Added varying bounded box for allowable values of c and c in the splitting residual solver.

This commit is contained in:
Xavier Raynaud 2012-02-24 17:35:47 +01:00
parent f0fc7bf3c0
commit c63d817332
2 changed files with 245 additions and 24 deletions

View File

@ -424,7 +424,7 @@ namespace Opm
// parametrized by t in [0, t_max], t_out is equal to t when the curve hits the bounding
// rectangle, x_out=(s_out, c_out) denotes the values of s and c at that point.
void setup(const double* x_arg, const double* direction_arg, const double* end_point_arg, const double* x_min_arg, const double* x_max_arg, double& t_max_arg)
void setup(const double* x_arg, const double* direction_arg, const double* end_point_arg, const double* x_min_arg, const double* x_max_arg, double& t_max_out, double& t_out_out)
{
double t0, t1;
x[0] = x_arg[0];
@ -455,7 +455,8 @@ namespace Opm
x_out[0] = x[0] + t_out*direction[0];
x_out[1] = x[1] + t_out*direction[1];
t_max = t_out + 1;
t_max_arg = t_max;
t_max_out = t_max;
t_out_out = t_out;
}
@ -465,8 +466,8 @@ namespace Opm
x_new[0] = x[0] + t*direction[0];
x_new[1] = x[1] + t*direction[1];
} else {
x_new[0] = (t_max - t)*x_out[0] + end_point[0]*(t - t_out);
x_new[1] = (t_max - t)*x_out[1] + end_point[1]*(t - t_out);
x_new[0] = 1/(t_max-t_out)*((t_max - t)*x_out[0] + end_point[0]*(t - t_out));
x_new[1] = 1/(t_max-t_out)*((t_max - t)*x_out[1] + end_point[1]*(t - t_out));
}
}
@ -480,10 +481,10 @@ namespace Opm
s = x[0] + t*direction[0];
c = x[1] + t*direction[1];
} else {
s = (t_max - t)*x_out[0] + end_point[0]*(t - t_out);
c = (t_max - t)*x_out[1] + end_point[1]*(t - t_out);
s = 1/(t_max-t_out)*((t_max - t)*x_out[0] + end_point[0]*(t - t_out));
c = 1/(t_max-t_out)*((t_max - t)*x_out[1] + end_point[1]*(t - t_out));
}
return s - s0 + dtpv*(outflux*tm.fracFlow(s, c, cell) + influx);
return s - s0 + dtpv*(outflux*tm.fracFlow(s, c, cell) + influx);
}
@ -555,12 +556,12 @@ namespace Opm
x_new[0] = x[0] + t*direction[0];
x_new[1] = x[1] + t*direction[1];
} else {
x_new[0] = (t_max - t)*x_out[0] + end_point[0]*(t - t_out);
x_new[1] = (t_max - t)*x_out[1] + end_point[1]*(t - t_out);
x_new[0] = 1/(t_max-t_out)*((t_max - t)*x_out[0] + end_point[0]*(t - t_out));
x_new[1] = 1/(t_max-t_out)*((t_max - t)*x_out[1] + end_point[1]*(t - t_out));
}
}
void setup(const double* x_arg, const double* direction_arg, const double* end_point_arg, const double* x_min_arg, const double* x_max_arg, double& t_max_arg)
void setup(const double* x_arg, const double* direction_arg, const double* end_point_arg, const double* x_min_arg, const double* x_max_arg, double& t_max_out, double& t_out_out)
{
bool if_t0 = true;
bool if_t1 = true;
@ -609,7 +610,8 @@ namespace Opm
x_out[0] = x[0] + t_out*direction[0];
x_out[1] = x[1] + t_out*direction[1];
t_max = t_out + 1;
t_max_arg = t_max;
t_max_out = t_max;
t_out_out = t_out;
}
double operator()(double t) const
@ -620,8 +622,8 @@ namespace Opm
s = x[0] + t*direction[0];
c = x[1] + t*direction[1];
} else {
s = (t_max - t)*x_out[0] + end_point[0]*(t - t_out);
c = (t_max - t)*x_out[1] + end_point[1]*(t - t_out);
s = 1/(t_max-t_out)*((t_max - t)*x_out[0] + end_point[0]*(t - t_out));
c = 1/(t_max-t_out)*((t_max - t)*x_out[1] + end_point[1]*(t - t_out));
}
double ff = tm.fracFlow(s, c, cell);
double mc = tm.computeMc(c);
@ -635,6 +637,171 @@ namespace Opm
}
};
struct TransportModelPolymer::ResidualDir
{
int cell;
int s_or_c; // s_or_c = 0 if s direction, s_or_c = 1 if c direction,
double s0;
double c0;
double cmax0;
double influx; // sum_j min(v_ij, 0)*f(s_j)
double influx_polymer; // sum_j min(v_ij, 0)*f(s_j)*mc(c_j)
double outflux; // sum_j max(v_ij, 0)
double porosity;
double dtpv; // dt/pv(i)
double direction[2];
double end_point[2];
double x_max[2];
double x_min[2];
double t_out;
double t_max; // t_max = t_out + 1
double x_out[2];
double x[2];
const TransportModelPolymer& tm;
ResidualDir(const TransportModelPolymer& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
s0 = tm.saturation_[cell];
c0 = tm.concentration_[cell];
cmax0 = tm.cmax_[cell];
double dflux = -tm.source_[cell];
bool src_is_inflow = dflux < 0.0;
influx = src_is_inflow ? dflux : 0.0;
influx_polymer = src_is_inflow ? dflux*tm.computeMc(tm.inflow_c_) : 0.0;
outflux = !src_is_inflow ? dflux : 0.0;
dtpv = tm.dt_/tm.porevolume_[cell];
porosity = tm.porosity_[cell];
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
int f = tm.grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == tm.grid_.face_cells[2*f]) {
flux = tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f+1];
} else {
flux =-tm.darcyflux_[f];
other = tm.grid_.face_cells[2*f];
}
// Add flux to influx or outflux, if interior.
if (other != -1) {
if (flux < 0.0) {
influx += flux*tm.fractionalflow_[other];
influx_polymer += flux*tm.fractionalflow_[other]*tm.mc_[other];
} else {
outflux += flux;
}
}
}
}
// For a given point x=(s,c) in the s,c plane, set up a piecewise linear curve wich starts
// from "x" with slope "direction", hits the bound of the rectangle
// [s_min,s_max]x[c_min,c_max] and continue in a straight line to "end_point". The curve is
// parametrized by t in [0, t_max], t_out is equal to t when the curve hits the bounding
// rectangle, x_out=(s_out, c_out) denotes the values of s and c at that point.
void setup(const double* x_arg, const double* direction_arg, const double* end_point_arg, const double* x_min_arg, const double* x_max_arg, const int& s_or_c_arg, double& t_max_out, double& t_out_out)
{
bool if_t0 = true;
bool if_t1 = true;
double t0, t1;
s_or_c = s_or_c_arg;
x[0] = x_arg[0];
x[1] = x_arg[1];
x_max[0] = x_max_arg[0];
x_max[1] = x_max_arg[1];
x_min[0] = x_min_arg[0];
x_min[1] = x_min_arg[1];
direction[0] = direction_arg[0];
direction[1] = direction_arg[1];
end_point[0] = end_point_arg[0];
end_point[1] = end_point_arg[1];
if ((end_point[0]-x[0])*direction[0] + (end_point[1]-x[1])*direction[1] < 0) {
direction[0] *= -1;
direction[1] *= -1;
}
if (direction[0] == 0) {
if_t0 = false;
} else {
if (direction[0] > 0) {
t0 = (x_max[0] - x[0])/direction[0];
} else {
t0 = (x_min[0] - x[0])/direction[0];
}
}
if (direction[1] == 0) {
if_t1 = false;
} else {
if (direction[1] > 0) {
t1 = (x_max[1] - x[1])/direction[1];
} else {
t1 = (x_min[1] - x[1])/direction[1];
}
}
if (if_t0 && if_t1) {
t_out = std::min(t0, t1);
} else {
if (if_t0) {
t_out = t0;
} else {
t_out = t1;
}
}
x_out[0] = x[0] + t_out*direction[0];
x_out[1] = x[1] + t_out*direction[1];
t_max = t_out + 1;
t_max_out = t_max;
t_out_out = t_out;
}
// Compute x=(s,c) for a given t (t is the parameter for the piecewise linear curve)
void compute_new_x(double* x_new, const double t) {
if (t <= t_out) {
x_new[0] = x[0] + t*direction[0];
x_new[1] = x[1] + t*direction[1];
} else {
x_new[0] = 1/(t_max-t_out)*((t_max - t)*x_out[0] + end_point[0]*(t - t_out));
x_new[1] = 1/(t_max-t_out)*((t_max - t)*x_out[1] + end_point[1]*(t - t_out));
}
}
double operator()(double t) const
{
double s;
double c;
if (t <= t_out) {
s = x[0] + t*direction[0];
c = x[1] + t*direction[1];
} else {
s = 1/(t_max-t_out)*((t_max - t)*x_out[0] + end_point[0]*(t - t_out));
c = 1/(t_max-t_out)*((t_max - t)*x_out[1] + end_point[1]*(t - t_out));
}
if (s_or_c == 0) {
return s - s0 + dtpv*(outflux*tm.fracFlow(s, c, cell) + influx);
} else if (s_or_c == 1) {
double ff = tm.fracFlow(s, c, cell);
double mc = tm.computeMc(c);
double dps = tm.polyprops_.dps;
double rhor = tm.polyprops_.rhor;
double ads0 = tm.polyprops_.adsorbtion(std::max(c0, cmax0));
double ads = tm.polyprops_.adsorbtion(std::max(c, cmax0));
return (s - dps)*c - (s0 - dps)*c0
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
+ dtpv*(outflux*ff*mc + influx_polymer);
} else {
std::cout << "problem!" << std::endl;
}
}
};
void TransportModelPolymer::solveSingleCell(const int cell)
{
@ -667,7 +834,7 @@ namespace Opm
void TransportModelPolymer::solveSingleCellSplitting(int cell)
{
const int max_iters_falsi = 20;
const double tol = 1e-9;
const double tol = 1e-7;
int iters_used_falsi = 0;
const int max_iters_split = 20;
int iters_used_split = 0;
@ -675,6 +842,9 @@ namespace Opm
Residual residual(*this, cell);
ResidualSDir residual_s_dir(*this, cell);
ResidualCDir residual_c_dir(*this, cell);
// const int sdir = 0;
// const int cdir = 1;
// ResidualDir residual_dir(*this, cell);
double x[2] = {saturation_[cell], concentration_[cell]};
double res[2];
residual.computeResidual(x, res);
@ -688,6 +858,7 @@ namespace Opm
double x_max[2] = {1.0, polyprops_.c_max_limit};
double t;
double t_max;
double t_out;
double direction[2];
double end_point[2];
double gradient[2];
@ -699,15 +870,24 @@ namespace Opm
end_point[1] = x_min[1];
direction[0] = end_point[0] - x[0];
direction[1] = end_point[1] - x[1];
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_s_dir(t_out) >= 0) {
t_max = t_out;
}
} else {
end_point[0] = x_min[0];
end_point[1] = x_max[1];
direction[0] = end_point[0] - x[0];
direction[1] = end_point[1] - x[1];
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_s_dir(t_out) <= 0) {
t_max = t_out;
}
}
t = modifiedRegulaFalsi(residual_s_dir, 0., t_max, max_iters_falsi, tol, iters_used_falsi);
if (std::abs(residual_s_dir(t)) > tol) {
std::cout << "modifiedRegulaFalsi did not produce result under tolerance." << std::endl;
}
residual_s_dir.compute_new_x(x, t);
}
res_s_done = true;
@ -719,15 +899,24 @@ namespace Opm
end_point[1] = x_max[1];
direction[0] = end_point[0] - x[0];
direction[1] = end_point[1] - x[1];
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_c_dir(t_out) >= 0) {
t_max = t_out;
}
} else {
end_point[0] = x_min[0];
end_point[1] = x_min[1];
direction[0] = end_point[0] - x[0];
direction[1] = end_point[1] - x[1];
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_c_dir(t_out) <= 0) {
t_max = t_out;
}
}
t = modifiedRegulaFalsi(residual_c_dir, 0., t_max, max_iters_falsi, tol, iters_used_falsi);
if (std::abs(residual_c_dir(t)) > tol) {
std::cout << "modifiedRegulaFalsi did not produce result under tolerance." << std::endl;
}
residual_c_dir.compute_new_x(x, t);
}
res_s_done = false;
@ -739,15 +928,37 @@ namespace Opm
direction[0] = -gradient[1];
direction[1] = gradient[0];
if (res[1] < 0) {
// We update the bounding box (Here we assume that the curve res_s(s,c)=0 is
// increasing). We do it only for a significantly large res[1]
if (res[1] < -tol ) {
x_min[0] = x[0];
x_min[1] = x[1];
}
//
end_point[0] = x_max[0];
end_point[1] = x_max[1];
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_c_dir(t_out) >= 0) {
t_max = t_out;
}
} else {
// We update the bounding box (Here we assume that the curve res_s(s,c)=0 is increasing)
if (res[1] > tol) {
x_max[0] = x[0];
x_max[1] = x[1];
}
//
end_point[0] = x_min[0];
end_point[1] = x_min[1];
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_c_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_c_dir(t_out) <= 0) {
t_max = t_out;
}
}
t = modifiedRegulaFalsi(residual_c_dir, 0., t_max, max_iters_falsi, tol, iters_used_falsi);
if (std::abs(residual_c_dir(t)) > tol) {
std::cout << "modifiedRegulaFalsi did not produce result under tolerance." << std::endl;
}
residual_c_dir.compute_new_x(x, t);
residual.computeGradient(x, res, gradient, false, 1);
res_s_done = false;
@ -757,13 +968,22 @@ namespace Opm
if (res[0] < 0) {
end_point[0] = x_max[0];
end_point[1] = x_min[1];
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_s_dir(t_out) >= 0) {
t_max = t_out;
}
} else {
end_point[0] = x_min[0];
end_point[1] = x_max[1];
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max);
residual_s_dir.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
if (residual_s_dir(t_out) <= 0) {
t_max = t_out;
}
}
t = modifiedRegulaFalsi(residual_s_dir, 0., t_max, max_iters_falsi, tol, iters_used_falsi);
if (std::abs(residual_s_dir(t)) > tol) {
std::cout << "modifiedRegulaFalsi did not produce result under tolerance." << std::endl;
}
residual_s_dir.compute_new_x(x, t);
res_s_done = true;
residual.computeGradient(x, res, gradient, true, 1);
@ -830,11 +1050,11 @@ namespace Opm
} while (((max_s_change > tol_) || (max_c_change > tol_)) && ++num_iters < maxit_);
if (max_s_change > tol_) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Delta s = " << max_s_change);
<< num_iters << " iterations. Delta s = " << max_s_change);
}
if (max_c_change > tol_) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Delta c = " << max_c_change);
<< num_iters << " iterations. Delta c = " << max_c_change);
}
std::cout << "Solved " << num_cells << " cell multicell problem in "
<< num_iters << " iterations." << std::endl;

View File

@ -131,6 +131,7 @@ namespace Opm
// Residual functions which are used in splitting method
struct ResidualCDir;
struct ResidualSDir;
struct ResidualDir;
struct Residual;
double fracFlow(double s, double c, int cell) const;