
}
|
||||||
|
// compute wellbore mixture at standard conditions.
|
||||||
|
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
|
||||||
|
std::vector<ADB> cmix_s(np, ADB::null());
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
const int pos = pu.phase_pos[phase];
|
||||||
|
cmix_s[phase] = wellOps().w2p * notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute volume ratio between connection at standard conditions
|
||||||
|
ADB volumeRatio = ADB::constant(Vector::Zero(nperf));
|
||||||
|
const ADB d = Vector::Constant(nperf,1.0) - rv_perfcells * rs_perfcells;
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
ADB tmp = cmix_s[phase];
|
||||||
|
|
||||||
|
if (phase == Oil && active[Gas]) {
|
||||||
|
const int gaspos = pu.phase_pos[Gas];
|
||||||
|
tmp -= rv_perfcells * cmix_s[gaspos] / d;
|
||||||
|
}
|
||||||
|
if (phase == Gas && active[Oil]) {
|
||||||
|
const int oilpos = pu.phase_pos[Oil];
|
||||||
|
tmp -= rs_perfcells * cmix_s[oilpos] / d;
|
||||||
|
}
|
||||||
|
volumeRatio += tmp / b_perfcells[phase];
|
||||||
|
}
|
||||||
|
|
||||||
|
// injecting connections total volumerates at standard conditions
|
||||||
|
ADB cqt_is = cqt_i/volumeRatio;
|
||||||
|
|
||||||
|
// connection phase volumerates at standard conditions
|
||||||
|
cq_s.resize(np, ADB::null());
|
||||||
|
for (int phase = 0; phase < np; ++phase) {
|
||||||
|
cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is;
|
||||||
|
}
|
||||||
|
|
||||||
|
// check for dead wells (used in the well controll equations)
|
||||||
|
aliveWells = Vector::Constant(nw, 1.0);
|
||||||
|
for (int w = 0; w < nw; ++w) {
|
||||||
|
if (wbqt.value()[w] == 0) {
|
||||||
|
aliveWells[w] = 0.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -550,7 +550,7 @@ namespace Opm {
|
|||||||
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
|
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
|
||||||
}
|
}
|
||||||
|
|
||||||
Base::computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
stdWells().computeWellFlux(state, fluid_.phaseUsage(), active_, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
||||||
|
|
||||||
if (has_plyshlog_) {
|
if (has_plyshlog_) {
|
||||||
std::vector<double> water_vel_wells;
|
std::vector<double> water_vel_wells;
|
||||||
@ -569,7 +569,7 @@ namespace Opm {
|
|||||||
mob_perfcells[water_pos] = mob_perfcells[water_pos] / shear_mult_wells_adb;
|
mob_perfcells[water_pos] = mob_perfcells[water_pos] / shear_mult_wells_adb;
|
||||||
}
|
}
|
||||||
|
|
||||||
Base::computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
stdWells().computeWellFlux(state, fluid_.phaseUsage(), active_, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
||||||
Base::updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
|
Base::updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
|
||||||
Base::addWellFluxEq(cq_s, state);
|
Base::addWellFluxEq(cq_s, state);
|
||||||
addWellContributionToMassBalanceEq(cq_s, state, well_state);
|
addWellContributionToMassBalanceEq(cq_s, state, well_state);
|
||||||
|
Loading…
Reference in New Issue
Block a user