Merge pull request #4765 from hnil/change_poly_alugrid

removed use of hidden private defines for poly and alugrid
This commit is contained in:
Arne Morten Kvarving
2023-08-09 11:15:02 +02:00
committed by GitHub
24 changed files with 4163 additions and 4307 deletions

View File

@@ -317,8 +317,8 @@ endmacro (files_hook)
macro (tests_hook) macro (tests_hook)
endmacro (tests_hook) endmacro (tests_hook)
# all setup common to the OPM library modules is done here # all setup common to the OPM library modules is done here
include (OpmLibMain) include (OpmLibMain)
@@ -559,12 +559,6 @@ foreach(OBJ ${FLOW_VARIANT_MODELS})
set_property(TARGET flow_lib${OBJ} PROPERTY EXCLUDE_FROM_ALL ${FLOW_VARIANTS_DEFAULT_ENABLE_IF}) set_property(TARGET flow_lib${OBJ} PROPERTY EXCLUDE_FROM_ALL ${FLOW_VARIANTS_DEFAULT_ENABLE_IF})
endforeach() endforeach()
add_library(flow_libblackoil_poly OBJECT flow/flow_ebos_blackoil_poly.cpp)
if(TARGET fmt::fmt)
target_link_libraries(flow_libblackoil_poly fmt::fmt)
endif()
set_property(TARGET flow_libblackoil_poly PROPERTY EXCLUDE_FROM_ALL ${FLOW_POLY_ONLY_DEFAULT_ENABLE_IF})
opm_add_test(flow opm_add_test(flow
ONLY_COMPILE ONLY_COMPILE
ALWAYS_ENABLE ALWAYS_ENABLE
@@ -577,17 +571,15 @@ opm_add_test(flow
$<TARGET_OBJECTS:moduleVersion> $<TARGET_OBJECTS:moduleVersion>
) )
opm_add_test(flow_poly opm_add_test(flow_blackoil_polyhedralgrid
ONLY_COMPILE ONLY_COMPILE
ALWAYS_ENABLE ALWAYS_ENABLE
DEFAULT_ENABLE_IF ${FLOW_POLY_ONLY_DEFAULT_ENABLE_IF} DEFAULT_ENABLE_IF ${FLOW_POLY_ONLY_DEFAULT_ENABLE_IF}
DEPENDS opmsimulators DEPENDS opmsimulators
LIBRARIES opmsimulators LIBRARIES opmsimulators
SOURCES SOURCES
flow/flow_blackoil_poly.cpp flow/flow_blackoil_polyhedralgrid.cpp
$<TARGET_OBJECTS:flow_libblackoil_poly>
$<TARGET_OBJECTS:moduleVersion>) $<TARGET_OBJECTS:moduleVersion>)
target_compile_definitions(flow_poly PRIVATE USE_POLYHEDRALGRID)
opm_add_test(flow_distribute_z opm_add_test(flow_distribute_z
ONLY_COMPILE ONLY_COMPILE
@@ -608,7 +600,7 @@ if(dune-alugrid_FOUND)
set(FLOW_ALUGRID_ONLY_DEFAULT_ENABLE_IF "TRUE") set(FLOW_ALUGRID_ONLY_DEFAULT_ENABLE_IF "TRUE")
endif() endif()
opm_add_test(flow_alugrid opm_add_test(flow_blackoil_alugrid
ONLY_COMPILE ONLY_COMPILE
ALWAYS_ENABLE ALWAYS_ENABLE
DEFAULT_ENABLE_IF ${FLOW_ALUGRID_ONLY_DEFAULT_ENABLE_IF} DEFAULT_ENABLE_IF ${FLOW_ALUGRID_ONLY_DEFAULT_ENABLE_IF}
@@ -617,7 +609,6 @@ if(dune-alugrid_FOUND)
SOURCES SOURCES
flow/flow_blackoil_alugrid.cpp flow/flow_blackoil_alugrid.cpp
$<TARGET_OBJECTS:moduleVersion>) $<TARGET_OBJECTS:moduleVersion>)
target_compile_definitions(flow_alugrid PRIVATE USE_ALUGRID)
endif() endif()
if (BUILD_FLOW) if (BUILD_FLOW)
@@ -685,5 +676,3 @@ endif()
install(DIRECTORY doc/man1 DESTINATION ${CMAKE_INSTALL_MANDIR} install(DIRECTORY doc/man1 DESTINATION ${CMAKE_INSTALL_MANDIR}
FILES_MATCHING PATTERN "*.1") FILES_MATCHING PATTERN "*.1")

File diff suppressed because it is too large Load Diff

1128
ebos/collecttoiorank_impl.hh Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -20,30 +20,17 @@
module for the precise wording of the license and the list of module for the precise wording of the license and the list of
copyright holders. copyright holders.
*/ */
#include <config.h> #include <config.h>
#include <ebos/eclgenericproblem.hh> #include <ebos/eclgenericproblem.hh>
#include <ebos/eclgenericproblem_impl.hh>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp> #include <dune/grid/common/defaultgridview.hh>
#include <dune/grid/common/gridview.hh>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Tables/OverburdTable.hpp>
#include <opm/input/eclipse/EclipseState/Tables/RockwnodTable.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <opm/grid/CpGrid.hpp> #include <opm/grid/CpGrid.hpp>
#include <opm/grid/polyhedralgrid.hh>
#include <dune/common/parametertree.hh> #include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/3d/gridview.hh>
#include "alucartesianindexmapper.hh"
#endif // HAVE_DUNE_ALUGRID
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh> #include <dune/fem/gridpart/adaptiveleafgridpart.hh>
@@ -51,843 +38,23 @@
#include <ebos/femcpgridcompat.hh> #include <ebos/femcpgridcompat.hh>
#endif // HAVE_DUNE_FEM #endif // HAVE_DUNE_FEM
#include <boost/date_time.hpp>
#include <algorithm>
#include <limits>
#include <stdexcept>
#include <iostream>
namespace Opm { namespace Opm {
int eclPositionalParameter(Dune::ParameterTree& tree,
std::set<std::string>& seenParams,
std::string& errorMsg,
const char** argv,
int paramIdx)
{
std::string param = argv[paramIdx];
size_t i = param.find('=');
if (i != std::string::npos) {
std::string oldParamName = param.substr(0, i);
std::string oldParamValue = param.substr(i+1);
std::string newParamName = "--" + oldParamName;
std::replace(newParamName.begin(),
newParamName.end(), '_' , '-');
errorMsg =
"The old syntax to specify parameters on the command line is no longer supported: "
"Try replacing '" + oldParamName + "=" + oldParamValue + "' with "+
"'" + newParamName + "=" + oldParamValue + "'!";
return 0;
}
if (seenParams.count("EclDeckFileName") > 0) {
errorMsg =
"Parameter 'EclDeckFileName' specified multiple times"
" as a command line parameter";
return 0;
}
tree["EclDeckFileName"] = argv[paramIdx];
seenParams.insert("EclDeckFileName");
return 1;
}
template<class GridView, class FluidSystem, class Scalar>
EclGenericProblem<GridView,FluidSystem,Scalar>::
EclGenericProblem(const EclipseState& eclState,
const Schedule& schedule,
const GridView& gridView)
: eclState_(eclState)
, schedule_(schedule)
, gridView_(gridView)
{
}
template<class GridView, class FluidSystem, class Scalar>
EclGenericProblem<GridView,FluidSystem,Scalar>
EclGenericProblem<GridView,FluidSystem,Scalar>::
serializationTestObject(const EclipseState& eclState,
const Schedule& schedule,
const GridView& gridView)
{
EclGenericProblem result(eclState, schedule, gridView);
result.maxOilSaturation_ = {1.0, 2.0};
result.maxWaterSaturation_ = {6.0};
result.minOilPressure_ = {7.0, 8.0, 9.0, 10.0};
result.overburdenPressure_ = {11.0};
result.solventSaturation_ = {15.0};
result.polymer_ = PolymerSolutionContainer<Scalar>::serializationTestObject();
result.micp_ = MICPSolutionContainer<Scalar>::serializationTestObject();
result.lastRv_ = {21.0};
result.maxDRv_ = {22.0, 23.0};
result.convectiveDrs_ = {24.0, 25.0, 26.0};
result.lastRs_ = {27.0};
result.maxDRs_ = {28.0};
result.dRsDtOnlyFreeGas_ = {false, true};
return result;
}
template<class GridView, class FluidSystem, class Scalar>
std::string
EclGenericProblem<GridView,FluidSystem,Scalar>::
helpPreamble(int,
const char **argv)
{
std::string desc = EclGenericProblem::briefDescription();
if (!desc.empty())
desc = desc + "\n";
return
"Usage: "+std::string(argv[0]) + " [OPTIONS] [ECL_DECK_FILENAME]\n"
+ desc;
}
template<class GridView, class FluidSystem, class Scalar>
std::string
EclGenericProblem<GridView,FluidSystem,Scalar>::
briefDescription()
{
if (briefDescription_.empty())
return
"The Ecl-deck Black-Oil reservoir Simulator (ebos); a hydrocarbon "
"reservoir simulation program that processes ECL-formatted input "
"files that is part of the Open Porous Media project "
"(https://opm-project.org).\n"
"\n"
"THE GOAL OF THE `ebos` SIMULATOR IS TO CATER FOR THE NEEDS OF "
"DEVELOPMENT AND RESEARCH. No guarantees are made for production use!";
else
return briefDescription_;
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
readRockParameters_(const std::vector<Scalar>& cellCenterDepths)
{
const auto& rock_config = eclState_.getSimulationConfig().rock_config();
// read the rock compressibility parameters
{
const auto& comp = rock_config.comp();
rockParams_.clear();
for (const auto& c : comp)
rockParams_.push_back( { c.pref, c.compressibility } );
}
// read the parameters for water-induced rock compaction
readRockCompactionParameters_();
unsigned numElem = gridView_.size(0);
if (eclState_.fieldProps().has_int(rock_config.rocknum_property())) {
rockTableIdx_.resize(numElem);
const auto& num = eclState_.fieldProps().get_int(rock_config.rocknum_property());
for (size_t elemIdx = 0; elemIdx < numElem; ++ elemIdx) {
rockTableIdx_[elemIdx] = num[elemIdx] - 1;
}
}
// Store overburden pressure pr element
const auto& overburdTables = eclState_.getTableManager().getOverburdTables();
if (!overburdTables.empty()) {
overburdenPressure_.resize(numElem,0.0);
size_t numRocktabTables = rock_config.num_rock_tables();
if (overburdTables.size() != numRocktabTables)
throw std::runtime_error(std::to_string(numRocktabTables) +" OVERBURD tables is expected, but " + std::to_string(overburdTables.size()) +" is provided");
std::vector<Tabulated1DFunction<Scalar>> overburdenTables(numRocktabTables);
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const OverburdTable& overburdTable = overburdTables.template getTable<OverburdTable>(regionIdx);
overburdenTables[regionIdx].setXYContainers(overburdTable.getDepthColumn(),overburdTable.getOverburdenPressureColumn());
}
for (size_t elemIdx = 0; elemIdx < numElem; ++ elemIdx) {
unsigned tableIdx = 0;
if (!rockTableIdx_.empty()) {
tableIdx = rockTableIdx_[elemIdx];
}
overburdenPressure_[elemIdx] = overburdenTables[tableIdx].eval(cellCenterDepths[elemIdx], /*extrapolation=*/true);
}
}
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
readRockCompactionParameters_()
{
const auto& rock_config = eclState_.getSimulationConfig().rock_config();
if (!rock_config.active())
return; // deck does not enable rock compaction
unsigned numElem = gridView_.size(0);
switch (rock_config.hysteresis_mode()) {
case RockConfig::Hysteresis::REVERS:
break;
case RockConfig::Hysteresis::IRREVERS:
// interpolate the porv volume multiplier using the minimum pressure in the cell
// i.e. don't allow re-inflation.
minOilPressure_.resize(numElem, 1e99);
break;
default:
throw std::runtime_error("Not support ROCKOMP hysteresis option ");
}
size_t numRocktabTables = rock_config.num_rock_tables();
bool waterCompaction = rock_config.water_compaction();
if (!waterCompaction) {
const auto& rocktabTables = eclState_.getTableManager().getRocktabTables();
if (rocktabTables.size() != numRocktabTables)
throw std::runtime_error("ROCKCOMP is activated." + std::to_string(numRocktabTables)
+" ROCKTAB tables is expected, but " + std::to_string(rocktabTables.size()) +" is provided");
rockCompPoroMult_.resize(numRocktabTables);
rockCompTransMult_.resize(numRocktabTables);
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const auto& rocktabTable = rocktabTables.template getTable<RocktabTable>(regionIdx);
const auto& pressureColumn = rocktabTable.getPressureColumn();
const auto& poroColumn = rocktabTable.getPoreVolumeMultiplierColumn();
const auto& transColumn = rocktabTable.getTransmissibilityMultiplierColumn();
rockCompPoroMult_[regionIdx].setXYContainers(pressureColumn, poroColumn);
rockCompTransMult_[regionIdx].setXYContainers(pressureColumn, transColumn);
}
} else {
const auto& rock2dTables = eclState_.getTableManager().getRock2dTables();
const auto& rock2dtrTables = eclState_.getTableManager().getRock2dtrTables();
const auto& rockwnodTables = eclState_.getTableManager().getRockwnodTables();
maxWaterSaturation_.resize(numElem, 0.0);
if (rock2dTables.size() != numRocktabTables)
throw std::runtime_error("Water compation option is selected in ROCKCOMP." + std::to_string(numRocktabTables)
+" ROCK2D tables is expected, but " + std::to_string(rock2dTables.size()) +" is provided");
if (rockwnodTables.size() != numRocktabTables)
throw std::runtime_error("Water compation option is selected in ROCKCOMP." + std::to_string(numRocktabTables)
+" ROCKWNOD tables is expected, but " + std::to_string(rockwnodTables.size()) +" is provided");
//TODO check size match
rockCompPoroMultWc_.resize(numRocktabTables, TabulatedTwoDFunction(TabulatedTwoDFunction::InterpolationPolicy::Vertical));
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const RockwnodTable& rockwnodTable = rockwnodTables.template getTable<RockwnodTable>(regionIdx);
const auto& rock2dTable = rock2dTables[regionIdx];
if (rockwnodTable.getSaturationColumn().size() != rock2dTable.sizeMultValues())
throw std::runtime_error("Number of entries in ROCKWNOD and ROCK2D needs to match.");
for (size_t xIdx = 0; xIdx < rock2dTable.size(); ++xIdx) {
rockCompPoroMultWc_[regionIdx].appendXPos(rock2dTable.getPressureValue(xIdx));
for (size_t yIdx = 0; yIdx < rockwnodTable.getSaturationColumn().size(); ++yIdx)
rockCompPoroMultWc_[regionIdx].appendSamplePoint(xIdx,
rockwnodTable.getSaturationColumn()[yIdx],
rock2dTable.getPvmultValue(xIdx, yIdx));
}
}
if (!rock2dtrTables.empty()) {
rockCompTransMultWc_.resize(numRocktabTables, TabulatedTwoDFunction(TabulatedTwoDFunction::InterpolationPolicy::Vertical));
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const RockwnodTable& rockwnodTable = rockwnodTables.template getTable<RockwnodTable>(regionIdx);
const auto& rock2dtrTable = rock2dtrTables[regionIdx];
if (rockwnodTable.getSaturationColumn().size() != rock2dtrTable.sizeMultValues())
throw std::runtime_error("Number of entries in ROCKWNOD and ROCK2DTR needs to match.");
for (size_t xIdx = 0; xIdx < rock2dtrTable.size(); ++xIdx) {
rockCompTransMultWc_[regionIdx].appendXPos(rock2dtrTable.getPressureValue(xIdx));
for (size_t yIdx = 0; yIdx < rockwnodTable.getSaturationColumn().size(); ++yIdx)
rockCompTransMultWc_[regionIdx].appendSamplePoint(xIdx,
rockwnodTable.getSaturationColumn()[yIdx],
rock2dtrTable.getTransMultValue(xIdx, yIdx));
}
}
}
}
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
rockCompressibility(unsigned globalSpaceIdx) const
{
if (this->rockParams_.empty())
return 0.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty()) {
tableIdx = this->rockTableIdx_[globalSpaceIdx];
}
return this->rockParams_[tableIdx].compressibility;
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
rockReferencePressure(unsigned globalSpaceIdx) const
{
if (this->rockParams_.empty())
return 1e5;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty()) {
tableIdx = this->rockTableIdx_[globalSpaceIdx];
}
return this->rockParams_[tableIdx].referencePressure;
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
porosity(unsigned globalSpaceIdx, unsigned timeIdx) const
{
return this->referencePorosity_[timeIdx][globalSpaceIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
rockFraction(unsigned elementIdx, unsigned timeIdx) const
{
const auto& fp = eclState_.fieldProps();
const std::vector<double>& poro = fp.get_double("PORO");
// the reference porosity is defined as the accumulated pore volume divided by the
// geometric volume of the element. Note that it can
// be larger than 1.0 if porevolume multipliers are used
// to for instance implement larger boundary cells
Scalar porosity = poro[elementIdx];
return referencePorosity(elementIdx, timeIdx) / porosity * (1 - porosity);
}
template<class GridView, class FluidSystem, class Scalar>
template<class T>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateNum(const std::string& name, std::vector<T>& numbers, size_t num_regions)
{
if (!eclState_.fieldProps().has_int(name))
return;
const auto& numData = eclState_.fieldProps().get_int(name);
unsigned numElems = gridView_.size(/*codim=*/0);
numbers.resize(numElems);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
if (numData[elemIdx] > (int)num_regions) {
throw std::runtime_error("Values larger than maximum number of regions " + std::to_string(num_regions) + " provided in " + name);
} else if (numData[elemIdx] > 0) {
numbers[elemIdx] = static_cast<T>(numData[elemIdx]) - 1;
} else {
throw std::runtime_error("zero or negative values provided for region array: " + name);
}
}
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updatePvtnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumPVTTables();
updateNum("PVTNUM", pvtnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateSatnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumSatTables();
updateNum("SATNUM", satnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateMiscnum_()
{
const auto num_regions = 1; // we only support single region
updateNum("MISCNUM", miscnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updatePlmixnum_()
{
const auto num_regions = 1; // we only support single region
updateNum("PLMIXNUM", plmixnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateKrnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumSatTables();
updateNum("KRNUMX", krnumx_, num_regions);
updateNum("KRNUMY", krnumy_, num_regions);
updateNum("KRNUMZ", krnumz_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateImbnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumSatTables();
updateNum("IMBNUMX", imbnumx_, num_regions);
updateNum("IMBNUMY", imbnumy_, num_regions);
updateNum("IMBNUMZ", imbnumz_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
vapparsActive(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
return (oilVaporizationControl.getType() == OilVaporizationProperties::OilVaporization::VAPPARS);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
drsdtActive_(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
const bool bothOilGasActive = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
return (oilVaporizationControl.drsdtActive() && bothOilGasActive);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
drvdtActive_(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
const bool bothOilGasActive = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
return (oilVaporizationControl.drvdtActive() && bothOilGasActive);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
drsdtConvective_(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
const bool bothOilGasActive = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
return (oilVaporizationControl.drsdtConvective() && bothOilGasActive);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
beginEpisode_(bool enableExperiments,
int episodeIdx)
{
if (enableExperiments && gridView_.comm().rank() == 0 && episodeIdx >= 0) {
// print some useful information in experimental mode. (the production
// simulator does this externally.)
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
boost::posix_time::ptime curDateTime =
boost::posix_time::from_time_t(schedule_.simTime(episodeIdx));
ss.imbue(std::locale(std::locale::classic(), facet));
ss << "Report step " << episodeIdx + 1
<< "/" << schedule_.size() - 1
<< " at day " << schedule_.seconds(episodeIdx)/(24*3600)
<< "/" << schedule_.seconds(schedule_.size() - 1)/(24*3600)
<< ", date = " << curDateTime.date()
<< "\n ";
OpmLog::info(ss.str());
}
const auto& events = schedule_[episodeIdx].events();
// react to TUNING changes
if (episodeIdx > 0 && enableTuning_ && events.hasEvent(ScheduleEvents::TUNING_CHANGE))
{
const auto& sched_state = schedule_[episodeIdx];
const auto& tuning = sched_state.tuning();
initialTimeStepSize_ = sched_state.max_next_tstep();
maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
maxTimeStepSize_ = tuning.TSMAXZ;
restartShrinkFactor_ = 1./tuning.TSFCNV;
minTimeStepSize_ = tuning.TSMINZ;
return true;
}
return false;
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
beginTimeStep_(bool enableExperiments,
int episodeIdx,
int timeStepIndex,
Scalar startTime,
Scalar time,
Scalar timeStepSize,
Scalar endTime)
{
if (enableExperiments && gridView_.comm().rank() == 0 && episodeIdx >= 0) {
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
boost::posix_time::ptime date = boost::posix_time::from_time_t(startTime) + boost::posix_time::milliseconds(static_cast<long long>(time / prefix::milli));
ss.imbue(std::locale(std::locale::classic(), facet));
ss <<"\nTime step " << timeStepIndex << ", stepsize "
<< unit::convert::to(timeStepSize, unit::day) << " days,"
<< " at day " << (double)unit::convert::to(time, unit::day)
<< "/" << (double)unit::convert::to(endTime, unit::day)
<< ", date = " << date;
OpmLog::info(ss.str());
}
// update explicit quantities between timesteps.
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
if (drsdtActive_(episodeIdx))
// DRSDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRs_.size(); ++pvtRegionIdx)
maxDRs_[pvtRegionIdx] = oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*timeStepSize;
if (drvdtActive_(episodeIdx))
// DRVDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRv_.size(); ++pvtRegionIdx)
maxDRv_[pvtRegionIdx] = oilVaporizationControl.getMaxDRVDT(pvtRegionIdx)*timeStepSize;
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
initFluidSystem_()
{
FluidSystem::initFromState(eclState_, schedule_);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
readBlackoilExtentionsInitialConditions_(size_t numDof,
bool enableSolvent,
bool enablePolymer,
bool enablePolymerMolarWeight,
bool enableMICP)
{
if (enableSolvent) {
if (eclState_.fieldProps().has_double("SSOL"))
solventSaturation_ = eclState_.fieldProps().get_double("SSOL");
else
solventSaturation_.resize(numDof, 0.0);
}
if (enablePolymer) {
if (eclState_.fieldProps().has_double("SPOLY"))
polymer_.concentration = eclState_.fieldProps().get_double("SPOLY");
else
polymer_.concentration.resize(numDof, 0.0);
}
if (enablePolymerMolarWeight) {
if (eclState_.fieldProps().has_double("SPOLYMW"))
polymer_.moleWeight = eclState_.fieldProps().get_double("SPOLYMW");
else
polymer_.moleWeight.resize(numDof, 0.0);
}
if (enableMICP) {
if (eclState_.fieldProps().has_double("SMICR"))
micp_.microbialConcentration = eclState_.fieldProps().get_double("SMICR");
else
micp_.microbialConcentration.resize(numDof, 0.0);
if (eclState_.fieldProps().has_double("SOXYG"))
micp_.oxygenConcentration = eclState_.fieldProps().get_double("SOXYG");
else
micp_.oxygenConcentration.resize(numDof, 0.0);
if (eclState_.fieldProps().has_double("SUREA"))
micp_.ureaConcentration = eclState_.fieldProps().get_double("SUREA");
else
micp_.ureaConcentration.resize(numDof, 0.0);
if (eclState_.fieldProps().has_double("SBIOF"))
micp_.biofilmConcentration = eclState_.fieldProps().get_double("SBIOF");
else
micp_.biofilmConcentration.resize(numDof, 0.0);
if (eclState_.fieldProps().has_double("SCALC"))
micp_.calciteConcentration = eclState_.fieldProps().get_double("SCALC");
else
micp_.calciteConcentration.resize(numDof, 0.0);
}
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
maxWaterSaturation(unsigned globalDofIdx) const
{
if (maxWaterSaturation_.empty())
return 0.0;
return maxWaterSaturation_[globalDofIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
minOilPressure(unsigned globalDofIdx) const
{
if (minOilPressure_.empty())
return 0.0;
return minOilPressure_[globalDofIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
overburdenPressure(unsigned elementIdx) const
{
if (overburdenPressure_.empty())
return 0.0;
return overburdenPressure_[elementIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
solventSaturation(unsigned elemIdx) const
{
if (solventSaturation_.empty())
return 0;
return solventSaturation_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
drsdtcon(unsigned elemIdx, int episodeIdx) const
{
if (convectiveDrs_.empty())
return 0;
// The episode index is set to -1 in the initialization phase.
// Output drsdt value for index 0
episodeIdx = std::max(episodeIdx, 0);
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
int pvtRegionIdx = pvtRegionIndex(elemIdx);
return oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*convectiveDrs_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
polymerConcentration(unsigned elemIdx) const
{
if (polymer_.concentration.empty()) {
return 0;
}
return polymer_.concentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
polymerMolecularWeight(const unsigned elemIdx) const
{
if (polymer_.moleWeight.empty()) {
return 0.0;
}
return polymer_.moleWeight[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
microbialConcentration(unsigned elemIdx) const
{
if (micp_.microbialConcentration.empty()) {
return 0;
}
return micp_.microbialConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
oxygenConcentration(unsigned elemIdx) const
{
if (micp_.oxygenConcentration.empty()) {
return 0;
}
return micp_.oxygenConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
ureaConcentration(unsigned elemIdx) const
{
if (micp_.ureaConcentration.empty()) {
return 0;
}
return micp_.ureaConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
biofilmConcentration(unsigned elemIdx) const
{
if (micp_.biofilmConcentration.empty()) {
return 0;
}
return micp_.biofilmConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
calciteConcentration(unsigned elemIdx) const
{
if (micp_.calciteConcentration.empty()) {
return 0;
}
return micp_.calciteConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
pvtRegionIndex(unsigned elemIdx) const
{
if (pvtnum_.empty())
return 0;
return pvtnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
satnumRegionIndex(unsigned elemIdx) const
{
if (satnum_.empty())
return 0;
return satnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
miscnumRegionIndex(unsigned elemIdx) const
{
if (miscnum_.empty())
return 0;
return miscnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
plmixnumRegionIndex(unsigned elemIdx) const
{
if (plmixnum_.empty())
return 0;
return plmixnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
maxPolymerAdsorption(unsigned elemIdx) const
{
if (polymer_.maxAdsorption.empty()) {
return 0;
}
return polymer_.maxAdsorption[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
initDRSDT_(size_t numDof,
int episodeIdx)
{
// deal with DRSDT
unsigned ntpvt = eclState_.runspec().tabdims().getNumPVTTables();
//TODO We may want to only allocate these properties only if active.
//But since they may be activated at later time we need some more
//intrastructure to handle it
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
maxDRv_.resize(ntpvt, 1e30);
lastRv_.resize(numDof, 0.0);
maxDRs_.resize(ntpvt, 1e30);
dRsDtOnlyFreeGas_.resize(ntpvt, false);
lastRs_.resize(numDof, 0.0);
maxDRv_.resize(ntpvt, 1e30);
lastRv_.resize(numDof, 0.0);
maxOilSaturation_.resize(numDof, 0.0);
if (drsdtConvective_(episodeIdx)) {
convectiveDrs_.resize(numDof, 1.0);
}
}
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
operator==(const EclGenericProblem& rhs) const
{
return this->maxOilSaturation_ == rhs.maxOilSaturation_ &&
this->maxWaterSaturation_ == rhs.maxWaterSaturation_ &&
this->minOilPressure_ == rhs.minOilPressure_ &&
this->overburdenPressure_ == rhs.overburdenPressure_ &&
this->polymer_ == rhs.polymer_ &&
this->solventSaturation_ == rhs.solventSaturation_ &&
this->micp_ == rhs.micp_ &&
this->lastRv_ == rhs.lastRv_ &&
this->maxDRv_ == rhs.maxDRv_ &&
this->convectiveDrs_ == rhs.convectiveDrs_ &&
this->lastRs_ == rhs.lastRs_ &&
this->maxDRs_ == rhs.maxDRs_ &&
this->dRsDtOnlyFreeGas_ == rhs.dRsDtOnlyFreeGas_;
}
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
template class EclGenericProblem<Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>, template class EclGenericProblem<Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>,
BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>, BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,
double>; double>;
template class EclGenericProblem<Dune::Fem::GridPart2GridViewImpl< template class EclGenericProblem<Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart< Dune::Fem::AdaptiveLeafGridPart<
Dune::CpGrid, Dune::CpGrid,
Dune::PartitionIteratorType(4), Dune::PartitionIteratorType(4),
false>>, false> >,
Opm::BlackOilFluidSystem<
double,
Opm::BlackOilDefaultIndexTraits>,
double>;
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericProblem<Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>,
BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>, BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,
double>; double>;
template class EclGenericProblem<Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
ALUGrid3CN,
Dune::PartitionIteratorType(4),
false>>,
Opm::BlackOilFluidSystem<
double,
Opm::BlackOilDefaultIndexTraits>,
double>;
#endif //HAVE_DUNE_ALUGRID
#else #else
template class EclGenericProblem<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>, template class EclGenericProblem<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,
BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>, BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,
double>; double>;
#if HAVE_DUNE_ALUGRID #endif
#if HAVE_MPI
using ALUGrid3CN = const Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = const Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericProblem<Dune::GridView<Dune::ALU3dLeafGridViewTraits<ALUGrid3CN, Dune::PartitionIteratorType(4)>>, } // end namespace Opm
BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,
double>;
#endif //HAVE_DUNE_ALUGRID
#endif //HAVE_DUNE_FEM
template class EclGenericProblem<Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>,
BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,
double>;
} // namespace Opm

View File

@@ -0,0 +1,829 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef EWOMS_GENERIC_ECL_PROBLEM_IMPL_HH
#define EWOMS_GENERIC_ECL_PROBLEM_IPML_HH
#include <ebos/eclgenericproblem.hh>
#include <dune/common/parametertree.hh>
#include <ebos/eclsolutioncontainers.hh>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Tables/OverburdTable.hpp>
#include <opm/input/eclipse/EclipseState/Tables/RockwnodTable.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <boost/date_time.hpp>
#include <algorithm>
#include <limits>
#include <stdexcept>
#include <iostream>
namespace Opm {
int eclPositionalParameter(Dune::ParameterTree& tree,
std::set<std::string>& seenParams,
std::string& errorMsg,
const char** argv,
int paramIdx)
{
std::string param = argv[paramIdx];
size_t i = param.find('=');
if (i != std::string::npos) {
std::string oldParamName = param.substr(0, i);
std::string oldParamValue = param.substr(i+1);
std::string newParamName = "--" + oldParamName;
std::replace(newParamName.begin(),
newParamName.end(), '_' , '-');
errorMsg =
"The old syntax to specify parameters on the command line is no longer supported: "
"Try replacing '" + oldParamName + "=" + oldParamValue + "' with "+
"'" + newParamName + "=" + oldParamValue + "'!";
return 0;
}
if (seenParams.count("EclDeckFileName") > 0) {
errorMsg =
"Parameter 'EclDeckFileName' specified multiple times"
" as a command line parameter";
return 0;
}
tree["EclDeckFileName"] = argv[paramIdx];
seenParams.insert("EclDeckFileName");
return 1;
}
template<class GridView, class FluidSystem, class Scalar>
EclGenericProblem<GridView,FluidSystem,Scalar>::
EclGenericProblem(const EclipseState& eclState,
const Schedule& schedule,
const GridView& gridView)
: eclState_(eclState)
, schedule_(schedule)
, gridView_(gridView)
{
}
template<class GridView, class FluidSystem, class Scalar>
EclGenericProblem<GridView,FluidSystem,Scalar>
EclGenericProblem<GridView,FluidSystem,Scalar>::
serializationTestObject(const EclipseState& eclState,
const Schedule& schedule,
const GridView& gridView)
{
EclGenericProblem result(eclState, schedule, gridView);
result.maxOilSaturation_ = {1.0, 2.0};
result.maxWaterSaturation_ = {6.0};
result.minOilPressure_ = {7.0, 8.0, 9.0, 10.0};
result.overburdenPressure_ = {11.0};
result.solventSaturation_ = {15.0};
result.polymer_ = PolymerSolutionContainer<Scalar>::serializationTestObject();
result.micp_ = MICPSolutionContainer<Scalar>::serializationTestObject();
result.lastRv_ = {21.0};
result.maxDRv_ = {22.0, 23.0};
result.convectiveDrs_ = {24.0, 25.0, 26.0};
result.lastRs_ = {27.0};
result.maxDRs_ = {28.0};
result.dRsDtOnlyFreeGas_ = {false, true};
return result;
}
template<class GridView, class FluidSystem, class Scalar>
std::string
EclGenericProblem<GridView,FluidSystem,Scalar>::
helpPreamble(int,
const char **argv)
{
std::string desc = EclGenericProblem::briefDescription();
if (!desc.empty())
desc = desc + "\n";
return
"Usage: "+std::string(argv[0]) + " [OPTIONS] [ECL_DECK_FILENAME]\n"
+ desc;
}
template<class GridView, class FluidSystem, class Scalar>
std::string
EclGenericProblem<GridView,FluidSystem,Scalar>::
briefDescription()
{
if (briefDescription_.empty())
return
"The Ecl-deck Black-Oil reservoir Simulator (ebos); a hydrocarbon "
"reservoir simulation program that processes ECL-formatted input "
"files that is part of the Open Porous Media project "
"(https://opm-project.org).\n"
"\n"
"THE GOAL OF THE `ebos` SIMULATOR IS TO CATER FOR THE NEEDS OF "
"DEVELOPMENT AND RESEARCH. No guarantees are made for production use!";
else
return briefDescription_;
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
readRockParameters_(const std::vector<Scalar>& cellCenterDepths)
{
const auto& rock_config = eclState_.getSimulationConfig().rock_config();
// read the rock compressibility parameters
{
const auto& comp = rock_config.comp();
rockParams_.clear();
for (const auto& c : comp)
rockParams_.push_back( { c.pref, c.compressibility } );
}
// read the parameters for water-induced rock compaction
readRockCompactionParameters_();
unsigned numElem = gridView_.size(0);
if (eclState_.fieldProps().has_int(rock_config.rocknum_property())) {
rockTableIdx_.resize(numElem);
const auto& num = eclState_.fieldProps().get_int(rock_config.rocknum_property());
for (size_t elemIdx = 0; elemIdx < numElem; ++ elemIdx) {
rockTableIdx_[elemIdx] = num[elemIdx] - 1;
}
}
// Store overburden pressure pr element
const auto& overburdTables = eclState_.getTableManager().getOverburdTables();
if (!overburdTables.empty()) {
overburdenPressure_.resize(numElem,0.0);
size_t numRocktabTables = rock_config.num_rock_tables();
if (overburdTables.size() != numRocktabTables)
throw std::runtime_error(std::to_string(numRocktabTables) +" OVERBURD tables is expected, but " + std::to_string(overburdTables.size()) +" is provided");
std::vector<Tabulated1DFunction<Scalar>> overburdenTables(numRocktabTables);
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const OverburdTable& overburdTable = overburdTables.template getTable<OverburdTable>(regionIdx);
overburdenTables[regionIdx].setXYContainers(overburdTable.getDepthColumn(),overburdTable.getOverburdenPressureColumn());
}
for (size_t elemIdx = 0; elemIdx < numElem; ++ elemIdx) {
unsigned tableIdx = 0;
if (!rockTableIdx_.empty()) {
tableIdx = rockTableIdx_[elemIdx];
}
overburdenPressure_[elemIdx] = overburdenTables[tableIdx].eval(cellCenterDepths[elemIdx], /*extrapolation=*/true);
}
}
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
readRockCompactionParameters_()
{
const auto& rock_config = eclState_.getSimulationConfig().rock_config();
if (!rock_config.active())
return; // deck does not enable rock compaction
unsigned numElem = gridView_.size(0);
switch (rock_config.hysteresis_mode()) {
case RockConfig::Hysteresis::REVERS:
break;
case RockConfig::Hysteresis::IRREVERS:
// interpolate the porv volume multiplier using the minimum pressure in the cell
// i.e. don't allow re-inflation.
minOilPressure_.resize(numElem, 1e99);
break;
default:
throw std::runtime_error("Not support ROCKOMP hysteresis option ");
}
size_t numRocktabTables = rock_config.num_rock_tables();
bool waterCompaction = rock_config.water_compaction();
if (!waterCompaction) {
const auto& rocktabTables = eclState_.getTableManager().getRocktabTables();
if (rocktabTables.size() != numRocktabTables)
throw std::runtime_error("ROCKCOMP is activated." + std::to_string(numRocktabTables)
+" ROCKTAB tables is expected, but " + std::to_string(rocktabTables.size()) +" is provided");
rockCompPoroMult_.resize(numRocktabTables);
rockCompTransMult_.resize(numRocktabTables);
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const auto& rocktabTable = rocktabTables.template getTable<RocktabTable>(regionIdx);
const auto& pressureColumn = rocktabTable.getPressureColumn();
const auto& poroColumn = rocktabTable.getPoreVolumeMultiplierColumn();
const auto& transColumn = rocktabTable.getTransmissibilityMultiplierColumn();
rockCompPoroMult_[regionIdx].setXYContainers(pressureColumn, poroColumn);
rockCompTransMult_[regionIdx].setXYContainers(pressureColumn, transColumn);
}
} else {
const auto& rock2dTables = eclState_.getTableManager().getRock2dTables();
const auto& rock2dtrTables = eclState_.getTableManager().getRock2dtrTables();
const auto& rockwnodTables = eclState_.getTableManager().getRockwnodTables();
maxWaterSaturation_.resize(numElem, 0.0);
if (rock2dTables.size() != numRocktabTables)
throw std::runtime_error("Water compation option is selected in ROCKCOMP." + std::to_string(numRocktabTables)
+" ROCK2D tables is expected, but " + std::to_string(rock2dTables.size()) +" is provided");
if (rockwnodTables.size() != numRocktabTables)
throw std::runtime_error("Water compation option is selected in ROCKCOMP." + std::to_string(numRocktabTables)
+" ROCKWNOD tables is expected, but " + std::to_string(rockwnodTables.size()) +" is provided");
//TODO check size match
rockCompPoroMultWc_.resize(numRocktabTables, TabulatedTwoDFunction(TabulatedTwoDFunction::InterpolationPolicy::Vertical));
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const RockwnodTable& rockwnodTable = rockwnodTables.template getTable<RockwnodTable>(regionIdx);
const auto& rock2dTable = rock2dTables[regionIdx];
if (rockwnodTable.getSaturationColumn().size() != rock2dTable.sizeMultValues())
throw std::runtime_error("Number of entries in ROCKWNOD and ROCK2D needs to match.");
for (size_t xIdx = 0; xIdx < rock2dTable.size(); ++xIdx) {
rockCompPoroMultWc_[regionIdx].appendXPos(rock2dTable.getPressureValue(xIdx));
for (size_t yIdx = 0; yIdx < rockwnodTable.getSaturationColumn().size(); ++yIdx)
rockCompPoroMultWc_[regionIdx].appendSamplePoint(xIdx,
rockwnodTable.getSaturationColumn()[yIdx],
rock2dTable.getPvmultValue(xIdx, yIdx));
}
}
if (!rock2dtrTables.empty()) {
rockCompTransMultWc_.resize(numRocktabTables, TabulatedTwoDFunction(TabulatedTwoDFunction::InterpolationPolicy::Vertical));
for (size_t regionIdx = 0; regionIdx < numRocktabTables; ++regionIdx) {
const RockwnodTable& rockwnodTable = rockwnodTables.template getTable<RockwnodTable>(regionIdx);
const auto& rock2dtrTable = rock2dtrTables[regionIdx];
if (rockwnodTable.getSaturationColumn().size() != rock2dtrTable.sizeMultValues())
throw std::runtime_error("Number of entries in ROCKWNOD and ROCK2DTR needs to match.");
for (size_t xIdx = 0; xIdx < rock2dtrTable.size(); ++xIdx) {
rockCompTransMultWc_[regionIdx].appendXPos(rock2dtrTable.getPressureValue(xIdx));
for (size_t yIdx = 0; yIdx < rockwnodTable.getSaturationColumn().size(); ++yIdx)
rockCompTransMultWc_[regionIdx].appendSamplePoint(xIdx,
rockwnodTable.getSaturationColumn()[yIdx],
rock2dtrTable.getTransMultValue(xIdx, yIdx));
}
}
}
}
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
rockCompressibility(unsigned globalSpaceIdx) const
{
if (this->rockParams_.empty())
return 0.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty()) {
tableIdx = this->rockTableIdx_[globalSpaceIdx];
}
return this->rockParams_[tableIdx].compressibility;
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
rockReferencePressure(unsigned globalSpaceIdx) const
{
if (this->rockParams_.empty())
return 1e5;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty()) {
tableIdx = this->rockTableIdx_[globalSpaceIdx];
}
return this->rockParams_[tableIdx].referencePressure;
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
porosity(unsigned globalSpaceIdx, unsigned timeIdx) const
{
return this->referencePorosity_[timeIdx][globalSpaceIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
rockFraction(unsigned elementIdx, unsigned timeIdx) const
{
const auto& fp = eclState_.fieldProps();
const std::vector<double>& poro = fp.get_double("PORO");
// the reference porosity is defined as the accumulated pore volume divided by the
// geometric volume of the element. Note that it can
// be larger than 1.0 if porevolume multipliers are used
// to for instance implement larger boundary cells
Scalar porosity = poro[elementIdx];
return referencePorosity(elementIdx, timeIdx) / porosity * (1 - porosity);
}
template<class GridView, class FluidSystem, class Scalar>
template<class T>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateNum(const std::string& name, std::vector<T>& numbers, size_t num_regions)
{
if (!eclState_.fieldProps().has_int(name))
return;
const auto& numData = eclState_.fieldProps().get_int(name);
unsigned numElems = gridView_.size(/*codim=*/0);
numbers.resize(numElems);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
if (numData[elemIdx] > (int)num_regions) {
throw std::runtime_error("Values larger than maximum number of regions " + std::to_string(num_regions) + " provided in " + name);
} else if (numData[elemIdx] > 0) {
numbers[elemIdx] = static_cast<T>(numData[elemIdx]) - 1;
} else {
throw std::runtime_error("zero or negative values provided for region array: " + name);
}
}
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updatePvtnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumPVTTables();
updateNum("PVTNUM", pvtnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateSatnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumSatTables();
updateNum("SATNUM", satnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateMiscnum_()
{
const auto num_regions = 1; // we only support single region
updateNum("MISCNUM", miscnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updatePlmixnum_()
{
const auto num_regions = 1; // we only support single region
updateNum("PLMIXNUM", plmixnum_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateKrnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumSatTables();
updateNum("KRNUMX", krnumx_, num_regions);
updateNum("KRNUMY", krnumy_, num_regions);
updateNum("KRNUMZ", krnumz_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
updateImbnum_()
{
const auto num_regions = eclState_.getTableManager().getTabdims().getNumSatTables();
updateNum("IMBNUMX", imbnumx_, num_regions);
updateNum("IMBNUMY", imbnumy_, num_regions);
updateNum("IMBNUMZ", imbnumz_, num_regions);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
vapparsActive(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
return (oilVaporizationControl.getType() == OilVaporizationProperties::OilVaporization::VAPPARS);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
drsdtActive_(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
const bool bothOilGasActive = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
return (oilVaporizationControl.drsdtActive() && bothOilGasActive);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
drvdtActive_(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
const bool bothOilGasActive = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
return (oilVaporizationControl.drvdtActive() && bothOilGasActive);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
drsdtConvective_(int episodeIdx) const
{
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
const bool bothOilGasActive = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
return (oilVaporizationControl.drsdtConvective() && bothOilGasActive);
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
beginEpisode_(bool enableExperiments,
int episodeIdx)
{
if (enableExperiments && gridView_.comm().rank() == 0 && episodeIdx >= 0) {
// print some useful information in experimental mode. (the production
// simulator does this externally.)
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
boost::posix_time::ptime curDateTime =
boost::posix_time::from_time_t(schedule_.simTime(episodeIdx));
ss.imbue(std::locale(std::locale::classic(), facet));
ss << "Report step " << episodeIdx + 1
<< "/" << schedule_.size() - 1
<< " at day " << schedule_.seconds(episodeIdx)/(24*3600)
<< "/" << schedule_.seconds(schedule_.size() - 1)/(24*3600)
<< ", date = " << curDateTime.date()
<< "\n ";
OpmLog::info(ss.str());
}
const auto& events = schedule_[episodeIdx].events();
// react to TUNING changes
if (episodeIdx > 0 && enableTuning_ && events.hasEvent(ScheduleEvents::TUNING_CHANGE))
{
const auto& sched_state = schedule_[episodeIdx];
const auto& tuning = sched_state.tuning();
initialTimeStepSize_ = sched_state.max_next_tstep();
maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
maxTimeStepSize_ = tuning.TSMAXZ;
restartShrinkFactor_ = 1./tuning.TSFCNV;
minTimeStepSize_ = tuning.TSMINZ;
return true;
}
return false;
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
beginTimeStep_(bool enableExperiments,
int episodeIdx,
int timeStepIndex,
Scalar startTime,
Scalar time,
Scalar timeStepSize,
Scalar endTime)
{
if (enableExperiments && gridView_.comm().rank() == 0 && episodeIdx >= 0) {
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
boost::posix_time::ptime date = boost::posix_time::from_time_t(startTime) + boost::posix_time::milliseconds(static_cast<long long>(time / prefix::milli));
ss.imbue(std::locale(std::locale::classic(), facet));
ss <<"\nTime step " << timeStepIndex << ", stepsize "
<< unit::convert::to(timeStepSize, unit::day) << " days,"
<< " at day " << (double)unit::convert::to(time, unit::day)
<< "/" << (double)unit::convert::to(endTime, unit::day)
<< ", date = " << date;
OpmLog::info(ss.str());
}
// update explicit quantities between timesteps.
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
if (drsdtActive_(episodeIdx))
// DRSDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRs_.size(); ++pvtRegionIdx)
maxDRs_[pvtRegionIdx] = oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*timeStepSize;
if (drvdtActive_(episodeIdx))
// DRVDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < maxDRv_.size(); ++pvtRegionIdx)
maxDRv_[pvtRegionIdx] = oilVaporizationControl.getMaxDRVDT(pvtRegionIdx)*timeStepSize;
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
initFluidSystem_()
{
FluidSystem::initFromState(eclState_, schedule_);
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
readBlackoilExtentionsInitialConditions_(size_t numDof,
bool enableSolvent,
bool enablePolymer,
bool enablePolymerMolarWeight,
bool enableMICP)
{
if (enableSolvent) {
if (eclState_.fieldProps().has_double("SSOL"))
solventSaturation_ = eclState_.fieldProps().get_double("SSOL");
else
solventSaturation_.resize(numDof, 0.0);
}
if (enablePolymer) {
if (eclState_.fieldProps().has_double("SPOLY")) {
polymer_.concentration = eclState_.fieldProps().get_double("SPOLY");
} else {
polymer_.concentration.resize(numDof, 0.0);
}
}
if (enablePolymerMolarWeight) {
if (eclState_.fieldProps().has_double("SPOLYMW")) {
polymer_.moleWeight = eclState_.fieldProps().get_double("SPOLYMW");
} else {
polymer_.moleWeight.resize(numDof, 0.0);
}
}
if (enableMICP) {
if (eclState_.fieldProps().has_double("SMICR")) {
micp_.microbialConcentration = eclState_.fieldProps().get_double("SMICR");
} else {
micp_.microbialConcentration.resize(numDof, 0.0);
}
if (eclState_.fieldProps().has_double("SOXYG")) {
micp_.oxygenConcentration = eclState_.fieldProps().get_double("SOXYG");
} else {
micp_.oxygenConcentration.resize(numDof, 0.0);
}
if (eclState_.fieldProps().has_double("SUREA")) {
micp_.ureaConcentration = eclState_.fieldProps().get_double("SUREA");
} else {
micp_.ureaConcentration.resize(numDof, 0.0);
}
if (eclState_.fieldProps().has_double("SBIOF")) {
micp_.biofilmConcentration = eclState_.fieldProps().get_double("SBIOF");
} else {
micp_.biofilmConcentration.resize(numDof, 0.0);
}
if (eclState_.fieldProps().has_double("SCALC")) {
micp_.calciteConcentration = eclState_.fieldProps().get_double("SCALC");
} else {
micp_.calciteConcentration.resize(numDof, 0.0);
}
}
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
maxWaterSaturation(unsigned globalDofIdx) const
{
if (maxWaterSaturation_.empty())
return 0.0;
return maxWaterSaturation_[globalDofIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
minOilPressure(unsigned globalDofIdx) const
{
if (minOilPressure_.empty())
return 0.0;
return minOilPressure_[globalDofIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
overburdenPressure(unsigned elementIdx) const
{
if (overburdenPressure_.empty())
return 0.0;
return overburdenPressure_[elementIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
solventSaturation(unsigned elemIdx) const
{
if (solventSaturation_.empty())
return 0;
return solventSaturation_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
drsdtcon(unsigned elemIdx, int episodeIdx) const
{
if (convectiveDrs_.empty())
return 0;
// The episode index is set to -1 in the initialization phase.
// Output drsdt value for index 0
episodeIdx = std::max(episodeIdx, 0);
const auto& oilVaporizationControl = schedule_[episodeIdx].oilvap();
int pvtRegionIdx = pvtRegionIndex(elemIdx);
return oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*convectiveDrs_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
polymerConcentration(unsigned elemIdx) const
{
if (polymer_.concentration.empty()) {
return 0;
}
return polymer_.concentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
polymerMolecularWeight(const unsigned elemIdx) const
{
if (polymer_.moleWeight.empty()) {
return 0.0;
}
return polymer_.moleWeight[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
microbialConcentration(unsigned elemIdx) const
{
if (micp_.microbialConcentration.empty()) {
return 0;
}
return micp_.microbialConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
oxygenConcentration(unsigned elemIdx) const
{
if (micp_.oxygenConcentration.empty()) {
return 0;
}
return micp_.oxygenConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
ureaConcentration(unsigned elemIdx) const
{
if (micp_.ureaConcentration.empty()) {
return 0;
}
return micp_.ureaConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
biofilmConcentration(unsigned elemIdx) const
{
if (micp_.biofilmConcentration.empty()) {
return 0;
}
return micp_.biofilmConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
calciteConcentration(unsigned elemIdx) const
{
if (micp_.calciteConcentration.empty()) {
return 0;
}
return micp_.calciteConcentration[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
pvtRegionIndex(unsigned elemIdx) const
{
if (pvtnum_.empty())
return 0;
return pvtnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
satnumRegionIndex(unsigned elemIdx) const
{
if (satnum_.empty())
return 0;
return satnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
miscnumRegionIndex(unsigned elemIdx) const
{
if (miscnum_.empty())
return 0;
return miscnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
unsigned EclGenericProblem<GridView,FluidSystem,Scalar>::
plmixnumRegionIndex(unsigned elemIdx) const
{
if (plmixnum_.empty())
return 0;
return plmixnum_[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
Scalar EclGenericProblem<GridView,FluidSystem,Scalar>::
maxPolymerAdsorption(unsigned elemIdx) const
{
if (polymer_.maxAdsorption.empty()) {
return 0;
}
return polymer_.maxAdsorption[elemIdx];
}
template<class GridView, class FluidSystem, class Scalar>
void EclGenericProblem<GridView,FluidSystem,Scalar>::
initDRSDT_(size_t numDof,
int episodeIdx)
{
// deal with DRSDT
unsigned ntpvt = eclState_.runspec().tabdims().getNumPVTTables();
//TODO We may want to only allocate these properties only if active.
//But since they may be activated at later time we need some more
//intrastructure to handle it
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
maxDRv_.resize(ntpvt, 1e30);
lastRv_.resize(numDof, 0.0);
maxDRs_.resize(ntpvt, 1e30);
dRsDtOnlyFreeGas_.resize(ntpvt, false);
lastRs_.resize(numDof, 0.0);
maxDRv_.resize(ntpvt, 1e30);
lastRv_.resize(numDof, 0.0);
maxOilSaturation_.resize(numDof, 0.0);
if (drsdtConvective_(episodeIdx)) {
convectiveDrs_.resize(numDof, 1.0);
}
}
}
template<class GridView, class FluidSystem, class Scalar>
bool EclGenericProblem<GridView,FluidSystem,Scalar>::
operator==(const EclGenericProblem& rhs) const
{
return this->maxOilSaturation_ == rhs.maxOilSaturation_ &&
this->maxWaterSaturation_ == rhs.maxWaterSaturation_ &&
this->minOilPressure_ == rhs.minOilPressure_ &&
this->overburdenPressure_ == rhs.overburdenPressure_ &&
this->solventSaturation_ == rhs.solventSaturation_ &&
this->polymer_ == rhs.polymer_ &&
this->micp_ == rhs.micp_ &&
this->lastRv_ == rhs.lastRv_ &&
this->maxDRv_ == rhs.maxDRv_ &&
this->convectiveDrs_ == rhs.convectiveDrs_ &&
this->lastRs_ == rhs.lastRs_ &&
this->maxDRs_ == rhs.maxDRs_ &&
this->dRsDtOnlyFreeGas_ == rhs.dRsDtOnlyFreeGas_;
}
} // namespace Opm
#endif // EWOMS_GENERIC_ECL_PROBLEM_IMPL_HH

View File

@@ -24,22 +24,9 @@
#include <config.h> #include <config.h>
#include <limits> #include <limits>
#include <ebos/eclgenericthresholdpressure.hh> #include <ebos/eclgenericthresholdpressure.hh>
#include <ebos/eclgenericthresholdpressure_impl.hh>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Grid/FieldPropsManager.hpp>
#include <opm/input/eclipse/EclipseState/Tables/Eqldims.hpp>
#include <opm/input/eclipse/EclipseState/SimulationConfig/SimulationConfig.hpp>
#include <opm/input/eclipse/EclipseState/SimulationConfig/ThresholdPressure.hpp>
#include <dune/grid/common/mcmgmapper.hh>
#include <opm/grid/CpGrid.hpp> #include <opm/grid/CpGrid.hpp>
#include <opm/grid/polyhedralgrid.hh>
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/3d/gridview.hh>
#include "alucartesianindexmapper.hh"
#endif // HAVE_DUNE_ALUGRID
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh> #include <dune/fem/gridpart/adaptiveleafgridpart.hh>
@@ -47,272 +34,8 @@
#include <ebos/femcpgridcompat.hh> #include <ebos/femcpgridcompat.hh>
#endif // HAVE_DUNE_FEM #endif // HAVE_DUNE_FEM
#include <fmt/format.h>
#include <algorithm>
#include <cassert>
#include <stdexcept>
namespace Opm { namespace Opm {
template<class Grid, class GridView, class ElementMapper, class Scalar>
EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
EclGenericThresholdPressure(const CartesianIndexMapper& cartMapper,
const GridView& gridView,
const ElementMapper& elementMapper,
const EclipseState& eclState)
: cartMapper_(cartMapper)
, gridView_(gridView)
, elementMapper_(elementMapper)
, eclState_(eclState)
{
}
template<class Grid, class GridView, class ElementMapper,class Scalar>
Scalar EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
thresholdPressure(int elem1Idx, int elem2Idx) const
{
if (!enableThresholdPressure_)
return 0.0;
// threshold pressure accross faults
if (!thpresftValues_.empty()) {
int cartElem1Idx = cartMapper_.cartesianIndex(elem1Idx);
int cartElem2Idx = cartMapper_.cartesianIndex(elem2Idx);
assert(0 <= cartElem1Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem1Idx);
assert(0 <= cartElem2Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem2Idx);
int fault1Idx = cartElemFaultIdx_[cartElem1Idx];
int fault2Idx = cartElemFaultIdx_[cartElem2Idx];
if (fault1Idx != -1 && fault1Idx == fault2Idx)
// inside a fault there's no threshold pressure, even accross EQUIL
// regions.
return 0.0;
if (fault1Idx != fault2Idx) {
// TODO: which value if a cell is part of multiple faults? we take
// the maximum here.
Scalar val1 = (fault1Idx >= 0) ? thpresftValues_[fault1Idx] : 0.0;
Scalar val2 = (fault2Idx >= 0) ? thpresftValues_[fault2Idx] : 0.0;
return std::max(val1, val2);
}
}
// threshold pressure accross EQUIL regions
auto equilRegion1Idx = elemEquilRegion_[elem1Idx];
auto equilRegion2Idx = elemEquilRegion_[elem2Idx];
if (equilRegion1Idx == equilRegion2Idx)
return 0.0;
return thpres_[equilRegion1Idx*numEquilRegions_ + equilRegion2Idx];
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
finishInit()
{
unsigned numElements = gridView_.size(/*codim=*/0);
const auto& simConfig = eclState_.getSimulationConfig();
enableThresholdPressure_ = simConfig.useThresholdPressure();
if (!enableThresholdPressure_)
return;
numEquilRegions_ = eclState_.getTableManager().getEqldims().getNumEquilRegions();
const decltype(numEquilRegions_) maxRegions =
std::numeric_limits<std::decay_t<decltype(elemEquilRegion_[0])>>::max();
if (numEquilRegions_ > maxRegions) {
// make sure that the index of an equilibration region can be stored
// in the vector
OPM_THROW(std::invalid_argument,
(fmt::format("The maximum number of supported "
"equilibration regions by OPM flow is {}, but "
"{} are used!",
maxRegions, numEquilRegions_)));
}
if (numEquilRegions_ > 2048) {
// warn about performance
OpmLog::warning(fmt::format("Number of equilibration regions is {}, which is "
"rather large. Note, that this might "
"have a negative impact on performance "
"and memory consumption.", numEquilRegions_));
}
// internalize the data specified using the EQLNUM keyword
const auto& fp = eclState_.fieldProps();
const auto& equilRegionData = fp.get_int("EQLNUM");
elemEquilRegion_.resize(numElements, 0);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
elemEquilRegion_[elemIdx] = equilRegionData[elemIdx] - 1;
}
/*
If this is a restart run the ThresholdPressure object will be active,
but it will *not* be properly initialized with numerical values. The
values must instead come from the THPRES vector in the restart file.
*/
if (simConfig.getThresholdPressure().restart())
return;
// allocate the array which specifies the threshold pressures
thpres_.resize(numEquilRegions_*numEquilRegions_, 0.0);
thpresDefault_.resize(numEquilRegions_*numEquilRegions_, 0.0);
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
applyExplicitThresholdPressures_()
{
const SimulationConfig& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
// set the threshold pressures for all EQUIL region boundaries which have a
// intersection in the grid
for (const auto& elem : elements(gridView_, Dune::Partitions::interior)) {
for (const auto& intersection : intersections(gridView_, elem)) {
if (intersection.boundary())
continue; // ignore boundary intersections for now (TODO?)
else if (!intersection.neighbor()) //processor boundary but not domain boundary
continue;
const auto& inside = intersection.inside();
const auto& outside = intersection.outside();
unsigned insideElemIdx = elementMapper_.index(inside);
unsigned outsideElemIdx = elementMapper_.index(outside);
auto equilRegionInside = elemEquilRegion_[insideElemIdx];
auto equilRegionOutside = elemEquilRegion_[outsideElemIdx];
if (thpres.hasRegionBarrier(equilRegionInside + 1, equilRegionOutside + 1)) {
Scalar pth = 0.0;
if (thpres.hasThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1)) {
// threshold pressure explicitly specified
pth = thpres.getThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1);
}
else {
// take the threshold pressure from the initial condition
unsigned offset = equilRegionInside*numEquilRegions_ + equilRegionOutside;
pth = thpresDefault_[offset];
}
unsigned offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
unsigned offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
thpres_[offset1] = pth;
thpres_[offset2] = pth;
}
}
}
// apply threshold pressures across faults
if (thpres.ftSize() > 0)
configureThpresft_();
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
configureThpresft_()
{
// retrieve the faults collection.
const FaultCollection& faults = eclState_.getFaults();
const SimulationConfig& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
// extract the multipliers
int numFaults = faults.size();
int numCartesianElem = eclState_.getInputGrid().getCartesianSize();
thpresftValues_.resize(numFaults, -1.0);
cartElemFaultIdx_.resize(numCartesianElem, -1);
for (size_t faultIdx = 0; faultIdx < faults.size(); faultIdx++) {
auto& fault = faults.getFault(faultIdx);
thpresftValues_[faultIdx] = thpres.getThresholdPressureFault(faultIdx);
for (const FaultFace& face : fault)
// "face" is a misnomer because the object describes a set of cell
// indices, but we go with the conventions of the parser here...
for (size_t cartElemIdx : face)
cartElemFaultIdx_[cartElemIdx] = faultIdx;
}
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
std::vector<Scalar>
EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
getRestartVector() const
{
if (!enableThresholdPressure_)
return {};
std::vector<Scalar> result(numEquilRegions_ * numEquilRegions_, 0.0);
const auto& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
std::size_t idx = 0;
for (unsigned j = 1; j <= numEquilRegions_; ++j) {
for (unsigned i = 1; i <= numEquilRegions_; ++i, ++idx) {
if (thpres.hasRegionBarrier(i, j)) {
if (thpres.hasThresholdPressure(i, j)) {
result[idx] = thpres.getThresholdPressure(i, j);
} else {
result[idx] = this->thpresDefault_[idx];
}
}
}
}
return result;
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void
EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
logPressures()
{
if (!enableThresholdPressure_)
return;
auto lineFormat = [this](unsigned i, unsigned j, double val)
{
const auto& units = eclState_.getUnits();
return fmt::format("{:4}{:>6}{:23}{:>6}{:24}{:>11.07}{:7}{}\n",
" ", i,
" ", j,
" ", units.from_si(UnitSystem::measure::pressure, val),
" ", units.name(UnitSystem::measure::pressure));
};
auto lineFormatS = [](auto s1, auto s2, auto s3)
{
return fmt::format("{:4}{:^16}{:13}{:^9}{:21}{:^18}\n",
" ", s1, " ", s2, " ", s3);
};
std::string str = "\nLIST OF ALL NON-ZERO THRESHOLD PRESSURES\n"
"----------------------------------------\n"
"\n";
str += lineFormatS("FLOW FROM REGION", "TO REGION", "THRESHOLD PRESSURE");
str += lineFormatS(std::string(16, '-'), std::string(9, '-'), std::string(18, '-'));
const auto& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
for (unsigned i = 1; i <= numEquilRegions_; ++i) {
for (unsigned j = (thpres.irreversible() ? 1 : i); j <= numEquilRegions_; ++j) {
if (thpres.hasRegionBarrier(i, j)) {
if (thpres.hasThresholdPressure(i, j)) {
str += lineFormat(i, j, thpres.getThresholdPressure(j, i));
} else {
std::size_t idx = (j - 1) * numEquilRegions_ + (i - 1);
str += lineFormat(i, j, this->thpresDefault_[idx]);
}
}
}
}
str += lineFormatS(std::string(16, '-'), std::string(9, '-'), std::string(18, '-'));
OpmLog::note(str);
}
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
template class EclGenericThresholdPressure<Dune::CpGrid, template class EclGenericThresholdPressure<Dune::CpGrid,
Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>, Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>,
@@ -331,57 +54,12 @@ template class EclGenericThresholdPressure<Dune::CpGrid,
Dune::PartitionIteratorType(4), Dune::PartitionIteratorType(4),
false>>>, false>>>,
double>; double>;
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericThresholdPressure<ALUGrid3CN,
Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>>,
double>;
template class EclGenericThresholdPressure<ALUGrid3CN,
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
ALUGrid3CN,
Dune::PartitionIteratorType(4),
false> >,
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
ALUGrid3CN,
Dune::PartitionIteratorType(4),
false>>>,
double>;
#endif //HAVE_DUNE_ALUGRID
#else #else
template class EclGenericThresholdPressure<Dune::CpGrid, template class EclGenericThresholdPressure<Dune::CpGrid,
Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>, Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>, Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>,
double>; double>;
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericThresholdPressure<ALUGrid3CN,
Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN,Dune::PartitionIteratorType(4)>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN,Dune::PartitionIteratorType(4)>>>,
double>;
#endif //HAVE_DUNE_ALUGRID
#endif #endif
template class EclGenericThresholdPressure<Dune::PolyhedralGrid<3,3,double>,
Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>>,
double>;
} // namespace Opm } // namespace Opm

View File

@@ -0,0 +1,307 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef EWOMS_ECL_GENERIC_THRESHOLD_PRESSURE_IMPL_HH
#define EWOMS_ECL_GENERIC_THRESHOLD_PRESSURE_IMPL_HH
#include <ebos/eclgenericthresholdpressure.hh>
#include <dune/grid/common/mcmgmapper.hh>
#include <dune/grid/common/rangegenerators.hh>
#include <opm/common/ErrorMacros.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Grid/FieldPropsManager.hpp>
#include <opm/input/eclipse/EclipseState/Tables/Eqldims.hpp>
#include <opm/input/eclipse/EclipseState/SimulationConfig/SimulationConfig.hpp>
#include <opm/input/eclipse/EclipseState/SimulationConfig/ThresholdPressure.hpp>
#include <fmt/format.h>
#include <algorithm>
#include <cassert>
#include <limits>
#include <stdexcept>
namespace Opm {
template<class Grid, class GridView, class ElementMapper, class Scalar>
EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
EclGenericThresholdPressure(const CartesianIndexMapper& cartMapper,
const GridView& gridView,
const ElementMapper& elementMapper,
const EclipseState& eclState)
: cartMapper_(cartMapper)
, gridView_(gridView)
, elementMapper_(elementMapper)
, eclState_(eclState)
{
}
template<class Grid, class GridView, class ElementMapper,class Scalar>
Scalar EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
thresholdPressure(int elem1Idx, int elem2Idx) const
{
if (!enableThresholdPressure_)
return 0.0;
// threshold pressure accross faults
if (!thpresftValues_.empty()) {
int cartElem1Idx = cartMapper_.cartesianIndex(elem1Idx);
int cartElem2Idx = cartMapper_.cartesianIndex(elem2Idx);
assert(0 <= cartElem1Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem1Idx);
assert(0 <= cartElem2Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem2Idx);
int fault1Idx = cartElemFaultIdx_[cartElem1Idx];
int fault2Idx = cartElemFaultIdx_[cartElem2Idx];
if (fault1Idx != -1 && fault1Idx == fault2Idx)
// inside a fault there's no threshold pressure, even accross EQUIL
// regions.
return 0.0;
if (fault1Idx != fault2Idx) {
// TODO: which value if a cell is part of multiple faults? we take
// the maximum here.
Scalar val1 = (fault1Idx >= 0) ? thpresftValues_[fault1Idx] : 0.0;
Scalar val2 = (fault2Idx >= 0) ? thpresftValues_[fault2Idx] : 0.0;
return std::max(val1, val2);
}
}
// threshold pressure accross EQUIL regions
auto equilRegion1Idx = elemEquilRegion_[elem1Idx];
auto equilRegion2Idx = elemEquilRegion_[elem2Idx];
if (equilRegion1Idx == equilRegion2Idx)
return 0.0;
return thpres_[equilRegion1Idx*numEquilRegions_ + equilRegion2Idx];
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
finishInit()
{
unsigned numElements = gridView_.size(/*codim=*/0);
const auto& simConfig = eclState_.getSimulationConfig();
enableThresholdPressure_ = simConfig.useThresholdPressure();
if (!enableThresholdPressure_)
return;
numEquilRegions_ = eclState_.getTableManager().getEqldims().getNumEquilRegions();
const decltype(numEquilRegions_) maxRegions =
std::numeric_limits<std::decay_t<decltype(elemEquilRegion_[0])>>::max();
if (numEquilRegions_ > maxRegions) {
// make sure that the index of an equilibration region can be stored
// in the vector
OPM_THROW(std::invalid_argument,
(fmt::format("The maximum number of supported "
"equilibration regions by OPM flow is {}, but "
"{} are used!",
maxRegions, numEquilRegions_)));
}
if (numEquilRegions_ > 2048) {
// warn about performance
OpmLog::warning(fmt::format("Number of equilibration regions is {}, which is "
"rather large. Note, that this might "
"have a negative impact on performance "
"and memory consumption.", numEquilRegions_));
}
// internalize the data specified using the EQLNUM keyword
const auto& fp = eclState_.fieldProps();
const auto& equilRegionData = fp.get_int("EQLNUM");
elemEquilRegion_.resize(numElements, 0);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
elemEquilRegion_[elemIdx] = equilRegionData[elemIdx] - 1;
}
/*
If this is a restart run the ThresholdPressure object will be active,
but it will *not* be properly initialized with numerical values. The
values must instead come from the THPRES vector in the restart file.
*/
if (simConfig.getThresholdPressure().restart())
return;
// allocate the array which specifies the threshold pressures
thpres_.resize(numEquilRegions_*numEquilRegions_, 0.0);
thpresDefault_.resize(numEquilRegions_*numEquilRegions_, 0.0);
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
applyExplicitThresholdPressures_()
{
const SimulationConfig& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
// set the threshold pressures for all EQUIL region boundaries which have a
// intersection in the grid
for (const auto& elem : elements(gridView_, Dune::Partitions::interior)) {
for (const auto& intersection : intersections(gridView_, elem)) {
if (intersection.boundary())
continue; // ignore boundary intersections for now (TODO?)
else if (!intersection.neighbor()) //processor boundary but not domain boundary
continue;
const auto& inside = intersection.inside();
const auto& outside = intersection.outside();
unsigned insideElemIdx = elementMapper_.index(inside);
unsigned outsideElemIdx = elementMapper_.index(outside);
auto equilRegionInside = elemEquilRegion_[insideElemIdx];
auto equilRegionOutside = elemEquilRegion_[outsideElemIdx];
if (thpres.hasRegionBarrier(equilRegionInside + 1, equilRegionOutside + 1)) {
Scalar pth = 0.0;
if (thpres.hasThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1)) {
// threshold pressure explicitly specified
pth = thpres.getThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1);
}
else {
// take the threshold pressure from the initial condition
unsigned offset = equilRegionInside*numEquilRegions_ + equilRegionOutside;
pth = thpresDefault_[offset];
}
unsigned offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
unsigned offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
thpres_[offset1] = pth;
thpres_[offset2] = pth;
}
}
}
// apply threshold pressures across faults
if (thpres.ftSize() > 0)
configureThpresft_();
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
configureThpresft_()
{
// retrieve the faults collection.
const FaultCollection& faults = eclState_.getFaults();
const SimulationConfig& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
// extract the multipliers
int numFaults = faults.size();
int numCartesianElem = eclState_.getInputGrid().getCartesianSize();
thpresftValues_.resize(numFaults, -1.0);
cartElemFaultIdx_.resize(numCartesianElem, -1);
for (size_t faultIdx = 0; faultIdx < faults.size(); faultIdx++) {
auto& fault = faults.getFault(faultIdx);
thpresftValues_[faultIdx] = thpres.getThresholdPressureFault(faultIdx);
for (const FaultFace& face : fault)
// "face" is a misnomer because the object describes a set of cell
// indices, but we go with the conventions of the parser here...
for (size_t cartElemIdx : face)
cartElemFaultIdx_[cartElemIdx] = faultIdx;
}
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
std::vector<Scalar>
EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
getRestartVector() const
{
if (!enableThresholdPressure_)
return {};
std::vector<Scalar> result(numEquilRegions_ * numEquilRegions_, 0.0);
const auto& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
std::size_t idx = 0;
for (unsigned j = 1; j <= numEquilRegions_; ++j) {
for (unsigned i = 1; i <= numEquilRegions_; ++i, ++idx) {
if (thpres.hasRegionBarrier(i, j)) {
if (thpres.hasThresholdPressure(i, j)) {
result[idx] = thpres.getThresholdPressure(i, j);
} else {
result[idx] = this->thpresDefault_[idx];
}
}
}
}
return result;
}
template<class Grid, class GridView, class ElementMapper, class Scalar>
void
EclGenericThresholdPressure<Grid,GridView,ElementMapper,Scalar>::
logPressures()
{
if (!enableThresholdPressure_)
return;
auto lineFormat = [this](unsigned i, unsigned j, double val)
{
const auto& units = eclState_.getUnits();
return fmt::format("{:4}{:>6}{:23}{:>6}{:24}{:>11.07}{:7}{}\n",
" ", i,
" ", j,
" ", units.from_si(UnitSystem::measure::pressure, val),
" ", units.name(UnitSystem::measure::pressure));
};
auto lineFormatS = [](auto s1, auto s2, auto s3)
{
return fmt::format("{:4}{:^16}{:13}{:^9}{:21}{:^18}\n",
" ", s1, " ", s2, " ", s3);
};
std::string str = "\nLIST OF ALL NON-ZERO THRESHOLD PRESSURES\n"
"----------------------------------------\n"
"\n";
str += lineFormatS("FLOW FROM REGION", "TO REGION", "THRESHOLD PRESSURE");
str += lineFormatS(std::string(16, '-'), std::string(9, '-'), std::string(18, '-'));
const auto& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
for (unsigned i = 1; i <= numEquilRegions_; ++i) {
for (unsigned j = (thpres.irreversible() ? 1 : i); j <= numEquilRegions_; ++j) {
if (thpres.hasRegionBarrier(i, j)) {
if (thpres.hasThresholdPressure(i, j)) {
str += lineFormat(i, j, thpres.getThresholdPressure(j, i));
} else {
std::size_t idx = (j - 1) * numEquilRegions_ + (i - 1);
str += lineFormat(i, j, this->thpresDefault_[idx]);
}
}
}
}
str += lineFormatS(std::string(16, '-'), std::string(9, '-'), std::string(18, '-'));
OpmLog::note(str);
}
} // namespace Opm
#endif

View File

@@ -23,7 +23,14 @@
#include <config.h> #include <config.h>
#include "eclgenerictracermodel_impl.hh" #include "eclgenerictracermodel_impl.hh"
#if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
#include <ebos/femcpgridcompat.hh>
#endif // HAVE_DUNE_FEM
namespace Opm { namespace Opm {
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
template class EclGenericTracerModel<Dune::CpGrid, template class EclGenericTracerModel<Dune::CpGrid,
Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>, Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false>>>,
@@ -39,54 +46,12 @@ template class EclGenericTracerModel<Dune::CpGrid,
Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false> >, Dune::Fem::AdaptiveLeafGridPart<Dune::CpGrid, Dune::PartitionIteratorType(4), false> >,
false, false>, false, false>,
double>; double>;
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericTracerModel<ALUGrid3CN, Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>, Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>>, Opm::EcfvStencil<double,Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>,false,false>,
double>;
template class EclGenericTracerModel<ALUGrid3CN,
Dune::Fem::GridPart2GridViewImpl<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false> >,
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false> > >,
Opm::EcfvStencil<double, Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false> >,
false, false>,
double>;
#endif //HAVE_DUNE_ALUGRID
#else #else
template class EclGenericTracerModel<Dune::CpGrid, template class EclGenericTracerModel<Dune::CpGrid,
Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>, Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>, Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>,
Opm::EcfvStencil<double,Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,false,false>, Opm::EcfvStencil<double,Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,false,false>,
double>; double>;
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericTracerModel<ALUGrid3CN,
Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN, Dune::PartitionIteratorType(4)>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN,
Dune::PartitionIteratorType(4)>>>,
Opm::EcfvStencil<double,Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN,
Dune::PartitionIteratorType(4)>>,false,false>,
double>;
#endif //HAVE_DUNE_ALUGRID
#endif //HAVE_DUNE_FEM #endif //HAVE_DUNE_FEM
template class EclGenericTracerModel<Dune::PolyhedralGrid<3,3,double>,
Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>>,
Opm::EcfvStencil<double, Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>,false,false>,
double>;
} // namespace Opm } // namespace Opm

View File

@@ -39,7 +39,6 @@
#include <opm/common/OpmLog/OpmLog.hpp> #include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/grid/CpGrid.hpp> #include <opm/grid/CpGrid.hpp>
#include <opm/grid/polyhedralgrid.hh>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp> #include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Phase.hpp> #include <opm/input/eclipse/EclipseState/Phase.hpp>
@@ -53,18 +52,6 @@
#include <opm/simulators/linalg/PropertyTree.hpp> #include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/FlexibleSolver.hpp> #include <opm/simulators/linalg/FlexibleSolver.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
#include <ebos/femcpgridcompat.hh>
#endif // HAVE_DUNE_FEM
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/3d/gridview.hh>
#include "alucartesianindexmapper.hh"
#endif // HAVE_DUNE_ALUGRID
#include <fmt/format.h> #include <fmt/format.h>
#include <array> #include <array>

View File

@@ -23,40 +23,12 @@
#include <config.h> #include <config.h>
#include <ebos/eclgenericwriter.hh> // need to include these before impl because of specializations.
#include <opm/grid/CpGrid.hpp> #include <opm/grid/CpGrid.hpp>
#include <opm/grid/cpgrid/GridHelpers.hpp> #include <opm/grid/cpgrid/GridHelpers.hpp>
#include <opm/grid/polyhedralgrid.hh>
#include <opm/grid/utility/cartesianToCompressed.hpp>
#if HAVE_DUNE_ALUGRID #include <ebos/eclgenericwriter.hh>
#include "eclalugridvanguard.hh" #include <ebos/eclgenericwriter_impl.hh>
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/3d/gridview.hh>
#endif // HAVE_DUNE_ALUGRID
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/output/eclipse/RestartValue.hpp>
#include <opm/output/eclipse/Summary.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/input/eclipse/Schedule/Action/State.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQConfig.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQState.hpp>
#include <opm/input/eclipse/Schedule/Well/WellMatcher.hpp>
#include <opm/input/eclipse/Units/UnitSystem.hpp>
#include <dune/grid/common/mcmgmapper.hh>
#if HAVE_MPI
#include <ebos/eclmpiserializer.hh>
#endif
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh> #include <dune/fem/gridpart/adaptiveleafgridpart.hh>
@@ -64,543 +36,8 @@
#include <ebos/femcpgridcompat.hh> #include <ebos/femcpgridcompat.hh>
#endif // HAVE_DUNE_FEM #endif // HAVE_DUNE_FEM
#if HAVE_MPI
#include <mpi.h>
#endif
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
namespace {
/*!
* \brief Detect whether two cells are direct vertical neighbours.
*
* I.e. have the same i and j index and all cartesian cells between them
* along the vertical column are inactive.
*
* \tparam CM The type of the cartesian index mapper.
* \param cartMapper The mapper onto cartesian indices.
* \param cartesianToActive The mapping of cartesian indices to active indices.
* \param smallGlobalIndex The cartesian cell index of the cell with smaller index
* \param largeGlobalIndex The cartesian cell index of the cell with larger index
* \return True if the cells have the same i and j indices and all cartesian cells
* between them are inactive.
*/
bool directVerticalNeighbors(const std::array<int, 3>& cartDims,
const std::unordered_map<int,int>& cartesianToActive,
int smallGlobalIndex, int largeGlobalIndex)
{
assert(smallGlobalIndex <= largeGlobalIndex);
std::array<int, 3> ijk1, ijk2;
auto globalToIjk = [cartDims](int gc) {
std::array<int, 3> ijk;
ijk[0] = gc % cartDims[0];
gc /= cartDims[0];
ijk[1] = gc % cartDims[1];
ijk[2] = gc / cartDims[1];
return ijk;
};
ijk1 = globalToIjk(smallGlobalIndex);
ijk2 = globalToIjk(largeGlobalIndex);
assert(ijk2[2]>=ijk1[2]);
if ( ijk1[0] == ijk2[0] && ijk1[1] == ijk2[1] && (ijk2[2] - ijk1[2]) > 1)
{
assert((largeGlobalIndex-smallGlobalIndex)%(cartDims[0]*cartDims[1])==0);
for ( int gi = smallGlobalIndex + cartDims[0] * cartDims[1]; gi < largeGlobalIndex;
gi += cartDims[0] * cartDims[1] )
{
if ( cartesianToActive.find( gi ) != cartesianToActive.end() )
{
return false;
}
}
return true;
} else
return false;
}
std::unordered_map<std::string, Opm::data::InterRegFlowMap>
getInterRegFlowsAsMap(const Opm::EclInterRegFlowMap& map)
{
auto maps = std::unordered_map<std::string, Opm::data::InterRegFlowMap>{};
const auto& regionNames = map.names();
auto flows = map.getInterRegFlows();
const auto nmap = regionNames.size();
maps.reserve(nmap);
for (auto mapID = 0*nmap; mapID < nmap; ++mapID) {
maps.emplace(regionNames[mapID], std::move(flows[mapID]));
}
return maps;
}
struct EclWriteTasklet : public Opm::TaskletInterface
{
Opm::Action::State actionState_;
Opm::WellTestState wtestState_;
Opm::SummaryState summaryState_;
Opm::UDQState udqState_;
Opm::EclipseIO& eclIO_;
int reportStepNum_;
bool isSubStep_;
double secondsElapsed_;
Opm::RestartValue restartValue_;
bool writeDoublePrecision_;
explicit EclWriteTasklet(const Opm::Action::State& actionState,
const Opm::WellTestState& wtestState,
const Opm::SummaryState& summaryState,
const Opm::UDQState& udqState,
Opm::EclipseIO& eclIO,
int reportStepNum,
bool isSubStep,
double secondsElapsed,
Opm::RestartValue restartValue,
bool writeDoublePrecision)
: actionState_(actionState)
, wtestState_(wtestState)
, summaryState_(summaryState)
, udqState_(udqState)
, eclIO_(eclIO)
, reportStepNum_(reportStepNum)
, isSubStep_(isSubStep)
, secondsElapsed_(secondsElapsed)
, restartValue_(std::move(restartValue))
, writeDoublePrecision_(writeDoublePrecision)
{}
// callback to eclIO serial writeTimeStep method
void run()
{
this->eclIO_.writeTimeStep(this->actionState_,
this->wtestState_,
this->summaryState_,
this->udqState_,
this->reportStepNum_,
this->isSubStep_,
this->secondsElapsed_,
std::move(this->restartValue_),
this->writeDoublePrecision_);
}
};
}
namespace Opm { namespace Opm {
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
EclGenericWriter(const Schedule& schedule,
const EclipseState& eclState,
const SummaryConfig& summaryConfig,
const Grid& grid,
const EquilGrid* equilGrid,
const GridView& gridView,
const Dune::CartesianIndexMapper<Grid>& cartMapper,
const Dune::CartesianIndexMapper<EquilGrid>* equilCartMapper,
bool enableAsyncOutput,
bool enableEsmry )
: collectToIORank_(grid,
equilGrid,
gridView,
cartMapper,
equilCartMapper,
summaryConfig.fip_regions_interreg_flow())
, grid_ (grid)
, gridView_ (gridView)
, schedule_ (schedule)
, eclState_ (eclState)
, summaryConfig_ (summaryConfig)
, cartMapper_ (cartMapper)
, equilCartMapper_(equilCartMapper)
, equilGrid_ (equilGrid)
{
if (this->collectToIORank_.isIORank()) {
this->eclIO_ = std::make_unique<EclipseIO>
(this->eclState_,
UgGridHelpers::createEclipseGrid(*equilGrid, eclState_.getInputGrid()),
this->schedule_, this->summaryConfig_, "", enableEsmry);
}
// create output thread if enabled and rank is I/O rank
// async output is enabled by default if pthread are enabled
int numWorkerThreads = 0;
if (enableAsyncOutput && collectToIORank_.isIORank()) {
numWorkerThreads = 1;
}
this->taskletRunner_.reset(new TaskletRunner(numWorkerThreads));
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
const EclipseIO& EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
eclIO() const
{
assert(eclIO_);
return *eclIO_;
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
writeInit(const std::function<unsigned int(unsigned int)>& map)
{
if (collectToIORank_.isIORank()) {
std::map<std::string, std::vector<int>> integerVectors;
if (collectToIORank_.isParallel()) {
integerVectors.emplace("MPI_RANK", collectToIORank_.globalRanks());
}
auto cartMap = cartesianToCompressed(equilGrid_->size(0), UgGridHelpers::globalCell(*equilGrid_));
eclIO_->writeInitial(computeTrans_(cartMap, map),
integerVectors,
exportNncStructure_(cartMap, map));
}
#if HAVE_MPI
if (collectToIORank_.isParallel()) {
const auto& comm = grid_.comm();
Opm::EclMpiSerializer ser(comm);
ser.broadcast(outputNnc_);
}
#endif
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
data::Solution EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
computeTrans_(const std::unordered_map<int,int>& cartesianToActive,
const std::function<unsigned int(unsigned int)>& map) const
{
const auto& cartMapper = *equilCartMapper_;
const auto& cartDims = cartMapper.cartesianDimensions();
const int globalSize = cartDims[0] * cartDims[1] * cartDims[2];
auto tranx = data::CellData {
UnitSystem::measure::transmissibility,
std::vector<double>(globalSize, 0.0),
data::TargetType::INIT
};
auto trany = tranx;
auto tranz = tranx;
using GlobalGridView = typename EquilGrid::LeafGridView;
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
for (const auto& elem : elements(globalGridView)) {
for (const auto& is : intersections(globalGridView, elem)) {
if (!is.neighbor())
continue; // intersection is on the domain boundary
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
// Ordering of compressed and uncompressed index should be the same
const int cartIdx1 = cartMapper.cartesianIndex( c1 );
const int cartIdx2 = cartMapper.cartesianIndex( c2 );
// Ordering of compressed and uncompressed index should be the same
assert(cartIdx1 <= cartIdx2);
int gc1 = std::min(cartIdx1, cartIdx2);
int gc2 = std::max(cartIdx1, cartIdx2);
// Re-ordering in case of non-empty mapping between equilGrid to grid
if (map) {
c1 = map(c1); // equilGridToGrid map
c2 = map(c2);
}
if (gc2 - gc1 == 1 && cartDims[0] > 1 ) {
tranx.data[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skip other if clauses as they are false, last one needs some computation
}
if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) {
trany.data[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skipt next if clause as it needs some computation
}
if ( gc2 - gc1 == cartDims[0]*cartDims[1] ||
directVerticalNeighbors(cartDims, cartesianToActive, gc1, gc2))
tranz.data[gc1] = globalTrans().transmissibility(c1, c2);
}
}
return {
{"TRANX", tranx},
{"TRANY", trany},
{"TRANZ", tranz},
};
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
std::vector<NNCdata> EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
exportNncStructure_(const std::unordered_map<int,int>& cartesianToActive, const std::function<unsigned int(unsigned int)>& map) const
{
std::size_t nx = eclState_.getInputGrid().getNX();
std::size_t ny = eclState_.getInputGrid().getNY();
auto nncData = eclState_.getInputNNC().input();
const auto& unitSystem = eclState_.getDeckUnitSystem();
for( const auto& entry : nncData ) {
// test whether NNC is not a neighboring connection
// cell2>=cell1 holds due to sortNncAndApplyEditnnc
assert( entry.cell2 >= entry.cell1 );
auto cellDiff = entry.cell2 - entry.cell1;
if (cellDiff != 1 && cellDiff != nx && cellDiff != nx*ny) {
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, entry.trans);
// Eclipse ignores NNCs (with EDITNNC applied) that are small. Seems like the threshold is 1.0e-6
if ( tt >= 1.0e-6 )
outputNnc_.emplace_back(entry.cell1, entry.cell2, entry.trans);
}
}
using GlobalGridView = typename EquilGrid::LeafGridView;
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
// Cartesian index mapper for the serial I/O grid
const auto& equilCartMapper = *equilCartMapper_;
const auto& cartDims = cartMapper_.cartesianDimensions();
for (const auto& elem : elements(globalGridView)) {
for (const auto& is : intersections(globalGridView, elem)) {
if (!is.neighbor())
continue; // intersection is on the domain boundary
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
std::size_t cc1 = equilCartMapper.cartesianIndex( c1 );
std::size_t cc2 = equilCartMapper.cartesianIndex( c2 );
if ( cc2 < cc1 )
std::swap(cc1, cc2);
auto cellDiff = cc2 - cc1;
// Re-ordering in case of non-empty mapping between equilGrid to grid
if (map) {
c1 = map(c1); // equilGridToGrid map
c2 = map(c2);
}
if (cellDiff != 1 &&
cellDiff != nx &&
cellDiff != nx*ny &&
!directVerticalNeighbors(cartDims, cartesianToActive, cc1, cc2)) {
// We need to check whether an NNC for this face was also specified
// via the NNC keyword in the deck (i.e. in the first origNncSize entries.
auto t = globalTrans().transmissibility(c1, c2);
auto candidate = std::lower_bound(nncData.begin(), nncData.end(), NNCdata(cc1, cc2, 0.0));
while ( candidate != nncData.end() && candidate->cell1 == cc1
&& candidate->cell2 == cc2) {
t -= candidate->trans;
++candidate;
}
// eclipse ignores NNCs with zero transmissibility (different threshold than for NNC
// with corresponding EDITNNC above). In addition we do set small transmissibilties
// to zero when setting up the simulator. These will be ignored here, too.
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, std::abs(t));
if ( tt > 1e-12 )
outputNnc_.push_back({cc1, cc2, t});
}
}
}
return outputNnc_;
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
doWriteOutput(const int reportStepNum,
const bool isSubStep,
data::Solution&& localCellData,
data::Wells&& localWellData,
data::GroupAndNetworkValues&& localGroupAndNetworkData,
data::Aquifers&& localAquiferData,
WellTestState&& localWTestState,
const Action::State& actionState,
const UDQState& udqState,
const SummaryState& summaryState,
const std::vector<Scalar>& thresholdPressure,
Scalar curTime,
Scalar nextStepSize,
bool doublePrecision,
bool isFlowsn,
std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>&& flowsn,
bool isFloresn,
std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>&& floresn)
{
const auto isParallel = this->collectToIORank_.isParallel();
const bool needsReordering = this->collectToIORank_.doesNeedReordering();
RestartValue restartValue {
(isParallel || needsReordering)
? this->collectToIORank_.globalCellData()
: std::move(localCellData),
isParallel ? this->collectToIORank_.globalWellData()
: std::move(localWellData),
isParallel ? this->collectToIORank_.globalGroupAndNetworkData()
: std::move(localGroupAndNetworkData),
isParallel ? this->collectToIORank_.globalAquiferData()
: std::move(localAquiferData)
};
if (eclState_.getSimulationConfig().useThresholdPressure()) {
restartValue.addExtra("THRESHPR", UnitSystem::measure::pressure,
thresholdPressure);
}
// Add suggested next timestep to extra data.
if (! isSubStep) {
restartValue.addExtra("OPMEXTRA", std::vector<double>(1, nextStepSize));
}
// Add nnc flows and flores.
if (isFlowsn) {
const auto flowsn_global = isParallel ? this->collectToIORank_.globalFlowsn() : std::move(flowsn);
for (const auto& flows : flowsn_global) {
if (flows.first.empty())
continue;
if (flows.first == "FLOGASN+") {
restartValue.addExtra(flows.first, UnitSystem::measure::gas_surface_rate, flows.second.second);
}
else {
restartValue.addExtra(flows.first, UnitSystem::measure::liquid_surface_rate, flows.second.second);
}
}
}
if (isFloresn) {
const auto floresn_global = isParallel ? this->collectToIORank_.globalFloresn() : std::move(floresn);
for (const auto& flores : floresn_global) {
if (flores.first.empty())
continue;
restartValue.addExtra(flores.first, UnitSystem::measure::rate, flores.second.second);
}
}
// first, create a tasklet to write the data for the current time
// step to disk
auto eclWriteTasklet = std::make_shared<EclWriteTasklet>(
actionState,
isParallel ? this->collectToIORank_.globalWellTestState() : std::move(localWTestState),
summaryState, udqState, *this->eclIO_,
reportStepNum, isSubStep, curTime, std::move(restartValue), doublePrecision);
// then, make sure that the previous I/O request has been completed
// and the number of incomplete tasklets does not increase between
// time steps
this->taskletRunner_->barrier();
// finally, start a new output writing job
this->taskletRunner_->dispatch(std::move(eclWriteTasklet));
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
evalSummary(const int reportStepNum,
const Scalar curTime,
const data::Wells& localWellData,
const data::WellBlockAveragePressures& localWBPData,
const data::GroupAndNetworkValues& localGroupAndNetworkData,
const std::map<int,data::AquiferData>& localAquiferData,
const std::map<std::pair<std::string, int>, double>& blockData,
const std::map<std::string, double>& miscSummaryData,
const std::map<std::string, std::vector<double>>& regionData,
const Inplace& inplace,
const Inplace& initialInPlace,
const EclInterRegFlowMap& interRegFlows,
SummaryState& summaryState,
UDQState& udqState)
{
if (collectToIORank_.isIORank()) {
const auto& summary = eclIO_->summary();
const auto& wellData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalWellData()
: localWellData;
const auto& wbpData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalWBPData()
: localWBPData;
const auto& groupAndNetworkData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalGroupAndNetworkData()
: localGroupAndNetworkData;
const auto& aquiferData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalAquiferData()
: localAquiferData;
summary.eval(summaryState,
reportStepNum,
curTime,
wellData,
wbpData,
groupAndNetworkData,
miscSummaryData,
initialInPlace,
inplace,
regionData,
blockData,
aquiferData,
getInterRegFlowsAsMap(interRegFlows));
// Off-by-one-fun: The reportStepNum argument corresponds to the
// report step these results will be written to, whereas the
// argument to UDQ function evaluation corresponds to the report
// step we are currently on.
const auto udq_step = reportStepNum - 1;
this->schedule_.getUDQConfig(udq_step)
.eval(udq_step,
this->schedule_,
this->schedule_.wellMatcher(udq_step),
summaryState,
udqState);
}
#if HAVE_MPI
if (collectToIORank_.isParallel()) {
EclMpiSerializer ser(grid_.comm());
ser.append(summaryState);
}
#endif
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
const typename EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::TransmissibilityType&
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
globalTrans() const
{
assert (globalTrans_);
return *globalTrans_;
}
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
template class EclGenericWriter<Dune::CpGrid, template class EclGenericWriter<Dune::CpGrid,
Dune::CpGrid, Dune::CpGrid,
@@ -620,59 +57,12 @@ template class EclGenericWriter<Dune::CpGrid,
Dune::PartitionIteratorType(4), Dune::PartitionIteratorType(4),
false>>>, false>>>,
double>; double>;
#ifdef HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericWriter<ALUGrid3CN,
Dune::CpGrid,
Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>, Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::Fem::GridPart2GridViewTraits<Dune::Fem::AdaptiveLeafGridPart<ALUGrid3CN, Dune::PartitionIteratorType(4), false>>>>,
double>;
template class EclGenericWriter<ALUGrid3CN,
Dune::CpGrid,
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
ALUGrid3CN,
Dune::PartitionIteratorType(4),
false>>,
Dune::MultipleCodimMultipleGeomTypeMapper<
Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart<
ALUGrid3CN,
Dune::PartitionIteratorType(4),
false>>>,
double>;
#endif // HAVE_DUNE_ALUGRID
#else // !HAVE_DUNE_FEM #else // !HAVE_DUNE_FEM
template class EclGenericWriter<Dune::CpGrid, template class EclGenericWriter<Dune::CpGrid,
Dune::CpGrid, Dune::CpGrid,
Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>, Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>,
Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>, Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::DefaultLeafGridViewTraits<Dune::CpGrid>>>,
double>; double>;
#if HAVE_DUNE_ALUGRID #endif // HAVE_DUNE_FEM
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class EclGenericWriter<ALUGrid3CN,
Dune::CpGrid,
Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN,Dune::PartitionIteratorType(4)>>, Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN, Dune::PartitionIteratorType(4)>>>,
double>;
#endif // HAVE_DUNE_ALUGRID
#endif // !HAVE_DUNE_FEM
template class EclGenericWriter<Dune::PolyhedralGrid<3,3,double>,
Dune::PolyhedralGrid<3,3,double>,
Dune::GridView<Dune::PolyhedralGridViewTraits<3, 3, double, Dune::PartitionIteratorType(4)>>, Dune::MultipleCodimMultipleGeomTypeMapper<Dune::GridView<Dune::PolyhedralGridViewTraits<3,3,double,Dune::PartitionIteratorType(4)>>>,
double>;
} // namespace Opm } // namespace Opm

View File

@@ -0,0 +1,590 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef EWOMS_ECL_GENERIC_WRITER_IMPL_HH
#define EWOMS_ECL_GENERIC_WRITER_IMPL_HH
#include <ebos/eclgenericwriter.hh>
#include <dune/grid/common/mcmgmapper.hh>
#include <opm/grid/GridHelpers.hpp>
#include <opm/grid/utility/cartesianToCompressed.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/input/eclipse/Schedule/Action/State.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQConfig.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQState.hpp>
#include <opm/input/eclipse/Schedule/Well/WellMatcher.hpp>
#include <opm/input/eclipse/Units/UnitSystem.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/output/eclipse/RestartValue.hpp>
#include <opm/output/eclipse/Summary.hpp>
#if HAVE_MPI
#include <ebos/eclmpiserializer.hh>
#endif
#if HAVE_MPI
#include <mpi.h>
#endif
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
namespace {
/*!
* \brief Detect whether two cells are direct vertical neighbours.
*
* I.e. have the same i and j index and all cartesian cells between them
* along the vertical column are inactive.
*
* \tparam CM The type of the cartesian index mapper.
* \param cartMapper The mapper onto cartesian indices.
* \param cartesianToActive The mapping of cartesian indices to active indices.
* \param smallGlobalIndex The cartesian cell index of the cell with smaller index
* \param largeGlobalIndex The cartesian cell index of the cell with larger index
* \return True if the cells have the same i and j indices and all cartesian cells
* between them are inactive.
*/
bool directVerticalNeighbors(const std::array<int, 3>& cartDims,
const std::unordered_map<int,int>& cartesianToActive,
int smallGlobalIndex, int largeGlobalIndex)
{
assert(smallGlobalIndex <= largeGlobalIndex);
std::array<int, 3> ijk1, ijk2;
auto globalToIjk = [cartDims](int gc) {
std::array<int, 3> ijk;
ijk[0] = gc % cartDims[0];
gc /= cartDims[0];
ijk[1] = gc % cartDims[1];
ijk[2] = gc / cartDims[1];
return ijk;
};
ijk1 = globalToIjk(smallGlobalIndex);
ijk2 = globalToIjk(largeGlobalIndex);
assert(ijk2[2]>=ijk1[2]);
if ( ijk1[0] == ijk2[0] && ijk1[1] == ijk2[1] && (ijk2[2] - ijk1[2]) > 1)
{
assert((largeGlobalIndex-smallGlobalIndex)%(cartDims[0]*cartDims[1])==0);
for ( int gi = smallGlobalIndex + cartDims[0] * cartDims[1]; gi < largeGlobalIndex;
gi += cartDims[0] * cartDims[1] )
{
if ( cartesianToActive.find( gi ) != cartesianToActive.end() )
{
return false;
}
}
return true;
} else
return false;
}
std::unordered_map<std::string, Opm::data::InterRegFlowMap>
getInterRegFlowsAsMap(const Opm::EclInterRegFlowMap& map)
{
auto maps = std::unordered_map<std::string, Opm::data::InterRegFlowMap>{};
const auto& regionNames = map.names();
auto flows = map.getInterRegFlows();
const auto nmap = regionNames.size();
maps.reserve(nmap);
for (auto mapID = 0*nmap; mapID < nmap; ++mapID) {
maps.emplace(regionNames[mapID], std::move(flows[mapID]));
}
return maps;
}
struct EclWriteTasklet : public Opm::TaskletInterface
{
Opm::Action::State actionState_;
Opm::WellTestState wtestState_;
Opm::SummaryState summaryState_;
Opm::UDQState udqState_;
Opm::EclipseIO& eclIO_;
int reportStepNum_;
bool isSubStep_;
double secondsElapsed_;
Opm::RestartValue restartValue_;
bool writeDoublePrecision_;
explicit EclWriteTasklet(const Opm::Action::State& actionState,
const Opm::WellTestState& wtestState,
const Opm::SummaryState& summaryState,
const Opm::UDQState& udqState,
Opm::EclipseIO& eclIO,
int reportStepNum,
bool isSubStep,
double secondsElapsed,
Opm::RestartValue restartValue,
bool writeDoublePrecision)
: actionState_(actionState)
, wtestState_(wtestState)
, summaryState_(summaryState)
, udqState_(udqState)
, eclIO_(eclIO)
, reportStepNum_(reportStepNum)
, isSubStep_(isSubStep)
, secondsElapsed_(secondsElapsed)
, restartValue_(std::move(restartValue))
, writeDoublePrecision_(writeDoublePrecision)
{}
// callback to eclIO serial writeTimeStep method
void run()
{
this->eclIO_.writeTimeStep(this->actionState_,
this->wtestState_,
this->summaryState_,
this->udqState_,
this->reportStepNum_,
this->isSubStep_,
this->secondsElapsed_,
std::move(this->restartValue_),
this->writeDoublePrecision_);
}
};
}
namespace Opm {
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
EclGenericWriter(const Schedule& schedule,
const EclipseState& eclState,
const SummaryConfig& summaryConfig,
const Grid& grid,
const EquilGrid* equilGrid,
const GridView& gridView,
const Dune::CartesianIndexMapper<Grid>& cartMapper,
const Dune::CartesianIndexMapper<EquilGrid>* equilCartMapper,
bool enableAsyncOutput,
bool enableEsmry )
: collectToIORank_(grid,
equilGrid,
gridView,
cartMapper,
equilCartMapper,
summaryConfig.fip_regions_interreg_flow())
, grid_ (grid)
, gridView_ (gridView)
, schedule_ (schedule)
, eclState_ (eclState)
, summaryConfig_ (summaryConfig)
, cartMapper_ (cartMapper)
, equilCartMapper_(equilCartMapper)
, equilGrid_ (equilGrid)
{
if (this->collectToIORank_.isIORank()) {
this->eclIO_ = std::make_unique<EclipseIO>
(this->eclState_,
UgGridHelpers::createEclipseGrid(*equilGrid, eclState_.getInputGrid()),
this->schedule_, this->summaryConfig_, "", enableEsmry);
}
// create output thread if enabled and rank is I/O rank
// async output is enabled by default if pthread are enabled
int numWorkerThreads = 0;
if (enableAsyncOutput && collectToIORank_.isIORank()) {
numWorkerThreads = 1;
}
this->taskletRunner_.reset(new TaskletRunner(numWorkerThreads));
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
const EclipseIO& EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
eclIO() const
{
assert(eclIO_);
return *eclIO_;
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
writeInit(const std::function<unsigned int(unsigned int)>& map)
{
if (collectToIORank_.isIORank()) {
std::map<std::string, std::vector<int>> integerVectors;
if (collectToIORank_.isParallel()) {
integerVectors.emplace("MPI_RANK", collectToIORank_.globalRanks());
}
auto cartMap = cartesianToCompressed(equilGrid_->size(0), UgGridHelpers::globalCell(*equilGrid_));
eclIO_->writeInitial(computeTrans_(cartMap, map),
integerVectors,
exportNncStructure_(cartMap, map));
}
#if HAVE_MPI
if (collectToIORank_.isParallel()) {
const auto& comm = grid_.comm();
Opm::EclMpiSerializer ser(comm);
ser.broadcast(outputNnc_);
}
#endif
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
data::Solution EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
computeTrans_(const std::unordered_map<int,int>& cartesianToActive,
const std::function<unsigned int(unsigned int)>& map) const
{
const auto& cartMapper = *equilCartMapper_;
const auto& cartDims = cartMapper.cartesianDimensions();
const int globalSize = cartDims[0] * cartDims[1] * cartDims[2];
auto tranx = data::CellData {
UnitSystem::measure::transmissibility,
std::vector<double>(globalSize, 0.0),
data::TargetType::INIT
};
auto trany = tranx;
auto tranz = tranx;
using GlobalGridView = typename EquilGrid::LeafGridView;
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
for (const auto& elem : elements(globalGridView)) {
for (const auto& is : intersections(globalGridView, elem)) {
if (!is.neighbor())
continue; // intersection is on the domain boundary
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
// Ordering of compressed and uncompressed index should be the same
const int cartIdx1 = cartMapper.cartesianIndex( c1 );
const int cartIdx2 = cartMapper.cartesianIndex( c2 );
// Ordering of compressed and uncompressed index should be the same
assert(cartIdx1 <= cartIdx2);
int gc1 = std::min(cartIdx1, cartIdx2);
int gc2 = std::max(cartIdx1, cartIdx2);
// Re-ordering in case of non-empty mapping between equilGrid to grid
if (map) {
c1 = map(c1); // equilGridToGrid map
c2 = map(c2);
}
if (gc2 - gc1 == 1 && cartDims[0] > 1 ) {
tranx.data[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skip other if clauses as they are false, last one needs some computation
}
if (gc2 - gc1 == cartDims[0] && cartDims[1] > 1) {
trany.data[gc1] = globalTrans().transmissibility(c1, c2);
continue; // skipt next if clause as it needs some computation
}
if ( gc2 - gc1 == cartDims[0]*cartDims[1] ||
directVerticalNeighbors(cartDims, cartesianToActive, gc1, gc2))
tranz.data[gc1] = globalTrans().transmissibility(c1, c2);
}
}
return {
{"TRANX", tranx},
{"TRANY", trany},
{"TRANZ", tranz},
};
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
std::vector<NNCdata> EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
exportNncStructure_(const std::unordered_map<int,int>& cartesianToActive, const std::function<unsigned int(unsigned int)>& map) const
{
std::size_t nx = eclState_.getInputGrid().getNX();
std::size_t ny = eclState_.getInputGrid().getNY();
auto nncData = eclState_.getInputNNC().input();
const auto& unitSystem = eclState_.getDeckUnitSystem();
for( const auto& entry : nncData ) {
// test whether NNC is not a neighboring connection
// cell2>=cell1 holds due to sortNncAndApplyEditnnc
assert( entry.cell2 >= entry.cell1 );
auto cellDiff = entry.cell2 - entry.cell1;
if (cellDiff != 1 && cellDiff != nx && cellDiff != nx*ny) {
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, entry.trans);
// Eclipse ignores NNCs (with EDITNNC applied) that are small. Seems like the threshold is 1.0e-6
if ( tt >= 1.0e-6 )
outputNnc_.emplace_back(entry.cell1, entry.cell2, entry.trans);
}
}
using GlobalGridView = typename EquilGrid::LeafGridView;
const GlobalGridView& globalGridView = equilGrid_->leafGridView();
using GlobElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GlobalGridView>;
GlobElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
// Cartesian index mapper for the serial I/O grid
const auto& equilCartMapper = *equilCartMapper_;
const auto& cartDims = cartMapper_.cartesianDimensions();
for (const auto& elem : elements(globalGridView)) {
for (const auto& is : intersections(globalGridView, elem)) {
if (!is.neighbor())
continue; // intersection is on the domain boundary
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
continue; // we only need to handle each connection once, thank you.
std::size_t cc1 = equilCartMapper.cartesianIndex( c1 );
std::size_t cc2 = equilCartMapper.cartesianIndex( c2 );
if ( cc2 < cc1 )
std::swap(cc1, cc2);
auto cellDiff = cc2 - cc1;
// Re-ordering in case of non-empty mapping between equilGrid to grid
if (map) {
c1 = map(c1); // equilGridToGrid map
c2 = map(c2);
}
if (cellDiff != 1 &&
cellDiff != nx &&
cellDiff != nx*ny &&
!directVerticalNeighbors(cartDims, cartesianToActive, cc1, cc2)) {
// We need to check whether an NNC for this face was also specified
// via the NNC keyword in the deck (i.e. in the first origNncSize entries.
auto t = globalTrans().transmissibility(c1, c2);
auto candidate = std::lower_bound(nncData.begin(), nncData.end(), NNCdata(cc1, cc2, 0.0));
while ( candidate != nncData.end() && candidate->cell1 == cc1
&& candidate->cell2 == cc2) {
t -= candidate->trans;
++candidate;
}
// eclipse ignores NNCs with zero transmissibility (different threshold than for NNC
// with corresponding EDITNNC above). In addition we do set small transmissibilties
// to zero when setting up the simulator. These will be ignored here, too.
auto tt = unitSystem.from_si(UnitSystem::measure::transmissibility, std::abs(t));
if ( tt > 1e-12 )
outputNnc_.push_back({cc1, cc2, t});
}
}
}
return outputNnc_;
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
doWriteOutput(const int reportStepNum,
const bool isSubStep,
data::Solution&& localCellData,
data::Wells&& localWellData,
data::GroupAndNetworkValues&& localGroupAndNetworkData,
data::Aquifers&& localAquiferData,
WellTestState&& localWTestState,
const Action::State& actionState,
const UDQState& udqState,
const SummaryState& summaryState,
const std::vector<Scalar>& thresholdPressure,
Scalar curTime,
Scalar nextStepSize,
bool doublePrecision,
bool isFlowsn,
std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>&& flowsn,
bool isFloresn,
std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>&& floresn)
{
const auto isParallel = this->collectToIORank_.isParallel();
const bool needsReordering = this->collectToIORank_.doesNeedReordering();
RestartValue restartValue {
(isParallel || needsReordering)
? this->collectToIORank_.globalCellData()
: std::move(localCellData),
isParallel ? this->collectToIORank_.globalWellData()
: std::move(localWellData),
isParallel ? this->collectToIORank_.globalGroupAndNetworkData()
: std::move(localGroupAndNetworkData),
isParallel ? this->collectToIORank_.globalAquiferData()
: std::move(localAquiferData)
};
if (eclState_.getSimulationConfig().useThresholdPressure()) {
restartValue.addExtra("THRESHPR", UnitSystem::measure::pressure,
thresholdPressure);
}
// Add suggested next timestep to extra data.
if (! isSubStep) {
restartValue.addExtra("OPMEXTRA", std::vector<double>(1, nextStepSize));
}
// Add nnc flows and flores.
if (isFlowsn) {
const auto flowsn_global = isParallel ? this->collectToIORank_.globalFlowsn() : std::move(flowsn);
for (const auto& flows : flowsn_global) {
if (flows.first.empty())
continue;
if (flows.first == "FLOGASN+") {
restartValue.addExtra(flows.first, UnitSystem::measure::gas_surface_rate, flows.second.second);
}
else {
restartValue.addExtra(flows.first, UnitSystem::measure::liquid_surface_rate, flows.second.second);
}
}
}
if (isFloresn) {
const auto floresn_global = isParallel ? this->collectToIORank_.globalFloresn() : std::move(floresn);
for (const auto& flores : floresn_global) {
if (flores.first.empty())
continue;
restartValue.addExtra(flores.first, UnitSystem::measure::rate, flores.second.second);
}
}
// first, create a tasklet to write the data for the current time
// step to disk
auto eclWriteTasklet = std::make_shared<EclWriteTasklet>(
actionState,
isParallel ? this->collectToIORank_.globalWellTestState() : std::move(localWTestState),
summaryState, udqState, *this->eclIO_,
reportStepNum, isSubStep, curTime, std::move(restartValue), doublePrecision);
// then, make sure that the previous I/O request has been completed
// and the number of incomplete tasklets does not increase between
// time steps
this->taskletRunner_->barrier();
// finally, start a new output writing job
this->taskletRunner_->dispatch(std::move(eclWriteTasklet));
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
void EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
evalSummary(const int reportStepNum,
const Scalar curTime,
const data::Wells& localWellData,
const data::WellBlockAveragePressures& localWBPData,
const data::GroupAndNetworkValues& localGroupAndNetworkData,
const std::map<int,data::AquiferData>& localAquiferData,
const std::map<std::pair<std::string, int>, double>& blockData,
const std::map<std::string, double>& miscSummaryData,
const std::map<std::string, std::vector<double>>& regionData,
const Inplace& inplace,
const Inplace& initialInPlace,
const EclInterRegFlowMap& interRegFlows,
SummaryState& summaryState,
UDQState& udqState)
{
if (collectToIORank_.isIORank()) {
const auto& summary = eclIO_->summary();
const auto& wellData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalWellData()
: localWellData;
const auto& wbpData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalWBPData()
: localWBPData;
const auto& groupAndNetworkData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalGroupAndNetworkData()
: localGroupAndNetworkData;
const auto& aquiferData = this->collectToIORank_.isParallel()
? this->collectToIORank_.globalAquiferData()
: localAquiferData;
summary.eval(summaryState,
reportStepNum,
curTime,
wellData,
wbpData,
groupAndNetworkData,
miscSummaryData,
initialInPlace,
inplace,
regionData,
blockData,
aquiferData,
getInterRegFlowsAsMap(interRegFlows));
// Off-by-one-fun: The reportStepNum argument corresponds to the
// report step these results will be written to, whereas the
// argument to UDQ function evaluation corresponds to the report
// step we are currently on.
const auto udq_step = reportStepNum - 1;
this->schedule_.getUDQConfig(udq_step)
.eval(udq_step,
this->schedule_,
this->schedule_.wellMatcher(udq_step),
summaryState,
udqState);
}
#if HAVE_MPI
if (collectToIORank_.isParallel()) {
EclMpiSerializer ser(grid_.comm());
ser.append(summaryState);
}
#endif
}
template<class Grid, class EquilGrid, class GridView, class ElementMapper, class Scalar>
const typename EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::TransmissibilityType&
EclGenericWriter<Grid,EquilGrid,GridView,ElementMapper,Scalar>::
globalTrans() const
{
assert (globalTrans_);
return *globalTrans_;
}
} // namespace Opm
#endif

View File

@@ -92,12 +92,14 @@ public:
using Grid = GetPropType<TypeTag, Properties::Grid>; using Grid = GetPropType<TypeTag, Properties::Grid>;
using EquilGrid = GetPropType<TypeTag, Properties::EquilGrid>; using EquilGrid = GetPropType<TypeTag, Properties::EquilGrid>;
using GridView = GetPropType<TypeTag, Properties::GridView>; using GridView = GetPropType<TypeTag, Properties::GridView>;
using CartesianIndexMapper = Dune::CartesianIndexMapper<Grid>;
using EquilCartesianIndexMapper = Dune::CartesianIndexMapper<EquilGrid>;
static constexpr int dimension = Grid::dimension;
static constexpr int dimensionworld = Grid::dimensionworld;
private: private:
using GridPointer = Grid*; using GridPointer = Grid*;
using EquilGridPointer = EquilGrid*; using EquilGridPointer = EquilGrid*;
using CartesianIndexMapper = Dune::CartesianIndexMapper<Grid>;
using CartesianIndexMapperPointer = std::unique_ptr<CartesianIndexMapper>;
public: public:
using TransmissibilityType = EclTransmissibility<Grid, GridView, ElementMapper, using TransmissibilityType = EclTransmissibility<Grid, GridView, ElementMapper,
@@ -108,11 +110,17 @@ public:
simulator_( simulator ) simulator_( simulator )
{ {
this->callImplementationInit(); this->callImplementationInit();
// add a copy in standard vector format to fullfill new interface
const int* globalcellorg = this->grid().globalCell();
int num_cells = this->gridView().size(0);
globalcell_.resize(num_cells);
for(int i=0; i < num_cells; ++i){
globalcell_[i] = globalcellorg[i];
}
} }
~EclPolyhedralGridVanguard() ~EclPolyhedralGridVanguard()
{ {
delete grid_;
} }
/*! /*!
@@ -155,7 +163,8 @@ public:
* (For parallel simulation runs.) * (For parallel simulation runs.)
*/ */
void loadBalance() void loadBalance()
{ /* do nothing: PolyhedralGrid is not parallel! */ } { /* do nothing: PolyhedralGrid is not parallel! */
}
/*! /*!
* \brief Returns the object which maps a global element index of the simulation grid * \brief Returns the object which maps a global element index of the simulation grid
@@ -173,6 +182,18 @@ public:
const CartesianIndexMapper& equilCartesianIndexMapper() const const CartesianIndexMapper& equilCartesianIndexMapper() const
{ return *cartesianIndexMapper_; } { return *cartesianIndexMapper_; }
const std::vector<int>& globalCell()
{
return globalcell_;
}
unsigned int gridEquilIdxToGridIdx(unsigned int elemIndex) const {
return elemIndex;
}
unsigned int gridIdxToEquilGridIdx(unsigned int elemIndex) const {
return elemIndex;
}
/*! /*!
* \brief Free the memory occupied by the global transmissibility object. * \brief Free the memory occupied by the global transmissibility object.
@@ -204,11 +225,17 @@ public:
return this->cellCentroids_(this->cartesianIndexMapper()); return this->cellCentroids_(this->cartesianIndexMapper());
} }
std::vector<int> cellPartition() const
{
// not required for this type of grid yet (only from bdaBridge??)
return {};
}
protected: protected:
void createGrids_() void createGrids_()
{ {
grid_ = new Grid(this->eclState().getInputGrid(), this->eclState().fieldProps().porv(true)); grid_ = std::make_unique<Grid>(this->eclState().getInputGrid(), this->eclState().fieldProps().porv(true));
cartesianIndexMapper_ = std::make_unique<CartesianIndexMapper>(*grid_); cartesianIndexMapper_ = std::make_unique<CartesianIndexMapper>(*grid_);
this->updateGridView_();
this->updateCartesianToCompressedMapping_(); this->updateCartesianToCompressedMapping_();
this->updateCellDepths_(); this->updateCellDepths_();
} }
@@ -220,10 +247,12 @@ protected:
Simulator& simulator_; Simulator& simulator_;
GridPointer grid_; std::unique_ptr<Grid> grid_;
CartesianIndexMapperPointer cartesianIndexMapper_; std::unique_ptr<CartesianIndexMapper> cartesianIndexMapper_;
//CartesianIndexMapperPointer cartesianIndexMapper_;
std::unordered_set<std::string> defunctWellNames_; std::unordered_set<std::string> defunctWellNames_;
std::vector<int> globalcell_;
}; };
} // namespace Opm } // namespace Opm

View File

@@ -34,6 +34,7 @@
#include <ebos/eclactionhandler.hh> #include <ebos/eclactionhandler.hh>
#include <ebos/eclbaseaquifermodel.hh> #include <ebos/eclbaseaquifermodel.hh>
#include <ebos/eclcpgridvanguard.hh>
#include <ebos/ecldummygradientcalculator.hh> #include <ebos/ecldummygradientcalculator.hh>
#include <ebos/eclequilinitializer.hh> #include <ebos/eclequilinitializer.hh>
#include <ebos/eclfluxmodule.hh> #include <ebos/eclfluxmodule.hh>
@@ -84,15 +85,6 @@
#include <opm/common/OpmLog/OpmLog.hpp> #include <opm/common/OpmLog/OpmLog.hpp>
#if USE_ALUGRID
#define DISABLE_ALUGRID_SFC_ORDERING 1
#include <ebos/eclalugridvanguard.hh>
#elif USE_POLYHEDRALGRID
#include <ebos/eclpolyhedralgridvanguard.hh>
#else
#include <ebos/eclcpgridvanguard.hh>
#endif
#include <algorithm> #include <algorithm>
#include <functional> #include <functional>
#include <set> #include <set>
@@ -108,19 +100,9 @@ namespace Opm::Properties {
namespace TTag { namespace TTag {
#if USE_ALUGRID
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclAluGridVanguard>;
};
#elif USE_POLYHEDRALGRID
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclPolyhedralGridVanguard>;
};
#else
struct EclBaseProblem { struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclCpGridVanguard>; using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclCpGridVanguard>;
}; };
#endif
} }
// The class which deals with ECL wells // The class which deals with ECL wells
@@ -207,6 +189,7 @@ struct NumPressurePointsEquil {
}; };
// Set the problem property // Set the problem property
template<class TypeTag> template<class TypeTag>
struct Problem<TypeTag, TTag::EclBaseProblem> { struct Problem<TypeTag, TTag::EclBaseProblem> {
@@ -531,6 +514,10 @@ struct EnableTemperature<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true; static constexpr bool value = true;
}; };
template<class TypeTag>
struct EnableMech<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable all extensions supported by black oil model. this should not really be // disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit // necessary but it makes things a bit more explicit
template<class TypeTag> template<class TypeTag>
@@ -891,12 +878,9 @@ public:
readThermalParameters_(); readThermalParameters_();
// Re-ordering in case of ALUGrid // Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> gridToEquilGrid; std::function<unsigned int(unsigned int)> gridToEquilGrid = [&simulator](unsigned int i) {
#if USE_ALUGRID
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i); return simulator.vanguard().gridIdxToEquilGridIdx(i);
}; };
#endif // USE_ALUGRID
transmissibilities_.finishInit(gridToEquilGrid); transmissibilities_.finishInit(gridToEquilGrid);
const auto& initconfig = eclState.getInitConfig(); const auto& initconfig = eclState.getInitConfig();
@@ -936,12 +920,9 @@ public:
eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities()); eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities());
// Re-ordering in case of ALUGrid // Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid; std::function<unsigned int(unsigned int)> equilGridToGrid = [&simulator](unsigned int i) {
#if USE_ALUGRID
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i); return simulator.vanguard().gridEquilIdxToGridIdx(i);
}; };
#endif // USE_ALUGRID
eclWriter_->writeInit(equilGridToGrid); eclWriter_->writeInit(equilGridToGrid);
} }
@@ -1030,12 +1011,9 @@ public:
eclBroadcast(cc, eclState.getTransMult() ); eclBroadcast(cc, eclState.getTransMult() );
// Re-ordering in case of ALUGrid // Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid; std::function<unsigned int(unsigned int)> equilGridToGrid = [&simulator](unsigned int i) {
#if USE_ALUGRID
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i); return simulator.vanguard().gridEquilIdxToGridIdx(i);
}; };
#endif // USE_ALUGRID
// re-compute all quantities which may possibly be affected. // re-compute all quantities which may possibly be affected.
transmissibilities_.update(true, equilGridToGrid); transmissibilities_.update(true, equilGridToGrid);
@@ -1177,12 +1155,9 @@ public:
int episodeIdx = this->episodeIndex(); int episodeIdx = this->episodeIndex();
// Re-ordering in case of Alugrid // Re-ordering in case of Alugrid
std::function<unsigned int(unsigned int)> gridToEquilGrid; std::function<unsigned int(unsigned int)> gridToEquilGrid = [&simulator](unsigned int i) {
#if USE_ALUGRID
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i); return simulator.vanguard().gridIdxToEquilGridIdx(i);
}; };
#endif // USE_ALUGRID
std::function<void(bool)> transUp = std::function<void(bool)> transUp =
[this,gridToEquilGrid](bool global) { [this,gridToEquilGrid](bool global) {

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -21,13 +21,22 @@
copyright holders. copyright holders.
*/ */
#include "config.h" #include <config.h>
#include "initstateequil.hh" #include <ebos/equil/initstateequil.hh>
#include "initstateequil_impl.hh" #include <ebos/equil/initstateequil_impl.hh>
#include <opm/grid/CpGrid.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
#include <ebos/femcpgridcompat.hh>
#endif
namespace Opm { namespace Opm {
namespace EQUIL { namespace EQUIL {
namespace DeckDependent { namespace DeckDependent {
#if HAVE_DUNE_FEM #if HAVE_DUNE_FEM
using GridView = Dune::Fem::GridPart2GridViewImpl< using GridView = Dune::Fem::GridPart2GridViewImpl<
Dune::Fem::AdaptiveLeafGridPart< Dune::Fem::AdaptiveLeafGridPart<
@@ -59,37 +68,6 @@ template InitialStateComputer<BlackOilFluidSystem<double>,
const double, const double,
const int, const int,
const bool); const bool);
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGridComm = Dune::ALUGridMPIComm;
#else
using ALUGridComm = Dune::ALUGridNoComm;
#endif //HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, ALUGridComm>;
using ALUGridView = Dune::GridView<Dune::ALU3dLeafGridViewTraits<const ALUGrid3CN, Dune::PartitionIteratorType(4)>>;
using ALUGridMapper = Dune::MultipleCodimMultipleGeomTypeMapper<ALUGridView>;
template class InitialStateComputer<BlackOilFluidSystem<double>,
ALUGrid3CN,
ALUGridView,
ALUGridMapper,
Dune::CartesianIndexMapper<ALUGrid3CN>>;
template InitialStateComputer<BlackOilFluidSystem<double>,
ALUGrid3CN,
ALUGridView,
ALUGridMapper,
Dune::CartesianIndexMapper<ALUGrid3CN>>::
InitialStateComputer(MatLaw&,
const EclipseState&,
const ALUGrid3CN&,
const ALUGridView&,
const Dune::CartesianIndexMapper<ALUGrid3CN>&,
const double,
const int,
const bool);
#endif //HAVE_DUNE_ALUGRID
} // namespace DeckDependent } // namespace DeckDependent
namespace Details { namespace Details {

View File

@@ -29,7 +29,6 @@
#include <opm/common/OpmLog/OpmLog.hpp> #include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/grid/CpGrid.hpp>
#include <opm/grid/utility/RegionMapping.hpp> #include <opm/grid/utility/RegionMapping.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp> #include <opm/input/eclipse/EclipseState/EclipseState.hpp>
@@ -54,17 +53,6 @@
#include <limits> #include <limits>
#include <stdexcept> #include <stdexcept>
#if HAVE_DUNE_FEM
#include <dune/fem/gridpart/adaptiveleafgridpart.hh>
#include <dune/fem/gridpart/common/gridpart2gridview.hh>
#include <ebos/femcpgridcompat.hh>
#endif
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#include <dune/alugrid/3d/gridview.hh>
#endif // HAVE_DUNE_ALUGRID
namespace Opm { namespace Opm {
namespace EQUIL { namespace EQUIL {

View File

@@ -16,9 +16,26 @@
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>. along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include "config.h" #include <config.h>
#include <dune/alugrid/grid.hh>
#include <ebos/eclalugridvanguard.hh>
#include <opm/simulators/flow/Main.hpp> #include <opm/simulators/flow/Main.hpp>
// for equilgrid in writer
// need to include this before eclgenericwriter_impl.hh due to specializations.
#include <opm/grid/CpGrid.hpp>
#include <opm/grid/cpgrid/GridHelpers.hpp>
// these are not explicitly instanced in library
#include <ebos/collecttoiorank_impl.hh>
#include <ebos/eclgenericproblem_impl.hh>
#include <ebos/eclgenericthresholdpressure_impl.hh>
#include <ebos/eclgenerictracermodel_impl.hh>
#include <ebos/eclgenericwriter_impl.hh>
#include <ebos/ecltransmissibility_impl.hh>
#include <ebos/equil/initstateequil_impl.hh>
namespace Opm { namespace Opm {
namespace Properties { namespace Properties {
namespace TTag { namespace TTag {
@@ -26,6 +43,25 @@ struct EclFlowProblemAlugrid {
using InheritsFrom = std::tuple<EclFlowProblem>; using InheritsFrom = std::tuple<EclFlowProblem>;
}; };
} }
template<class TypeTag>
struct Grid<TypeTag, TTag::EclFlowProblemAlugrid> {
static const int dim = 3;
#if HAVE_MPI
using type = Dune::ALUGrid<dim, dim, Dune::cube, Dune::nonconforming,Dune::ALUGridMPIComm>;
#else
using type = Dune::ALUGrid<dim, dim, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif
};
// alugrid need cp grid as equilgrid
template<class TypeTag>
struct EquilGrid<TypeTag, TTag::EclFlowProblemAlugrid> {
using type = Dune::CpGrid;
};
template<class TypeTag>
struct Vanguard<TypeTag, TTag::EclFlowProblemAlugrid> {
using type = Opm::EclAluGridVanguard<TypeTag>;
};
template<class TypeTag> template<class TypeTag>
struct EclEnableAquifers<TypeTag, TTag::EclFlowProblemAlugrid> { struct EclEnableAquifers<TypeTag, TTag::EclFlowProblemAlugrid> {
static constexpr bool value = false; static constexpr bool value = false;

View File

@@ -1,25 +0,0 @@
/*
Copyright 2020, NORCE AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <flow/flow_ebos_blackoil_poly.hpp>
int main(int argc, char** argv)
{
return Opm::flowEbosBlackoilPolyMain(argc, argv);
}

View File

@@ -0,0 +1,78 @@
/*
Copyright 2020, NORCE AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <ebos/eclpolyhedralgridvanguard.hh>
#include <opm/grid/polyhedralgrid.hh>
#include <opm/models/blackoil/blackoillocalresidualtpfa.hh>
#include <opm/models/discretization/common/tpfalinearizer.hh>
#include <opm/simulators/flow/Main.hpp>
// these are not explicitly instanced in library
#include <ebos/collecttoiorank_impl.hh>
#include <ebos/eclgenericproblem_impl.hh>
#include <ebos/eclgenericthresholdpressure_impl.hh>
#include <ebos/eclgenerictracermodel_impl.hh>
#include <ebos/ecltransmissibility_impl.hh>
#include <ebos/eclgenericwriter_impl.hh>
#include <ebos/equil/initstateequil_impl.hh>
namespace Opm {
namespace Properties {
namespace TTag {
struct EclFlowProblemPoly {
using InheritsFrom = std::tuple<EclFlowProblem>;
};
}
template<class TypeTag>
struct Linearizer<TypeTag, TTag::EclFlowProblemPoly> { using type = TpfaLinearizer<TypeTag>; };
template<class TypeTag>
struct LocalResidual<TypeTag, TTag::EclFlowProblemPoly> { using type = BlackOilLocalResidualTPFA<TypeTag>; };
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::EclFlowProblemPoly> { static constexpr bool value = false; };
template<class TypeTag>
struct Grid<TypeTag, TTag::EclFlowProblemPoly> {
using type = Dune::PolyhedralGrid<3, 3>;
};
template<class TypeTag>
struct EquilGrid<TypeTag, TTag::EclFlowProblemPoly> {
//using type = Dune::CpGrid;
using type = GetPropType<TypeTag, Properties::Grid>;
};
template<class TypeTag>
struct Vanguard<TypeTag, TTag::EclFlowProblemPoly> {
using type = Opm::EclPolyhedralGridVanguard<TypeTag>;
};
}
}
int main(int argc, char** argv)
{
using TypeTag = Opm::Properties::TTag::EclFlowProblemPoly;
auto mainObject = std::make_unique<Opm::Main>(argc, argv);
auto ret = mainObject->runStatic<TypeTag>();
// Destruct mainObject as the destructor calls MPI_Finalize!
mainObject.reset();
return ret;
}

View File

@@ -1,41 +0,0 @@
/*
Copyright 2020, NORCE AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/simulators/flow/Main.hpp>
namespace Opm {
namespace Properties {
namespace TTag {
struct EclFlowProblemPoly {
using InheritsFrom = std::tuple<EclFlowProblem>;
};
}
}
int flowEbosBlackoilPolyMain(int argc, char** argv)
{
using TypeTag = Opm::Properties::TTag::EclFlowProblemPoly;
auto mainObject = std::make_unique<Opm::Main>(argc, argv);
auto ret = mainObject->runStatic<TypeTag>();
// Destruct mainObject as the destructor calls MPI_Finalize!
mainObject.reset();
return ret;
}
}

View File

@@ -1,29 +0,0 @@
/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015, 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FLOW_BLACKOIL_POLY_HPP
#define FLOW_BLACKOIL_POLY_HPP
namespace Opm {
int flowEbosBlackoilPolyMain(int argc, char** argv);
}
#endif

View File

@@ -37,10 +37,8 @@
#include <opm/simulators/aquifers/AquiferNumerical.hpp> #include <opm/simulators/aquifers/AquiferNumerical.hpp>
#include <opm/grid/CpGrid.hpp> #include <opm/grid/CpGrid.hpp>
#ifdef USE_POLYHEDRALGRID
#include <opm/grid/polyhedralgrid.hh> #include <opm/grid/polyhedralgrid.hh>
#endif #if HAVE_DUNE_ALUGRID
#if USE_ALUGRID
#include <dune/alugrid/grid.hh> #include <dune/alugrid/grid.hh>
#endif #endif
@@ -65,14 +63,12 @@ class SupportsFaceTag<Dune::CpGrid>
{}; {};
#ifdef USE_POLYHEDRALGRID
template<> template<>
class SupportsFaceTag<Dune::PolyhedralGrid<3, 3>> class SupportsFaceTag<Dune::PolyhedralGrid<3, 3>>
: public std::bool_constant<true> : public std::bool_constant<true>
{}; {};
#endif
#if USE_ALUGRID #if HAVE_DUNE_ALUGRID
template<> template<>
class SupportsFaceTag<Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming>> class SupportsFaceTag<Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming>>
: public std::bool_constant<true> : public std::bool_constant<true>

View File

@@ -43,6 +43,8 @@
#include <ebos/alucartesianindexmapper.hh> #include <ebos/alucartesianindexmapper.hh>
#endif // HAVE_DUNE_ALUGRID #endif // HAVE_DUNE_ALUGRID
#include <opm/grid/polyhedralgrid.hh>
namespace Opm { namespace Opm {
namespace detail { namespace detail {
@@ -387,7 +389,7 @@ using CommunicationType = Dune::CollectiveCommunication<int>;
const std::vector<Well>&, \ const std::vector<Well>&, \
const std::vector<int>&, \ const std::vector<int>&, \
const size_t, const bool); const size_t, const bool);
using PolyHedralGrid3D = Dune::PolyhedralGrid<3, 3>;
#if HAVE_DUNE_ALUGRID #if HAVE_DUNE_ALUGRID
#if HAVE_MPI #if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>; using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
@@ -398,11 +400,13 @@ using CommunicationType = Dune::CollectiveCommunication<int>;
template struct BdaSolverInfo<BM<Dim>,BV<Dim>>; \ template struct BdaSolverInfo<BM<Dim>,BV<Dim>>; \
INSTANCE_GRID(Dim,Dune::CpGrid) \ INSTANCE_GRID(Dim,Dune::CpGrid) \
INSTANCE_GRID(Dim,ALUGrid3CN) \ INSTANCE_GRID(Dim,ALUGrid3CN) \
INSTANCE_GRID(Dim,PolyHedralGrid3D) \
INSTANCE_FLEX(Dim) INSTANCE_FLEX(Dim)
#else #else
#define INSTANCE(Dim) \ #define INSTANCE(Dim) \
template struct BdaSolverInfo<BM<Dim>,BV<Dim>>; \ template struct BdaSolverInfo<BM<Dim>,BV<Dim>>; \
INSTANCE_GRID(Dim,Dune::CpGrid) \ INSTANCE_GRID(Dim,Dune::CpGrid) \
INSTANCE_GRID(Dim,PolyHedralGrid3D) \
INSTANCE_FLEX(Dim) INSTANCE_FLEX(Dim)
#endif #endif
#else #else