Merge pull request #5408 from BigDataAccelerate/cpr_rocsparse

rocsparse CPR initial version
This commit is contained in:
Markus Blatt 2024-07-16 18:57:40 +02:00 committed by GitHub
commit ca2ef490aa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
41 changed files with 3116 additions and 1054 deletions

View File

@ -247,29 +247,36 @@ endif()
if(USE_BDA_BRIDGE)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/BdaBridge.cpp
opm/simulators/linalg/bda/CprCreation.cpp
opm/simulators/linalg/bda/Misc.cpp
opm/simulators/linalg/bda/WellContributions.cpp
opm/simulators/linalg/bda/MultisegmentWellContribution.cpp
opm/simulators/linalg/ISTLSolverBda.cpp)
if(OPENCL_FOUND)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/BlockedMatrix.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/BILU0.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/openclBILU0.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/Reorder.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/ChowPatelIlu.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/BISAI.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/CPR.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/openclBISAI.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/openclCPR.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/opencl.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/openclKernels.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/OpenclMatrix.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/Preconditioner.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/openclPreconditioner.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/openclSolverBackend.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/opencl/openclWellContributions.cpp)
endif()
if(ROCALUTION_FOUND)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocalutionSolverBackend.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/rocalutionSolverBackend.cpp)
endif()
if(rocsparse_FOUND AND rocblas_FOUND)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocsparseSolverBackend.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocsparseWellContributions.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/rocsparseCPR.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/rocsparseBILU0.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/rocsparsePreconditioner.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/rocsparseSolverBackend.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/rocsparseWellContributions.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/hipKernels.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/rocm/rocsparseMatrix.cpp)
endif()
if(CUDA_FOUND)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/bda/cuda/cusparseSolverBackend.cu)
@ -660,25 +667,33 @@ if (USE_BDA_BRIDGE)
opm/simulators/linalg/bda/BdaBridge.hpp
opm/simulators/linalg/bda/BdaResult.hpp
opm/simulators/linalg/bda/BdaSolver.hpp
opm/simulators/linalg/bda/opencl/BILU0.hpp
opm/simulators/linalg/bda/CprCreation.hpp
opm/simulators/linalg/bda/Preconditioner.hpp
opm/simulators/linalg/bda/Misc.hpp
opm/simulators/linalg/bda/opencl/openclBILU0.hpp
opm/simulators/linalg/bda/BlockedMatrix.hpp
opm/simulators/linalg/bda/opencl/CPR.hpp
opm/simulators/linalg/bda/opencl/openclCPR.hpp
opm/simulators/linalg/bda/cuda/cuda_header.hpp
opm/simulators/linalg/bda/cuda/cusparseSolverBackend.hpp
opm/simulators/linalg/bda/opencl/ChowPatelIlu.hpp
opm/simulators/linalg/bda/opencl/BISAI.hpp
opm/simulators/linalg/bda/opencl/openclBISAI.hpp
opm/simulators/linalg/bda/Reorder.hpp
opm/simulators/linalg/bda/opencl/opencl.hpp
opm/simulators/linalg/bda/opencl/openclKernels.hpp
opm/simulators/linalg/bda/opencl/OpenclMatrix.hpp
opm/simulators/linalg/bda/opencl/Preconditioner.hpp
opm/simulators/linalg/bda/opencl/openclPreconditioner.hpp
opm/simulators/linalg/bda/opencl/openclSolverBackend.hpp
opm/simulators/linalg/bda/opencl/openclWellContributions.hpp
opm/simulators/linalg/bda/Matrix.hpp
opm/simulators/linalg/bda/MultisegmentWellContribution.hpp
opm/simulators/linalg/bda/rocalutionSolverBackend.hpp
opm/simulators/linalg/bda/rocsparseSolverBackend.hpp
opm/simulators/linalg/bda/rocsparseWellContributions.hpp
opm/simulators/linalg/bda/rocm/hipKernels.hpp
opm/simulators/linalg/bda/rocm/rocalutionSolverBackend.hpp
opm/simulators/linalg/bda/rocm/rocsparseBILU0.hpp
opm/simulators/linalg/bda/rocm/rocsparseCPR.hpp
opm/simulators/linalg/bda/rocm/rocsparsePreconditioner.hpp
opm/simulators/linalg/bda/rocm/rocsparseSolverBackend.hpp
opm/simulators/linalg/bda/rocm/rocsparseWellContributions.hpp
opm/simulators/linalg/bda/rocm/rocsparseMatrix.hpp
opm/simulators/linalg/bda/WellContributions.hpp
opm/simulators/linalg/ISTLSolverBda.hpp
)

View File

@ -43,11 +43,11 @@
#include <opm/grid/polyhedralgrid.hh>
#if HAVE_OPENMP
#include <thread>
#include <omp.h>
std::shared_ptr<std::thread> copyThread;
#if HAVE_OPENMP
#include <omp.h>
#endif // HAVE_OPENMP
namespace Opm::detail {
@ -113,9 +113,11 @@ apply(Vector& rhs,
}
#endif
bool use_multithreading = false;
bool use_multithreading = true;
#if HAVE_OPENMP
use_multithreading = omp_get_max_threads() > 1;
// if user manually sets --threads-per-process=1, do not use multithreading
if (omp_get_max_threads() == 1)
use_multithreading = false;
#endif // HAVE_OPENMP
if (numJacobiBlocks_ > 1) {
@ -123,9 +125,9 @@ apply(Vector& rhs,
//NOTE: copyThread can safely write to jacMat because in solve_system both matrix and *blockJacobiForGPUILU0_ diagonal entries
//are checked and potentially overwritten in replaceZeroDiagonal() by mainThread. However, no matter the thread writing sequence,
//the final entry in jacMat is correct.
#if HAVE_OPENMP
//#if HAVE_OPENMP
copyThread = std::make_shared<std::thread>([&](){this->copyMatToBlockJac(matrix, *blockJacobiForGPUILU0_);});
#endif // HAVE_OPENMP
//#endif // HAVE_OPENMP
}
else {
this->copyMatToBlockJac(matrix, *blockJacobiForGPUILU0_);

View File

@ -43,11 +43,11 @@
#endif
#if HAVE_ROCALUTION
#include <opm/simulators/linalg/bda/rocalutionSolverBackend.hpp>
#include <opm/simulators/linalg/bda/rocm/rocalutionSolverBackend.hpp>
#endif
#if HAVE_ROCSPARSE
#include <opm/simulators/linalg/bda/rocsparseSolverBackend.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseSolverBackend.hpp>
#endif
typedef Dune::InverseOperatorResult InverseOperatorResult;
@ -115,7 +115,7 @@ BdaBridge(std::string accelerator_mode_,
use_gpu = true; // should be replaced by a 'use_bridge' boolean
using ROCS = Accelerator::rocsparseSolverBackend<Scalar,block_size>;
backend = std::make_unique<ROCS>(linear_solver_verbosity, maxit,
tolerance, platformID, deviceID);
tolerance, platformID, deviceID, linsolver);
#else
OPM_THROW(std::logic_error, "Error rocsparseSolver was chosen, but rocsparse/rocblas was not found by CMake");
#endif

View File

@ -0,0 +1,295 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <dune/common/shared_ptr.hh>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/simulators/linalg/bda/CprCreation.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
namespace Opm::Accelerator {
using Opm::OpmLog;
using Dune::Timer;
template <class Scalar, unsigned int block_size>
CprCreation<Scalar, block_size>::CprCreation()
{
diagIndices.resize(1);
}
template <class Scalar, unsigned int block_size>
void CprCreation<Scalar, block_size>::
create_preconditioner_amg(BlockedMatrix<Scalar> *mat_)
{
mat = mat_;
cprNb = mat_->Nb;
cprnnzb = mat_->nnzbs;
cprN = cprNb * block_size;
cprnnz = cprnnzb * block_size * block_size;
coarse_vals.resize(cprnnzb);
coarse_x.resize(cprNb);
coarse_y.resize(cprNb);
weights.resize(cprN);
try{
Scalar rhs[] = {0, 0, 0};
rhs[pressure_idx] = 1;
// find diagonal index for each row
if (diagIndices[0].empty()) {
diagIndices[0].resize(cprNb);
for (int row = 0; row < cprNb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
auto candidate = std::find(mat->colIndices + start, mat->colIndices + end, row);
assert(candidate != mat->colIndices + end);
diagIndices[0][row] = candidate - mat->colIndices;
}
}
// calculate weights for each row
for (int row = 0; row < cprNb; ++row) {
// solve to find weights
Scalar *row_weights = weights.data() + block_size * row; // weights for this row
solve_transposed_3x3(mat->nnzValues + block_size * block_size * diagIndices[0][row], rhs, row_weights);
// normalize weights for this row
Scalar abs_max = get_absmax(row_weights, block_size);
for(unsigned int i = 0; i < block_size; i++){
row_weights[i] /= abs_max;
}
}
// extract pressure
// transform blocks to scalars to create scalar linear system
for (int row = 0; row < cprNb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
for (int idx = start; idx < end; ++idx) {
Scalar *block = mat->nnzValues + idx * block_size * block_size;
Scalar *row_weights = weights.data() + block_size * row;
Scalar value = 0.0;
for (unsigned int i = 0; i < block_size; ++i) {
value += block[block_size * i + pressure_idx] * row_weights[i];
}
coarse_vals[idx] = value;
}
}
#if HAVE_MPI
using Communication = Dune::OwnerOverlapCopyCommunication<int, int>;
#else
using Communication = Dune::Amg::SequentialInformation;
#endif
using OverlapFlags = Dune::NegateSet<Communication::OwnerSet>;
if (recalculate_aggregates) {
dune_coarse = std::make_unique<DuneMat>(cprNb, cprNb, cprnnzb, DuneMat::row_wise);
// typedef DuneMat::CreateIterator Iter;
using Iter = typename DuneMat::CreateIterator;
// setup sparsity pattern
for(Iter row = dune_coarse->createbegin(); row != dune_coarse->createend(); ++row){
int start = mat->rowPointers[row.index()];
int end = mat->rowPointers[row.index() + 1];
for (int idx = start; idx < end; ++idx) {
int col = mat->colIndices[idx];
row.insert(col);
}
}
// set values
for (int row = 0; row < cprNb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
for (int idx = start; idx < end; ++idx) {
int col = mat->colIndices[idx];
(*dune_coarse)[row][col] = coarse_vals[idx];
}
}
dune_op = std::make_shared<MatrixOperator>(*dune_coarse);
Dune::Amg::SequentialInformation seqinfo;
dune_amg = std::make_unique<DuneAmg>(dune_op, Dune::stackobject_to_shared_ptr(seqinfo));
Opm::PropertyTree property_tree;
property_tree.put("alpha", 0.333333333333);
// The matrix has a symmetric sparsity pattern, but the values are not symmetric
// Yet a SymmetricDependency is used in AMGCPR
// An UnSymmetricCriterion is also available
// using Criterion = Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<DuneMat, Dune::Amg::FirstDiagonal> >;
using CriterionBase = Dune::Amg::AggregationCriterion<Dune::Amg::SymmetricDependency<DuneMat, Dune::Amg::FirstDiagonal>>;
using Criterion = Dune::Amg::CoarsenCriterion<CriterionBase>;
const Criterion c = Opm::AMGHelper<MatrixOperator,Dune::Amg::SequentialInformation,DuneMat,DuneVec>::criterion(property_tree);
num_pre_smooth_steps = c.getNoPreSmoothSteps();
num_post_smooth_steps = c.getNoPostSmoothSteps();
dune_amg->template build<OverlapFlags>(c);
analyzeHierarchy();
analyzeAggregateMaps();
recalculate_aggregates = false;
} else {
// update values of coarsest level in AMG
// this works because that level is actually a reference to the DuneMat held by dune_coarse
for (int row = 0; row < cprNb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
for (int idx = start; idx < end; ++idx) {
int col = mat->colIndices[idx];
(*dune_coarse)[row][col] = coarse_vals[idx];
}
}
// update the rest of the AMG hierarchy
dune_amg->recalculateGalerkin(OverlapFlags());
analyzeHierarchy();
}
} catch (const std::exception& ex) {
std::cerr << "Caught exception: " << ex.what() << std::endl;
throw ex;
}
}
template <class Scalar, unsigned int block_size>
void CprCreation<Scalar, block_size>::
analyzeHierarchy()
{
const typename DuneAmg::ParallelMatrixHierarchy& matrixHierarchy = dune_amg->matrices();
// store coarsest AMG level in umfpack format, also performs LU decomposition
umfpack.setMatrix((*matrixHierarchy.coarsest()).getmat());
num_levels = dune_amg->levels();
level_sizes.resize(num_levels);
diagIndices.resize(num_levels);
Amatrices.reserve(num_levels);
Rmatrices.reserve(num_levels - 1); // coarsest level does not need one
invDiags.reserve(num_levels);
Amatrices.clear();
invDiags.clear();
// matrixIter.dereference() returns MatrixAdapter
// matrixIter.dereference().getmat() returns BCRSMat
typename DuneAmg::ParallelMatrixHierarchy::ConstIterator matrixIter = matrixHierarchy.finest();
for(int level = 0; level < num_levels; ++matrixIter, ++level) {
const auto& A = matrixIter.dereference().getmat();
level_sizes[level] = A.N();
diagIndices[level].reserve(A.N());
// extract matrix A
Amatrices.emplace_back(A.N(), A.nonzeroes());
// contiguous copy is not possible
// std::copy(&(A[0][0][0][0]), &(A[0][0][0][0]) + A.nonzeroes(), Amatrices.back().nnzValues.data());
// also update diagonal indices if needed, level 0 is already filled in create_preconditioner()
int nnz_idx = 0;
const bool fillDiagIndices = diagIndices[level].empty();
for (typename DuneMat::const_iterator r = A.begin(); r != A.end(); ++r) {
for (auto c = r->begin(); c != r->end(); ++c) {
Amatrices.back().nnzValues[nnz_idx] = A[r.index()][c.index()];
if (fillDiagIndices && r.index() == c.index()) {
diagIndices[level].emplace_back(nnz_idx);
}
nnz_idx++;
}
}
Opm::BdaBridge<DuneMat, DuneVec, 1>::copySparsityPatternFromISTL(A, Amatrices.back().rowPointers, Amatrices.back().colIndices);
// compute inverse diagonal values for current level
invDiags.emplace_back(A.N());
for (unsigned int row = 0; row < A.N(); ++row) {
invDiags.back()[row] = 1 / Amatrices.back().nnzValues[diagIndices[level][row]];
}
}
}
template <class Scalar, unsigned int block_size>
void CprCreation<Scalar, block_size>::
analyzeAggregateMaps()
{
PcolIndices.resize(num_levels - 1);
Rmatrices.clear();
const typename DuneAmg::AggregatesMapList& aggregatesMaps = dune_amg->aggregatesMaps();
typename DuneAmg::AggregatesMapList::const_iterator mapIter = aggregatesMaps.begin();
for(int level = 0; level < num_levels - 1; ++mapIter, ++level) {
typename DuneAmg::AggregatesMap *map = *mapIter;
Rmatrices.emplace_back(level_sizes[level+1], level_sizes[level], level_sizes[level]);
std::fill(Rmatrices.back().nnzValues.begin(), Rmatrices.back().nnzValues.end(), 1.0);
// get indices for each row of P and R
std::vector<std::vector<unsigned> > indicesR(level_sizes[level+1]);
PcolIndices[level].resize(level_sizes[level]);
using AggregateIterator = typename DuneAmg::AggregatesMap::const_iterator;
for(AggregateIterator ai = map->begin(); ai != map->end(); ++ai){
if (*ai != DuneAmg::AggregatesMap::ISOLATED) {
const long int diff = ai - map->begin();
PcolIndices[level][diff] = *ai;
indicesR[*ai].emplace_back(diff);
}
}
int col_idx = 0;
// set sparsity pattern of R
Rmatrices.back().rowPointers[0] = 0;
for (unsigned int i = 0; i < indicesR.size(); ++i) {
Rmatrices.back().rowPointers[i + 1] = Rmatrices.back().rowPointers[i] + indicesR[i].size();
for (auto it = indicesR[i].begin(); it != indicesR[i].end(); ++it) {
Rmatrices.back().colIndices[col_idx++] = *it;
}
}
}
}
#define INSTANCE_TYPE(T) \
template class CprCreation<T,1>; \
template class CprCreation<T,2>; \
template class CprCreation<T,3>; \
template class CprCreation<T,4>; \
template class CprCreation<T,5>; \
template class CprCreation<T,6>;
INSTANCE_TYPE(double)
} // namespace Opm

View File

@ -0,0 +1,86 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CPRCREATION_HPP
#define OPM_CPRCREATION_HPP
#include <mutex>
#include <dune/istl/paamg/matrixhierarchy.hh>
#include <dune/istl/umfpack.hh>
#include <opm/simulators/linalg/bda/Matrix.hpp>
#include <opm/simulators/linalg/bda/Preconditioner.hpp>
namespace Opm::Accelerator {
template<class Scalar> class BlockedMatrix;
/// This class implements a Constrained Pressure Residual (CPR) preconditioner
template <class Scalar, unsigned int block_size>
class CprCreation
{
int cprN;
int cprNb;
int cprnnz;
int cprnnzb;
public:
CprCreation();
protected:
int num_levels;
std::vector<Scalar> weights, coarse_vals, coarse_x, coarse_y;
std::vector<Matrix<Scalar>> Amatrices, Rmatrices; // scalar matrices that represent the AMG hierarchy
std::vector<std::vector<int> > PcolIndices; // prolongation does not need a full matrix, only store colIndices
std::vector<std::vector<Scalar> > invDiags; // inverse of diagonal of Amatrices
BlockedMatrix<Scalar> *mat = nullptr; // input matrix, blocked
using DuneMat = Dune::BCRSMatrix<Dune::FieldMatrix<Scalar, 1, 1> >;
using DuneVec = Dune::BlockVector<Dune::FieldVector<Scalar, 1> >;
using MatrixOperator = Dune::MatrixAdapter<DuneMat, DuneVec, DuneVec>;
using DuneAmg = Dune::Amg::MatrixHierarchy<MatrixOperator, Dune::Amg::SequentialInformation>;
std::unique_ptr<DuneAmg> dune_amg;
std::unique_ptr<DuneMat> dune_coarse; // extracted pressure matrix, finest level in AMG hierarchy
std::shared_ptr<MatrixOperator> dune_op; // operator, input to Dune AMG
std::vector<int> level_sizes; // size of each level in the AMG hierarchy
std::vector<std::vector<int> > diagIndices; // index of diagonal value for each level
Dune::UMFPack<DuneMat> umfpack; // dune/istl/umfpack object used to solve the coarsest level of AMG
bool always_recalculate_aggregates = false; // OPM always reuses the aggregates by default
bool recalculate_aggregates = true; // only rerecalculate if true
const int pressure_idx = 1; // hardcoded to mimic OPM
unsigned num_pre_smooth_steps; // number of Jacobi smooth steps before restriction
unsigned num_post_smooth_steps; // number of Jacobi smooth steps after prolongation
// Analyze the AMG hierarchy build by Dune
void analyzeHierarchy();
// Analyze the aggregateMaps from the AMG hierarchy
// These can be reused, so only use when recalculate_aggregates is true
void analyzeAggregateMaps();
void create_preconditioner_amg(BlockedMatrix<Scalar> *mat);
};
} // namespace Opm
#endif

View File

@ -0,0 +1,62 @@
#include <cmath>
#include <algorithm>
#include <opm/simulators/linalg/bda/Misc.hpp>
namespace Opm::Accelerator {
// divide A by B, and round up: return (int)ceil(A/B)
unsigned int ceilDivision(const unsigned int A,
const unsigned int B)
{
return A / B + (A % B > 0);
}
// return the absolute value of the N elements for which the absolute value is highest
template<class Scalar>
Scalar get_absmax(const Scalar* data,
const int N)
{
return std::abs(*std::max_element(data, data + N,
[](Scalar a, Scalar b)
{ return std::fabs(a) < std::fabs(b); }));
}
// solve A^T * x = b
template<class Scalar>
void solve_transposed_3x3(const Scalar* A,
const Scalar* b,
Scalar* x)
{
const int B = 3;
// from dune-common/densematrix.hh, but transposed, so replace [r*B+c] with [r+c*B]
Scalar t4 = A[0+0*B] * A[1+1*B];
Scalar t6 = A[0+0*B] * A[1+2*B];
Scalar t8 = A[0+1*B] * A[1+0*B];
Scalar t10 = A[0+2*B] * A[1+0*B];
Scalar t12 = A[0+1*B] * A[2+0*B];
Scalar t14 = A[0+2*B] * A[2+0*B];
Scalar d = (t4*A[2+2*B]-t6*A[2+1*B]-t8*A[2+2*B]+
t10*A[2+1*B]+t12*A[1+2*B]-t14*A[1+1*B]); // determinant
x[0] = (b[0]*A[1+1*B]*A[2+2*B] - b[0]*A[2+1*B]*A[1+2*B]
- b[1] *A[0+1*B]*A[2+2*B] + b[1]*A[2+1*B]*A[0+2*B]
+ b[2] *A[0+1*B]*A[1+2*B] - b[2]*A[1+1*B]*A[0+2*B]) / d;
x[1] = (A[0+0*B]*b[1]*A[2+2*B] - A[0+0*B]*b[2]*A[1+2*B]
- A[1+0*B] *b[0]*A[2+2*B] + A[1+0*B]*b[2]*A[0+2*B]
+ A[2+0*B] *b[0]*A[1+2*B] - A[2+0*B]*b[1]*A[0+2*B]) / d;
x[2] = (A[0+0*B]*A[1+1*B]*b[2] - A[0+0*B]*A[2+1*B]*b[1]
- A[1+0*B] *A[0+1*B]*b[2] + A[1+0*B]*A[2+1*B]*b[0]
+ A[2+0*B] *A[0+1*B]*b[1] - A[2+0*B]*A[1+1*B]*b[0]) / d;
}
#define INSTANTIATE_TYPE(T)\
template void solve_transposed_3x3<T>(const T* A, const T* b, T* x);\
template T get_absmax<T>(const T* data, const int N);
INSTANTIATE_TYPE(double)
}

View File

@ -0,0 +1,62 @@
#ifndef OPM_MISC_HPP
#define OPM_MISC_HPP
#ifdef HAVE_ROCSPARSE
#include <hip/hip_runtime_api.h>
#include <hip/hip_version.h>
#include <sstream>
#define HIP_CHECK(STAT) \
do { \
const hipError_t stat = (STAT); \
if(stat != hipSuccess) \
{ \
std::ostringstream oss; \
oss << "rocsparseSolverBackend::hip "; \
oss << "error: " << hipGetErrorString(stat); \
OPM_THROW(std::logic_error, oss.str()); \
} \
} while(0)
#define ROCSPARSE_CHECK(STAT) \
do { \
const rocsparse_status stat = (STAT); \
if(stat != rocsparse_status_success) \
{ \
std::ostringstream oss; \
oss << "rocsparseSolverBackend::rocsparse "; \
oss << "error: " << stat; \
OPM_THROW(std::logic_error, oss.str()); \
} \
} while(0)
#define ROCBLAS_CHECK(STAT) \
do { \
const rocblas_status stat = (STAT); \
if(stat != rocblas_status_success) \
{ \
std::ostringstream oss; \
oss << "rocsparseSolverBackend::rocblas "; \
oss << "error: " << stat; \
OPM_THROW(std::logic_error, oss.str()); \
} \
} while(0)
#endif
namespace Opm::Accelerator {
unsigned int ceilDivision(const unsigned int A,
const unsigned int B);
template<class Scalar>
Scalar get_absmax(const Scalar *data,
const int N);
template<class Scalar>
void solve_transposed_3x3(const Scalar *A,
const Scalar *b,
Scalar *x);
}
#endif

View File

@ -1,5 +1,5 @@
/*
Copyright 2021 Equinor ASA
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
@ -20,12 +20,18 @@
#ifndef OPM_PRECONDITIONER_HEADER_INCLUDED
#define OPM_PRECONDITIONER_HEADER_INCLUDED
#if HAVE_OPENCL
#include <opm/simulators/linalg/bda/opencl/opencl.hpp>
#include <memory>
#endif
namespace Opm::Accelerator {
enum PreconditionerType {
BILU0,
CPR,
BISAI
};
template<class Scalar> class BlockedMatrix;
template<class Scalar, unsigned int block_size>
@ -38,47 +44,38 @@ protected:
int nnzb = 0; // number of blocks of the matrix
int verbosity = 0;
std::shared_ptr<cl::Context> context;
std::shared_ptr<cl::CommandQueue> queue;
std::vector<cl::Event> events;
cl_int err;
Preconditioner(int verbosity_) :
verbosity(verbosity_)
{};
public:
enum class Type {
BILU0,
CPR,
BISAI
};
static std::unique_ptr<Preconditioner> create(Type type,
virtual ~Preconditioner() = default;
static std::unique_ptr<Preconditioner> create(PreconditionerType type,
bool opencl_ilu_parallel,
int verbosity);
virtual ~Preconditioner() = default;
// nested Preconditioners might need to override this
virtual void setOpencl(std::shared_ptr<cl::Context>& context,
std::shared_ptr<cl::CommandQueue>& queue);
#if HAVE_OPENCL
// apply preconditioner, x = prec(y)
virtual void apply(const cl::Buffer& y, cl::Buffer& x) = 0;
#endif
// apply preconditioner, x = prec(y)
virtual void apply(Scalar& y, Scalar& x) = 0;
// analyze matrix, e.g. the sparsity pattern
// probably only called once
// the version with two params can be overloaded, if not, it will default to using the one param version
virtual bool analyze_matrix(BlockedMatrix<Scalar>* mat) = 0;
virtual bool analyze_matrix(BlockedMatrix<Scalar>* mat,
BlockedMatrix<Scalar>* jacMat);
BlockedMatrix<Scalar>* jacMat) = 0;
// create/update preconditioner, probably used every linear solve
// the version with two params can be overloaded, if not, it will default to using the one param version
virtual bool create_preconditioner(BlockedMatrix<Scalar>* mat) = 0;
virtual bool create_preconditioner(BlockedMatrix<Scalar>* mat,
BlockedMatrix<Scalar>* jacMat);
BlockedMatrix<Scalar>* jacMat) = 0;
};
} // namespace Opm::Accelerator

View File

@ -34,7 +34,7 @@
#endif
#ifdef HAVE_ROCSPARSE
#include <opm/simulators/linalg/bda/rocsparseWellContributions.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseWellContributions.hpp>
#endif
namespace Opm {

View File

@ -38,10 +38,11 @@
// otherwise, the nonzeroes of the matrix are assumed to be in a contiguous array, and a single GPU memcpy is enough
#define COPY_ROW_BY_ROW 0
#if HAVE_OPENMP
#include <thread>
#include <omp.h>
extern std::shared_ptr<std::thread> copyThread;
#if HAVE_OPENMP
#include <omp.h>
#endif // HAVE_OPENMP
namespace Opm::Accelerator {
@ -342,11 +343,17 @@ copy_system_to_gpu(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
#else
cudaMemcpyAsync(d_bVals, matrix->nnzValues,
nnz * sizeof(Scalar), cudaMemcpyHostToDevice, stream);
if (useJacMatrix) {
bool use_multithreading = true;
#if HAVE_OPENMP
if(omp_get_max_threads() > 1)
copyThread->join();
if(omp_get_max_threads() == 1)
use_multithreading = false;
#endif
if (useJacMatrix) {
if(use_multithreading)
copyThread->join();
cudaMemcpyAsync(d_mVals, jacMatrix->nnzValues,
nnzbs_prec * block_size * block_size * sizeof(Scalar),
cudaMemcpyHostToDevice, stream);
@ -399,12 +406,17 @@ update_system_on_gpu(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
#else
cudaMemcpyAsync(d_bVals, matrix->nnzValues,
nnz * sizeof(Scalar), cudaMemcpyHostToDevice, stream);
if (useJacMatrix) {
bool use_multithreading = true;
#if HAVE_OPENMP
if (omp_get_max_threads() > 1) {
copyThread->join();
}
if (omp_get_max_threads() == 1)
use_multithreading = false;
#endif
if (useJacMatrix) {
if (use_multithreading)
copyThread->join();
cudaMemcpyAsync(d_mVals, jacMatrix->nnzValues,
nnzbs_prec * block_size * block_size * sizeof(Scalar),
cudaMemcpyHostToDevice, stream);

View File

@ -1,580 +0,0 @@
/*
Copyright 2021 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <dune/common/shared_ptr.hh>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/simulators/linalg/bda/opencl/CPR.hpp>
#include <opm/simulators/linalg/bda/opencl/OpenclMatrix.hpp>
#include <opm/simulators/linalg/bda/opencl/openclKernels.hpp>
namespace Opm::Accelerator {
using Dune::Timer;
template<class Scalar, unsigned int block_size>
CPR<Scalar,block_size>::CPR(bool opencl_ilu_parallel_, int verbosity_)
: Base(verbosity_)
, opencl_ilu_parallel(opencl_ilu_parallel_)
{
bilu0 = std::make_unique<BILU0<Scalar,block_size> >(opencl_ilu_parallel, verbosity_);
diagIndices.resize(1);
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::
setOpencl(std::shared_ptr<cl::Context>& context_, std::shared_ptr<cl::CommandQueue>& queue_)
{
context = context_;
queue = queue_;
bilu0->setOpencl(context, queue);
}
template<class Scalar, unsigned int block_size>
bool CPR<Scalar,block_size>::analyze_matrix(BlockedMatrix<Scalar>* mat_)
{
this->Nb = mat_->Nb;
this->nnzb = mat_->nnzbs;
this->N = Nb * block_size;
this->nnz = nnzb * block_size * block_size;
bool success = bilu0->analyze_matrix(mat_);
mat = mat_;
return success;
}
template<class Scalar, unsigned int block_size>
bool CPR<Scalar,block_size>::
analyze_matrix(BlockedMatrix<Scalar>* mat_, BlockedMatrix<Scalar>* jacMat)
{
this->Nb = mat_->Nb;
this->nnzb = mat_->nnzbs;
this->N = Nb * block_size;
this->nnz = nnzb * block_size * block_size;
bool success = bilu0->analyze_matrix(mat_, jacMat);
mat = mat_;
return success;
}
template<class Scalar, unsigned int block_size>
bool CPR<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat_, BlockedMatrix<Scalar>* jacMat)
{
Dune::Timer t_bilu0;
bool result = bilu0->create_preconditioner(mat_, jacMat);
if (verbosity >= 3) {
std::ostringstream out;
out << "CPR create_preconditioner bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
create_preconditioner_amg(mat); // already points to bilu0::rmat if needed
if (verbosity >= 3) {
std::ostringstream out;
out << "CPR create_preconditioner_amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
return result;
}
template<class Scalar, unsigned int block_size>
bool CPR<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat_)
{
Dune::Timer t_bilu0;
bool result = bilu0->create_preconditioner(mat_);
if (verbosity >= 3) {
std::ostringstream out;
out << "CPR create_preconditioner bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
create_preconditioner_amg(mat); // already points to bilu0::rmat if needed
if (verbosity >= 3) {
std::ostringstream out;
out << "CPR create_preconditioner_amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
return result;
}
// return the absolute value of the N elements for which the absolute value is highest
template<class Scalar>
Scalar get_absmax(const Scalar* data, const int N)
{
return std::abs(*std::max_element(data, data + N,
[](Scalar a, Scalar b)
{ return std::fabs(a) < std::fabs(b); }));
}
// solve A^T * x = b
template<class Scalar>
void solve_transposed_3x3(const Scalar* A, const Scalar* b, Scalar* x)
{
const int B = 3;
// from dune-common/densematrix.hh, but transposed, so replace [r*B+c] with [r+c*B]
Scalar t4 = A[0+0*B] * A[1+1*B];
Scalar t6 = A[0+0*B] * A[1+2*B];
Scalar t8 = A[0+1*B] * A[1+0*B];
Scalar t10 = A[0+2*B] * A[1+0*B];
Scalar t12 = A[0+1*B] * A[2+0*B];
Scalar t14 = A[0+2*B] * A[2+0*B];
Scalar d = (t4*A[2+2*B]-t6*A[2+1*B]-t8*A[2+2*B]+
t10*A[2+1*B]+t12*A[1+2*B]-t14*A[1+1*B]); // determinant
x[0] = (b[0]*A[1+1*B]*A[2+2*B] - b[0]*A[2+1*B]*A[1+2*B]
- b[1] *A[0+1*B]*A[2+2*B] + b[1]*A[2+1*B]*A[0+2*B]
+ b[2] *A[0+1*B]*A[1+2*B] - b[2]*A[1+1*B]*A[0+2*B]) / d;
x[1] = (A[0+0*B]*b[1]*A[2+2*B] - A[0+0*B]*b[2]*A[1+2*B]
- A[1+0*B] *b[0]*A[2+2*B] + A[1+0*B]*b[2]*A[0+2*B]
+ A[2+0*B] *b[0]*A[1+2*B] - A[2+0*B]*b[1]*A[0+2*B]) / d;
x[2] = (A[0+0*B]*A[1+1*B]*b[2] - A[0+0*B]*A[2+1*B]*b[1]
- A[1+0*B] *A[0+1*B]*b[2] + A[1+0*B]*A[2+1*B]*b[0]
+ A[2+0*B] *A[0+1*B]*b[1] - A[2+0*B]*A[1+1*B]*b[0]) / d;
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar, block_size>::init_opencl_buffers()
{
d_Amatrices.reserve(num_levels);
d_Rmatrices.reserve(num_levels - 1);
d_invDiags.reserve(num_levels - 1);
for (Matrix<Scalar>& m : Amatrices) {
d_Amatrices.emplace_back(context.get(), m.N, m.M, m.nnzs, 1);
}
for (Matrix<Scalar>& m : Rmatrices) {
d_Rmatrices.emplace_back(context.get(), m.N, m.M, m.nnzs, 1);
d_f.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.N);
d_u.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.N);
d_PcolIndices.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(int) * m.M);
d_invDiags.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.M); // create a cl::Buffer
d_t.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.M);
}
d_weights = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * N);
d_rs = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * N);
d_mat = std::make_unique<OpenclMatrix<Scalar>>(context.get(), Nb, Nb, nnzb, block_size);
d_coarse_y = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * Nb);
d_coarse_x = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * Nb);
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::opencl_upload()
{
d_mat->upload(queue.get(), mat);
err = CL_SUCCESS;
events.resize(2 * Rmatrices.size() + 1);
err |= queue->enqueueWriteBuffer(*d_weights, CL_FALSE, 0,
sizeof(Scalar) * N, weights.data(), nullptr, &events[0]);
for (unsigned int i = 0; i < Rmatrices.size(); ++i) {
d_Amatrices[i].upload(queue.get(), &Amatrices[i]);
err |= queue->enqueueWriteBuffer(d_invDiags[i], CL_FALSE, 0,
sizeof(Scalar) * Amatrices[i].N, invDiags[i].data(),
nullptr, &events[2*i+1]);
err |= queue->enqueueWriteBuffer(d_PcolIndices[i], CL_FALSE, 0,
sizeof(int) * Amatrices[i].N, PcolIndices[i].data(),
nullptr, &events[2*i+2]);
}
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "CPR OpenCL enqueueWriteBuffer error");
}
for (unsigned int i = 0; i < Rmatrices.size(); ++i) {
d_Rmatrices[i].upload(queue.get(), &Rmatrices[i]);
}
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::
create_preconditioner_amg(BlockedMatrix<Scalar>* mat_)
{
this->mat = mat_;
coarse_vals.resize(nnzb);
coarse_x.resize(Nb);
coarse_y.resize(Nb);
weights.resize(N);
try {
Scalar rhs[] = {0, 0, 0};
rhs[pressure_idx] = 1;
// find diagonal index for each row
if (diagIndices[0].empty()) {
diagIndices[0].resize(Nb);
for (int row = 0; row < Nb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
auto candidate = std::find(mat->colIndices + start, mat->colIndices + end, row);
assert(candidate != mat->colIndices + end);
diagIndices[0][row] = candidate - mat->colIndices;
}
}
// calculate weights for each row
for (int row = 0; row < Nb; ++row) {
// solve to find weights
Scalar* row_weights = weights.data() + block_size * row; // weights for this row
solve_transposed_3x3(mat->nnzValues + block_size * block_size * diagIndices[0][row], rhs, row_weights);
// normalize weights for this row
Scalar abs_max = get_absmax(row_weights, block_size);
for (unsigned int i = 0; i < block_size; i++) {
row_weights[i] /= abs_max;
}
}
// extract pressure
// transform blocks to scalars to create scalar linear system
for (int row = 0; row < Nb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
for (int idx = start; idx < end; ++idx) {
Scalar* block = mat->nnzValues + idx * block_size * block_size;
Scalar* row_weights = weights.data() + block_size * row;
Scalar value = 0.0;
for (unsigned int i = 0; i < block_size; ++i) {
value += block[block_size * i + pressure_idx] * row_weights[i];
}
coarse_vals[idx] = value;
}
}
#if HAVE_MPI
using Communication = Dune::OwnerOverlapCopyCommunication<int, int>;
#else
using Communication = Dune::Amg::SequentialInformation;
#endif
using OverlapFlags = Dune::NegateSet<Communication::OwnerSet>;
if (recalculate_aggregates) {
dune_coarse = std::make_unique<DuneMat>(Nb, Nb, nnzb, DuneMat::row_wise);
using Iter = typename DuneMat::CreateIterator;
// setup sparsity pattern
for (Iter row = dune_coarse->createbegin(); row != dune_coarse->createend(); ++row) {
int start = mat->rowPointers[row.index()];
int end = mat->rowPointers[row.index() + 1];
for (int idx = start; idx < end; ++idx) {
int col = mat->colIndices[idx];
row.insert(col);
}
}
// set values
for (int row = 0; row < Nb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
for (int idx = start; idx < end; ++idx) {
int col = mat->colIndices[idx];
(*dune_coarse)[row][col] = coarse_vals[idx];
}
}
dune_op = std::make_shared<MatrixOperator>(*dune_coarse);
Dune::Amg::SequentialInformation seqinfo;
dune_amg = std::make_unique<DuneAmg>(dune_op, Dune::stackobject_to_shared_ptr(seqinfo));
PropertyTree property_tree;
property_tree.put("alpha", 0.333333333333);
// The matrix has a symmetric sparsity pattern, but the values are not symmetric
// Yet a SymmetricDependency is used in AMGCPR
// An UnSymmetricCriterion is also available
// using Criterion = Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<DuneMat, Dune::Amg::FirstDiagonal> >;
using CriterionBase = Dune::Amg::AggregationCriterion<Dune::Amg::SymmetricDependency<DuneMat, Dune::Amg::FirstDiagonal>>;
using Criterion = Dune::Amg::CoarsenCriterion<CriterionBase>;
const Criterion c = Opm::AMGHelper<MatrixOperator,Dune::Amg::SequentialInformation,DuneMat,DuneVec>::criterion(property_tree);
num_pre_smooth_steps = c.getNoPreSmoothSteps();
num_post_smooth_steps = c.getNoPostSmoothSteps();
dune_amg->template build<OverlapFlags>(c);
analyzeHierarchy();
analyzeAggregateMaps();
recalculate_aggregates = false;
} else {
// update values of coarsest level in AMG
// this works because that level is actually a reference to the DuneMat held by dune_coarse
for (int row = 0; row < Nb; ++row) {
int start = mat->rowPointers[row];
int end = mat->rowPointers[row + 1];
for (int idx = start; idx < end; ++idx) {
int col = mat->colIndices[idx];
(*dune_coarse)[row][col] = coarse_vals[idx];
}
}
// update the rest of the AMG hierarchy
dune_amg->recalculateGalerkin(OverlapFlags());
analyzeHierarchy();
}
// initialize OpenclMatrices and Buffers if needed
auto init_func = std::bind(&CPR::init_opencl_buffers, this);
std::call_once(opencl_buffers_allocated, init_func);
// upload matrices and vectors to GPU
opencl_upload();
} catch (const std::exception& ex) {
std::cerr << "Caught exception: " << ex.what() << std::endl;
throw ex;
}
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::analyzeHierarchy()
{
const typename DuneAmg::ParallelMatrixHierarchy& matrixHierarchy = dune_amg->matrices();
// store coarsest AMG level in umfpack format, also performs LU decomposition
umfpack.setMatrix((*matrixHierarchy.coarsest()).getmat());
num_levels = dune_amg->levels();
level_sizes.resize(num_levels);
diagIndices.resize(num_levels);
Amatrices.reserve(num_levels);
Rmatrices.reserve(num_levels - 1); // coarsest level does not need one
invDiags.reserve(num_levels);
Amatrices.clear();
invDiags.clear();
// matrixIter.dereference() returns MatrixAdapter
// matrixIter.dereference().getmat() returns BCRSMat
typename DuneAmg::ParallelMatrixHierarchy::ConstIterator matrixIter = matrixHierarchy.finest();
for (int level = 0; level < num_levels; ++matrixIter, ++level) {
const auto& A = matrixIter.dereference().getmat();
level_sizes[level] = A.N();
diagIndices[level].reserve(A.N());
// extract matrix A
Amatrices.emplace_back(A.N(), A.nonzeroes());
// contiguous copy is not possible
// std::copy(&(A[0][0][0][0]), &(A[0][0][0][0]) + A.nonzeroes(), Amatrices.back().nnzValues.data());
// also update diagonal indices if needed, level 0 is already filled in create_preconditioner()
int nnz_idx = 0;
const bool fillDiagIndices = diagIndices[level].empty();
for (typename DuneMat::const_iterator r = A.begin(); r != A.end(); ++r) {
for (auto c = r->begin(); c != r->end(); ++c) {
Amatrices.back().nnzValues[nnz_idx] = A[r.index()][c.index()];
if (fillDiagIndices && r.index() == c.index()) {
diagIndices[level].emplace_back(nnz_idx);
}
nnz_idx++;
}
}
BdaBridge<DuneMat, DuneVec, 1>::copySparsityPatternFromISTL(A, Amatrices.back().rowPointers,
Amatrices.back().colIndices);
// compute inverse diagonal values for current level
invDiags.emplace_back(A.N());
for (unsigned int row = 0; row < A.N(); ++row) {
invDiags.back()[row] = 1.0 / Amatrices.back().nnzValues[diagIndices[level][row]];
}
}
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::analyzeAggregateMaps()
{
PcolIndices.resize(num_levels - 1);
Rmatrices.clear();
const typename DuneAmg::AggregatesMapList& aggregatesMaps = dune_amg->aggregatesMaps();
typename DuneAmg::AggregatesMapList::const_iterator mapIter = aggregatesMaps.begin();
for (int level = 0; level < num_levels - 1; ++mapIter, ++level) {
typename DuneAmg::AggregatesMap* map = *mapIter;
Rmatrices.emplace_back(level_sizes[level+1], level_sizes[level], level_sizes[level]);
std::fill(Rmatrices.back().nnzValues.begin(), Rmatrices.back().nnzValues.end(), 1.0);
// get indices for each row of P and R
std::vector<std::vector<unsigned>> indicesR(level_sizes[level+1]);
PcolIndices[level].resize(level_sizes[level]);
using AggregateIterator = typename DuneAmg::AggregatesMap::const_iterator;
for (AggregateIterator ai = map->begin(); ai != map->end(); ++ai) {
if (*ai != DuneAmg::AggregatesMap::ISOLATED) {
const long int diff = ai - map->begin();
PcolIndices[level][diff] = *ai;
indicesR[*ai].emplace_back(diff);
}
}
int col_idx = 0;
// set sparsity pattern of R
Rmatrices.back().rowPointers[0] = 0;
for (unsigned int i = 0; i < indicesR.size(); ++i) {
Rmatrices.back().rowPointers[i + 1] = Rmatrices.back().rowPointers[i] + indicesR[i].size();
for (auto it = indicesR[i].begin(); it != indicesR[i].end(); ++it) {
Rmatrices.back().colIndices[col_idx++] = *it;
}
}
}
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::amg_cycle_gpu(const int level, cl::Buffer& y, cl::Buffer& x)
{
OpenclMatrix<Scalar>* A = &d_Amatrices[level];
OpenclMatrix<Scalar>* R = &d_Rmatrices[level];
int Ncur = A->Nb;
if (level == num_levels - 1) {
// solve coarsest level
std::vector<Scalar> h_y(Ncur), h_x(Ncur, 0);
events.resize(1);
err = queue->enqueueReadBuffer(y, CL_FALSE, 0,
sizeof(Scalar) * Ncur, h_y.data(), nullptr, &events[0]);
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "CPR OpenCL enqueueReadBuffer error");
}
// solve coarsest level using umfpack
umfpack.apply(h_x.data(), h_y.data());
events.resize(1);
err = queue->enqueueWriteBuffer(x, CL_FALSE, 0,
sizeof(Scalar) * Ncur, h_x.data(), nullptr, &events[0]);
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "CPR OpenCL enqueueWriteBuffer error");
}
return;
}
int Nnext = d_Amatrices[level+1].Nb;
cl::Buffer& t = d_t[level];
cl::Buffer& f = d_f[level];
cl::Buffer& u = d_u[level]; // u was 0-initialized earlier
// presmooth
Scalar jacobi_damping = 0.65; // default value in amgcl: 0.72
for (unsigned i = 0; i < num_pre_smooth_steps; ++i) {
OpenclKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers, x, y, t, Ncur, 1);
OpenclKernels<Scalar>::vmul(jacobi_damping, d_invDiags[level], t, x, Ncur);
}
// move to coarser level
OpenclKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers, x, y, t, Ncur, 1);
OpenclKernels<Scalar>::spmv(R->nnzValues, R->colIndices, R->rowPointers, t, f, Nnext, 1, true);
amg_cycle_gpu(level + 1, f, u);
OpenclKernels<Scalar>::prolongate_vector(u, x, d_PcolIndices[level], Ncur);
// postsmooth
for (unsigned i = 0; i < num_post_smooth_steps; ++i) {
OpenclKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers,
x, y, t, Ncur, 1);
OpenclKernels<Scalar>::vmul(jacobi_damping, d_invDiags[level], t, x, Ncur);
}
}
// x = prec(y)
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::apply_amg(const cl::Buffer& y, cl::Buffer& x)
{
// 0-initialize u and x vectors
events.resize(d_u.size() + 1);
err = queue->enqueueFillBuffer(*d_coarse_x, 0, 0,
sizeof(Scalar) * Nb, nullptr, &events[0]);
for (unsigned int i = 0; i < d_u.size(); ++i) {
err |= queue->enqueueFillBuffer(d_u[i], 0, 0,
sizeof(Scalar) * Rmatrices[i].N, nullptr, &events[i + 1]);
}
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "CPR OpenCL enqueueWriteBuffer error");
}
OpenclKernels<Scalar>::residual(d_mat->nnzValues, d_mat->colIndices,
d_mat->rowPointers, x, y, *d_rs, Nb, block_size);
OpenclKernels<Scalar>::full_to_pressure_restriction(*d_rs, *d_weights, *d_coarse_y, Nb);
amg_cycle_gpu(0, *d_coarse_y, *d_coarse_x);
OpenclKernels<Scalar>::add_coarse_pressure_correction(*d_coarse_x, x, pressure_idx, Nb);
}
template<class Scalar, unsigned int block_size>
void CPR<Scalar,block_size>::apply(const cl::Buffer& y, cl::Buffer& x)
{
Dune::Timer t_bilu0;
bilu0->apply(y, x);
if (verbosity >= 4) {
std::ostringstream out;
out << "CPR apply bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
apply_amg(y, x);
if (verbosity >= 4) {
std::ostringstream out;
out << "CPR apply amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
}
#define INSTANCE_TYPE(T) \
template class CPR<T,1>; \
template class CPR<T,2>; \
template class CPR<T,3>; \
template class CPR<T,4>; \
template class CPR<T,5>; \
template class CPR<T,6>;
INSTANCE_TYPE(double)
} // namespace Opm::Accelerator

View File

@ -1,87 +0,0 @@
/*
Copyright 2021 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/linalg/bda/opencl/Preconditioner.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/bda/opencl/BILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/BISAI.hpp>
#include <opm/simulators/linalg/bda/opencl/CPR.hpp>
#include <memory>
#include <string>
namespace Opm::Accelerator {
template<class Scalar, unsigned int block_size>
void Preconditioner<Scalar,block_size>::
setOpencl(std::shared_ptr<cl::Context>& context_,
std::shared_ptr<cl::CommandQueue>& queue_)
{
context = context_;
queue = queue_;
}
template<class Scalar, unsigned int block_size>
std::unique_ptr<Preconditioner<Scalar,block_size>>
Preconditioner<Scalar,block_size>::create(Type type, bool opencl_ilu_parallel, int verbosity)
{
switch (type ) {
case Type::BILU0:
return std::make_unique<BILU0<Scalar,block_size>>(opencl_ilu_parallel, verbosity);
case Type::CPR:
return std::make_unique<CPR<Scalar,block_size>>(opencl_ilu_parallel, verbosity);
case Type::BISAI:
return std::make_unique<BISAI<Scalar,block_size>>(opencl_ilu_parallel, verbosity);
}
OPM_THROW(std::logic_error,
"Invalid preconditioner type " + std::to_string(static_cast<int>(type)));
}
template<class Scalar, unsigned int block_size>
bool Preconditioner<Scalar,block_size>::
analyze_matrix(BlockedMatrix<Scalar>* mat,
[[maybe_unused]] BlockedMatrix<Scalar>* jacMat)
{
return analyze_matrix(mat);
}
template<class Scalar, unsigned int block_size>
bool Preconditioner<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat,
[[maybe_unused]] BlockedMatrix<Scalar>* jacMat)
{
return create_preconditioner(mat);
}
#define INSTANCE_TYPE(T) \
template class Preconditioner<T,1>; \
template class Preconditioner<T,2>; \
template class Preconditioner<T,3>; \
template class Preconditioner<T,4>; \
template class Preconditioner<T,5>; \
template class Preconditioner<T,6>;
INSTANCE_TYPE(double)
} // namespace Opm::Accelerator

View File

@ -24,19 +24,26 @@
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <opm/simulators/linalg/bda/opencl/BILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/ChowPatelIlu.hpp>
#include <opm/simulators/linalg/bda/opencl/openclKernels.hpp>
#include <opm/simulators/linalg/bda/Reorder.hpp>
#include <sstream>
#include <thread>
extern std::shared_ptr<std::thread> copyThread;
#if HAVE_OPENMP
#include <omp.h>
#endif //HAVE_OPENMP
namespace Opm::Accelerator {
using Dune::Timer;
template<class Scalar, unsigned int block_size>
BILU0<Scalar,block_size>::BILU0(bool opencl_ilu_parallel_, int verbosity_)
openclBILU0<Scalar,block_size>::openclBILU0(bool opencl_ilu_parallel_, int verbosity_)
: Base(verbosity_)
, opencl_ilu_parallel(opencl_ilu_parallel_)
{
@ -46,13 +53,13 @@ BILU0<Scalar,block_size>::BILU0(bool opencl_ilu_parallel_, int verbosity_)
}
template<class Scalar, unsigned int block_size>
bool BILU0<Scalar,block_size>::analyze_matrix(BlockedMatrix<Scalar>* mat)
bool openclBILU0<Scalar,block_size>::analyze_matrix(BlockedMatrix<Scalar>* mat)
{
return analyze_matrix(mat, nullptr);
}
template<class Scalar, unsigned int block_size>
bool BILU0<Scalar,block_size>::
bool openclBILU0<Scalar,block_size>::
analyze_matrix(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
{
const unsigned int bs = block_size;
@ -80,7 +87,7 @@ analyze_matrix(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
CSCRowIndices.data(), CSCColPointers.data(), Nb);
if(verbosity >= 3){
std::ostringstream out;
out << "BILU0 convert CSR to CSC: " << t_convert.stop() << " s";
out << "openclBILU0 convert CSR to CSC: " << t_convert.stop() << " s";
OpmLog::info(out.str());
}
} else {
@ -105,11 +112,11 @@ analyze_matrix(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
}
if (verbosity >= 1) {
out << "BILU0 analysis took: " << t_analysis.stop() << " s, " << numColors << " colors\n";
out << "openclBILU0 analysis took: " << t_analysis.stop() << " s, " << numColors << " colors\n";
}
#if CHOW_PATEL
out << "BILU0 CHOW_PATEL: " << CHOW_PATEL << ", CHOW_PATEL_GPU: " << CHOW_PATEL_GPU;
out << "openclBILU0 CHOW_PATEL: " << CHOW_PATEL << ", CHOW_PATEL_GPU: " << CHOW_PATEL_GPU;
#endif
OpmLog::info(out.str());
@ -169,25 +176,35 @@ analyze_matrix(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "BILU0 OpenCL enqueueWriteBuffer error");
OPM_THROW(std::logic_error, "openclBILU0 OpenCL enqueueWriteBuffer error");
}
return true;
}
template<class Scalar, unsigned int block_size>
bool BILU0<Scalar,block_size>::create_preconditioner(BlockedMatrix<Scalar>* mat)
bool openclBILU0<Scalar,block_size>::create_preconditioner(BlockedMatrix<Scalar>* mat)
{
return create_preconditioner(mat, nullptr);
}
template<class Scalar, unsigned int block_size>
bool BILU0<Scalar,block_size>::
bool openclBILU0<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
{
const unsigned int bs = block_size;
auto *matToDecompose = jacMat ? jacMat : mat;
bool use_multithreading = true;
#if HAVE_OPENMP
if (omp_get_max_threads() == 1)
use_multithreading = false;
#endif
if (jacMat && use_multithreading) {
copyThread->join();
}
// TODO: remove this copy by replacing inplace ilu decomp by out-of-place ilu decomp
Timer t_copy;
@ -196,7 +213,7 @@ create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
if (verbosity >= 3){
std::ostringstream out;
out << "BILU0 memcpy: " << t_copy.stop() << " s";
out << "openclBILU0 memcpy: " << t_copy.stop() << " s";
OpmLog::info(out.str());
}
@ -239,12 +256,12 @@ create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "BILU0 OpenCL enqueueWriteBuffer error");
OPM_THROW(std::logic_error, "openclBILU0 OpenCL enqueueWriteBuffer error");
}
if (verbosity >= 3) {
std::ostringstream out;
out << "BILU0 copy to GPU: " << t_copyToGpu.stop() << " s";
out << "openclBILU0 copy to GPU: " << t_copyToGpu.stop() << " s";
OpmLog::info(out.str());
}
@ -264,7 +281,7 @@ create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
if (verbosity >= 3) {
queue->finish();
out << "BILU0 decomposition: " << t_decomposition.stop() << " s";
out << "openclBILU0 decomposition: " << t_decomposition.stop() << " s";
OpmLog::info(out.str());
}
#endif // CHOW_PATEL
@ -276,7 +293,7 @@ create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
// however, if individual kernel calls are timed, waiting for events is needed
// behavior on other GPUs is untested
template<class Scalar, unsigned int block_size>
void BILU0<Scalar,block_size>::apply(const cl::Buffer& y, cl::Buffer& x)
void openclBILU0<Scalar,block_size>::apply(const cl::Buffer& y, cl::Buffer& x)
{
const Scalar relaxation = 0.9;
cl::Event event;
@ -311,18 +328,18 @@ void BILU0<Scalar,block_size>::apply(const cl::Buffer& y, cl::Buffer& x)
if (verbosity >= 4) {
std::ostringstream out;
out << "BILU0 apply: " << t_apply.stop() << " s";
out << "openclBILU0 apply: " << t_apply.stop() << " s";
OpmLog::info(out.str());
}
}
#define INSTANCE_TYPE(T) \
template class BILU0<T,1>; \
template class BILU0<T,2>; \
template class BILU0<T,3>; \
template class BILU0<T,4>; \
template class BILU0<T,5>; \
template class BILU0<T,6>;
template class openclBILU0<T,1>; \
template class openclBILU0<T,2>; \
template class openclBILU0<T,3>; \
template class openclBILU0<T,4>; \
template class openclBILU0<T,5>; \
template class openclBILU0<T,6>;
INSTANCE_TYPE(double)

View File

@ -17,15 +17,15 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BILU0_HPP
#define BILU0_HPP
#ifndef OPM_OPENCLBILU0_HPP
#define OPM_OPENCLBILU0_HPP
#include <mutex>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/simulators/linalg/bda/opencl/opencl.hpp>
#include <opm/simulators/linalg/bda/opencl/Preconditioner.hpp>
#include <opm/simulators/linalg/bda/opencl/openclPreconditioner.hpp>
#include <opm/simulators/linalg/bda/opencl/ChowPatelIlu.hpp>
@ -35,9 +35,9 @@ namespace Opm::Accelerator {
/// The decomposition is done on GPU, using exact decomposition, or ChowPatel decomposition
/// The preconditioner is applied via two exact triangular solves
template<class Scalar, unsigned int block_size>
class BILU0 : public Preconditioner<Scalar,block_size>
class openclBILU0 : public openclPreconditioner<Scalar,block_size>
{
using Base = Preconditioner<Scalar,block_size>;
using Base = openclPreconditioner<Scalar,block_size>;
using Base::N;
using Base::Nb;
@ -87,7 +87,7 @@ private:
public:
BILU0(bool opencl_ilu_parallel, int verbosity);
openclBILU0(bool opencl_ilu_parallel, int verbosity);
// analysis, extract parallelism if specified
bool analyze_matrix(BlockedMatrix<Scalar>* mat) override;
@ -103,6 +103,7 @@ public:
// via Lz = y
// and Ux = z
void apply(const cl::Buffer& y, cl::Buffer& x) override;
void apply(Scalar& y, Scalar& x) {}
std::tuple<std::vector<int>, std::vector<int>, std::vector<int>>
get_preconditioner_structure()

View File

@ -26,8 +26,8 @@
#include <opm/simulators/linalg/bda/BdaSolver.hpp>
#include <opm/simulators/linalg/bda/opencl/opencl.hpp>
#include <opm/simulators/linalg/bda/opencl/BILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/BISAI.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBISAI.hpp>
#include <opm/simulators/linalg/bda/opencl/openclKernels.hpp>
#include <opm/simulators/linalg/bda/Reorder.hpp>
#include <opm/simulators/linalg/bda/opencl/ChowPatelIlu.hpp> // disable BISAI if ChowPatel is selected
@ -40,17 +40,17 @@ using Opm::OpmLog;
using Dune::Timer;
template<class Scalar, unsigned int block_size>
BISAI<Scalar,block_size>::BISAI(bool opencl_ilu_parallel_, int verbosity_)
openclBISAI<Scalar,block_size>::openclBISAI(bool opencl_ilu_parallel_, int verbosity_)
: Base(verbosity_)
{
#if CHOW_PATEL
OPM_THROW(std::logic_error, "Error --linear-solver=isai cannot be used if ChowPatelIlu is used, probably defined by CMake\n");
#endif
bilu0 = std::make_unique<BILU0<Scalar,block_size>>(opencl_ilu_parallel_, verbosity_);
bilu0 = std::make_unique<openclBILU0<Scalar,block_size>>(opencl_ilu_parallel_, verbosity_);
}
template<class Scalar, unsigned int block_size>
void BISAI<Scalar,block_size>::
void openclBISAI<Scalar,block_size>::
setOpencl(std::shared_ptr<cl::Context>& context_,
std::shared_ptr<cl::CommandQueue>& queue_)
{
@ -79,13 +79,13 @@ buildCsrToCscOffsetMap(std::vector<int> colPointers, std::vector<int> rowIndices
}
template<class Scalar, unsigned int block_size>
bool BISAI<Scalar,block_size>::analyze_matrix(BlockedMatrix<Scalar>* mat)
bool openclBISAI<Scalar,block_size>::analyze_matrix(BlockedMatrix<Scalar>* mat)
{
return analyze_matrix(mat, nullptr);
}
template<class Scalar, unsigned int block_size>
bool BISAI<Scalar,block_size>::
bool openclBISAI<Scalar,block_size>::
analyze_matrix(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
{
const unsigned int bs = block_size;
@ -108,7 +108,7 @@ analyze_matrix(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
}
template<class Scalar, unsigned int block_size>
void BISAI<Scalar,block_size>::buildLowerSubsystemsStructures()
void openclBISAI<Scalar,block_size>::buildLowerSubsystemsStructures()
{
lower.subsystemPointers.assign(Nb + 1, 0);
@ -138,14 +138,14 @@ void BISAI<Scalar,block_size>::buildLowerSubsystemsStructures()
if (verbosity >= 4) {
std::ostringstream out;
out << "BISAI buildLowerSubsystemsStructures time: "
out << "openclBISAI buildLowerSubsystemsStructures time: "
<< t_buildLowerSubsystemsStructures.stop() << " s";
OpmLog::info(out.str());
}
}
template<class Scalar, unsigned int block_size>
void BISAI<Scalar,block_size>::buildUpperSubsystemsStructures()
void openclBISAI<Scalar,block_size>::buildUpperSubsystemsStructures()
{
upper.subsystemPointers.assign(Nb + 1, 0);
@ -175,14 +175,14 @@ void BISAI<Scalar,block_size>::buildUpperSubsystemsStructures()
if (verbosity >= 4) {
std::ostringstream out;
out << "BISAI buildUpperSubsystemsStructures time: "
out << "openclBISAI buildUpperSubsystemsStructures time: "
<< t_buildUpperSubsystemsStructures.stop() << " s";
OpmLog::info(out.str());
}
}
template<class Scalar, unsigned int block_size>
bool BISAI<Scalar,block_size>::
bool openclBISAI<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
{
const unsigned int bs = block_size;
@ -300,7 +300,7 @@ create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "BISAI OpenCL enqueueWriteBuffer error");
OPM_THROW(std::logic_error, "openclBISAI OpenCL enqueueWriteBuffer error");
}
});
@ -326,7 +326,7 @@ create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
if (verbosity >= 4) {
std::ostringstream out;
out << "BISAI createPreconditioner time: " << t_preconditioner.stop() << " s";
out << "openclBISAI createPreconditioner time: " << t_preconditioner.stop() << " s";
OpmLog::info(out.str());
}
@ -334,14 +334,14 @@ create_preconditioner(BlockedMatrix<Scalar>* mat, BlockedMatrix<Scalar>* jacMat)
}
template<class Scalar, unsigned int block_size>
bool BISAI<Scalar,block_size>::
bool openclBISAI<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat)
{
return create_preconditioner(mat, nullptr);
}
template<class Scalar, unsigned int block_size>
void BISAI<Scalar,block_size>::apply(const cl::Buffer& x, cl::Buffer& y)
void openclBISAI<Scalar,block_size>::apply(const cl::Buffer& x, cl::Buffer& y)
{
const unsigned int bs = block_size;
@ -354,12 +354,12 @@ void BISAI<Scalar,block_size>::apply(const cl::Buffer& x, cl::Buffer& y)
}
#define INSTANCE_TYPE(T) \
template class BISAI<T,1>; \
template class BISAI<T,2>; \
template class BISAI<T,3>; \
template class BISAI<T,4>; \
template class BISAI<T,5>; \
template class BISAI<T,6>;
template class openclBISAI<T,1>; \
template class openclBISAI<T,2>; \
template class openclBISAI<T,3>; \
template class openclBISAI<T,4>; \
template class openclBISAI<T,5>; \
template class openclBISAI<T,6>;
INSTANCE_TYPE(double)

View File

@ -17,14 +17,14 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BISAI_HPP
#define BISAI_HPP
#ifndef OPM_OPENCLBISAI_HPP
#define OPM_OPENCLBISAI_HPP
#include <mutex>
#include <opm/simulators/linalg/bda/opencl/opencl.hpp>
#include <opm/simulators/linalg/bda/opencl/BILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/Preconditioner.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/openclPreconditioner.hpp>
namespace Opm::Accelerator {
@ -33,9 +33,9 @@ template<class Scalar> class BlockedMatrix;
/// This class implements a Blocked version of the Incomplete Sparse Approximate Inverse (ISAI) preconditioner.
/// Inspired by the paper "Incomplete Sparse Approximate Inverses for Parallel Preconditioning" by Anzt et. al.
template<class Scalar, unsigned int block_size>
class BISAI : public Preconditioner<Scalar,block_size>
class openclBISAI : public openclPreconditioner<Scalar,block_size>
{
using Base = Preconditioner<Scalar,block_size>;
using Base = openclPreconditioner<Scalar,block_size>;
using Base::N;
using Base::Nb;
@ -68,7 +68,7 @@ private:
cl::Buffer d_invL_x;
bool opencl_ilu_parallel;
std::unique_ptr<BILU0<Scalar,block_size>> bilu0;
std::unique_ptr<openclBILU0<Scalar,block_size>> bilu0;
/// Struct that holds the structure of the small subsystems for each column
struct subsystemStructure {
@ -107,7 +107,7 @@ private:
void buildUpperSubsystemsStructures();
public:
BISAI(bool opencl_ilu_parallel, int verbosity);
openclBISAI(bool opencl_ilu_parallel, int verbosity);
// set own Opencl variables, but also that of the bilu0 preconditioner
void setOpencl(std::shared_ptr<cl::Context>& context,
@ -125,6 +125,7 @@ public:
// apply preconditioner, x = prec(y)
void apply(const cl::Buffer& y, cl::Buffer& x) override;
void apply(Scalar& y, Scalar& x) {}
};
/// Similar function to csrPatternToCsc. It gives an offset map from CSR to CSC instead of the full CSR to CSC conversion.

View File

@ -0,0 +1,321 @@
/*
Copyright 2021 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <dune/common/shared_ptr.hh>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/simulators/linalg/bda/opencl/openclCPR.hpp>
#include <opm/simulators/linalg/bda/opencl/OpenclMatrix.hpp>
#include <opm/simulators/linalg/bda/opencl/openclKernels.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
namespace Opm::Accelerator {
using Dune::Timer;
template<class Scalar, unsigned int block_size>
openclCPR<Scalar,block_size>::openclCPR(bool opencl_ilu_parallel_, int verbosity_)
: Base(verbosity_)
, opencl_ilu_parallel(opencl_ilu_parallel_)
{
bilu0 = std::make_unique<openclBILU0<Scalar,block_size> >(opencl_ilu_parallel, verbosity_);
}
template<class Scalar, unsigned int block_size>
void openclCPR<Scalar,block_size>::
setOpencl(std::shared_ptr<cl::Context>& context_, std::shared_ptr<cl::CommandQueue>& queue_) {
context = context_;
queue = queue_;
bilu0->setOpencl(context, queue);
}
template<class Scalar, unsigned int block_size>
bool openclCPR<Scalar,block_size>::
analyze_matrix(BlockedMatrix<Scalar>* mat_) {
this->Nb = mat_->Nb;
this->nnzb = mat_->nnzbs;
this->N = this->Nb * block_size;
this->nnz = this->nnzb * block_size * block_size;
bool success = bilu0->analyze_matrix(mat_);
this->mat = mat_;
return success;
}
template<class Scalar, unsigned int block_size>
bool openclCPR<Scalar,block_size>::
analyze_matrix(BlockedMatrix<Scalar>* mat_, BlockedMatrix<Scalar>* jacMat) {
this->Nb = mat_->Nb;
this->nnzb = mat_->nnzbs;
this->N = this->Nb * block_size;
this->nnz = this->nnzb * block_size * block_size;
bool success = bilu0->analyze_matrix(mat_, jacMat);
this->mat = mat_;
return success;
}
template<class Scalar, unsigned int block_size>
bool openclCPR<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat_, BlockedMatrix<Scalar>* jacMat) {
Dune::Timer t_bilu0;
bool result = bilu0->create_preconditioner(mat_, jacMat);
if (verbosity >= 3) {
std::ostringstream out;
out << "openclCPR create_preconditioner bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
this->create_preconditioner_amg(this->mat); // already points to bilu0::rmat if needed
if (verbosity >= 3) {
std::ostringstream out;
out << "openclCPR create_preconditioner_amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
// initialize OpenclMatrices and Buffers if needed
auto init_func = std::bind(&openclCPR::init_opencl_buffers, this);
std::call_once(opencl_buffers_allocated, init_func);
// upload matrices and vectors to GPU
opencl_upload();
return result;
}
template<class Scalar, unsigned int block_size>
bool openclCPR<Scalar,block_size>::
create_preconditioner(BlockedMatrix<Scalar>* mat_) {
Dune::Timer t_bilu0;
bool result = bilu0->create_preconditioner(mat_);
if (verbosity >= 3) {
std::ostringstream out;
out << "openclCPR create_preconditioner bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
this->create_preconditioner_amg(this->mat); // already points to bilu0::rmat if needed
if (verbosity >= 3) {
std::ostringstream out;
out << "openclCPR create_preconditioner_amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
// initialize OpenclMatrices and Buffers if needed
auto init_func = std::bind(&openclCPR::init_opencl_buffers, this);
std::call_once(opencl_buffers_allocated, init_func);
// upload matrices and vectors to GPU
opencl_upload();
return result;
}
template<class Scalar, unsigned int block_size>
void openclCPR<Scalar, block_size>::
init_opencl_buffers() {
d_Amatrices.reserve(this->num_levels);
d_Rmatrices.reserve(this->num_levels - 1);
d_invDiags.reserve(this->num_levels - 1);
for (Matrix<Scalar>& m : this->Amatrices) {
d_Amatrices.emplace_back(context.get(), m.N, m.M, m.nnzs, 1);
}
for (Matrix<Scalar>& m : this->Rmatrices) {
d_Rmatrices.emplace_back(context.get(), m.N, m.M, m.nnzs, 1);
d_f.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.N);
d_u.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.N);
d_PcolIndices.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(int) * m.M);
d_invDiags.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.M); // create a cl::Buffer
d_t.emplace_back(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * m.M);
}
d_weights = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * this->N);
d_rs = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * this->N);
d_mat = std::make_unique<OpenclMatrix<Scalar>>(context.get(), this->Nb, this->Nb, this->nnzb, block_size);
d_coarse_y = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * this->Nb);
d_coarse_x = std::make_unique<cl::Buffer>(*context, CL_MEM_READ_WRITE, sizeof(Scalar) * this->Nb);
}
template<class Scalar, unsigned int block_size>
void openclCPR<Scalar,block_size>::opencl_upload()
{
d_mat->upload(queue.get(), this->mat);
err = CL_SUCCESS;
events.resize(2 * this->Rmatrices.size() + 1);
err |= queue->enqueueWriteBuffer(*d_weights, CL_FALSE, 0,
sizeof(Scalar) * this->N, this->weights.data(), nullptr, &events[0]);
for (unsigned int i = 0; i < this->Rmatrices.size(); ++i) {
d_Amatrices[i].upload(queue.get(), &this->Amatrices[i]);
err |= queue->enqueueWriteBuffer(d_invDiags[i], CL_FALSE, 0,
sizeof(Scalar) * this->Amatrices[i].N, this->invDiags[i].data(),
nullptr, &events[2*i+1]);
err |= queue->enqueueWriteBuffer(d_PcolIndices[i], CL_FALSE, 0,
sizeof(int) * this->Amatrices[i].N, this->PcolIndices[i].data(),
nullptr, &events[2*i+2]);
}
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "openclCPR OpenCL enqueueWriteBuffer error");
}
for (unsigned int i = 0; i < this->Rmatrices.size(); ++i) {
d_Rmatrices[i].upload(queue.get(), &this->Rmatrices[i]);
}
}
template<class Scalar, unsigned int block_size>
void openclCPR<Scalar,block_size>::amg_cycle_gpu(const int level, cl::Buffer& y, cl::Buffer& x)
{
OpenclMatrix<Scalar>* A = &d_Amatrices[level];
OpenclMatrix<Scalar>* R = &d_Rmatrices[level];
int Ncur = A->Nb;
if (level == this->num_levels - 1) {
// solve coarsest level
std::vector<Scalar> h_y(Ncur), h_x(Ncur, 0);
events.resize(1);
err = queue->enqueueReadBuffer(y, CL_FALSE, 0,
sizeof(Scalar) * Ncur, h_y.data(), nullptr, &events[0]);
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "openclCPR OpenCL enqueueReadBuffer error");
}
// solve coarsest level using umfpack
this->umfpack.apply(h_x.data(), h_y.data());
events.resize(1);
err = queue->enqueueWriteBuffer(x, CL_FALSE, 0,
sizeof(Scalar) * Ncur, h_x.data(), nullptr, &events[0]);
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "openclCPR OpenCL enqueueWriteBuffer error");
}
return;
}
int Nnext = d_Amatrices[level+1].Nb;
cl::Buffer& t = d_t[level];
cl::Buffer& f = d_f[level];
cl::Buffer& u = d_u[level]; // u was 0-initialized earlier
// presmooth
Scalar jacobi_damping = 0.65; // default value in amgcl: 0.72
for (unsigned i = 0; i < this->num_pre_smooth_steps; ++i) {
OpenclKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers, x, y, t, Ncur, 1);
OpenclKernels<Scalar>::vmul(jacobi_damping, d_invDiags[level], t, x, Ncur);
}
// move to coarser level
OpenclKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers, x, y, t, Ncur, 1);
OpenclKernels<Scalar>::spmv(R->nnzValues, R->colIndices, R->rowPointers, t, f, Nnext, 1, true);
amg_cycle_gpu(level + 1, f, u);
OpenclKernels<Scalar>::prolongate_vector(u, x, d_PcolIndices[level], Ncur);
// postsmooth
for (unsigned i = 0; i < this->num_post_smooth_steps; ++i) {
OpenclKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers,
x, y, t, Ncur, 1);
OpenclKernels<Scalar>::vmul(jacobi_damping, d_invDiags[level], t, x, Ncur);
}
}
// x = prec(y)
template<class Scalar, unsigned int block_size>
void openclCPR<Scalar,block_size>::apply_amg(const cl::Buffer& y, cl::Buffer& x)
{
// 0-initialize u and x vectors
events.resize(d_u.size() + 1);
err = queue->enqueueFillBuffer(*d_coarse_x, 0, 0,
sizeof(Scalar) * this->Nb, nullptr, &events[0]);
for (unsigned int i = 0; i < d_u.size(); ++i) {
err |= queue->enqueueFillBuffer(d_u[i], 0, 0,
sizeof(Scalar) * this->Rmatrices[i].N, nullptr, &events[i + 1]);
}
cl::WaitForEvents(events);
events.clear();
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "CPR OpenCL enqueueWriteBuffer error");
}
OpenclKernels<Scalar>::residual(d_mat->nnzValues, d_mat->colIndices,
d_mat->rowPointers, x, y, *d_rs, this->Nb, block_size);
OpenclKernels<Scalar>::full_to_pressure_restriction(*d_rs, *d_weights, *d_coarse_y, this->Nb);
amg_cycle_gpu(0, *d_coarse_y, *d_coarse_x);
OpenclKernels<Scalar>::add_coarse_pressure_correction(*d_coarse_x, x, this->pressure_idx, this->Nb);
}
template<class Scalar, unsigned int block_size>
void openclCPR<Scalar,block_size>::apply(const cl::Buffer& y, cl::Buffer& x)
{
Dune::Timer t_bilu0;
bilu0->apply(y, x);
if (verbosity >= 4) {
std::ostringstream out;
out << "openclCPR apply bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
apply_amg(y, x);
if (verbosity >= 4) {
std::ostringstream out;
out << "openclCPR apply amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
}
#define INSTANCE_TYPE(T) \
template class openclCPR<T,1>; \
template class openclCPR<T,2>; \
template class openclCPR<T,3>; \
template class openclCPR<T,4>; \
template class openclCPR<T,5>; \
template class openclCPR<T,6>;
INSTANCE_TYPE(double)
} // namespace Opm::Accelerator

View File

@ -17,8 +17,8 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CPR_HPP
#define OPM_CPR_HPP
#ifndef OPM_OPENCLCPR_HPP
#define OPM_OPENCLCPR_HPP
#include <mutex>
@ -26,10 +26,11 @@
#include <dune/istl/umfpack.hh>
#include <opm/simulators/linalg/bda/opencl/opencl.hpp>
#include <opm/simulators/linalg/bda/opencl/BILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBILU0.hpp>
#include <opm/simulators/linalg/bda/Matrix.hpp>
#include <opm/simulators/linalg/bda/CprCreation.hpp>
#include <opm/simulators/linalg/bda/opencl/OpenclMatrix.hpp>
#include <opm/simulators/linalg/bda/opencl/Preconditioner.hpp>
#include <opm/simulators/linalg/bda/opencl/openclPreconditioner.hpp>
#include <opm/simulators/linalg/bda/opencl/openclSolverBackend.hpp>
@ -39,9 +40,9 @@ template<class Scalar> class BlockedMatrix;
/// This class implements a Constrained Pressure Residual (CPR) preconditioner
template<class Scalar, unsigned int block_size>
class CPR : public Preconditioner<Scalar,block_size>
class openclCPR : public openclPreconditioner<Scalar,block_size>, public CprCreation<Scalar, block_size>
{
using Base = Preconditioner<Scalar,block_size>;
using Base = openclPreconditioner<Scalar,block_size>;
using Base::N;
using Base::Nb;
@ -54,13 +55,8 @@ class CPR : public Preconditioner<Scalar,block_size>
using Base::err;
private:
int num_levels;
std::vector<Scalar> weights, coarse_vals, coarse_x, coarse_y;
std::vector<Matrix<Scalar>> Amatrices, Rmatrices; // scalar matrices that represent the AMG hierarchy
std::vector<OpenclMatrix<Scalar>> d_Amatrices, d_Rmatrices; // scalar matrices that represent the AMG hierarchy
std::vector<std::vector<int> > PcolIndices; // prolongation does not need a full matrix, only store colIndices
std::vector<cl::Buffer> d_PcolIndices;
std::vector<std::vector<Scalar>> invDiags; // inverse of diagonal of Amatrices
std::vector<cl::Buffer> d_invDiags;
std::vector<cl::Buffer> d_t, d_f, d_u; // intermediate vectors used during amg cycle
std::unique_ptr<cl::Buffer> d_rs; // use before extracting the pressure
@ -69,35 +65,11 @@ private:
std::unique_ptr<cl::Buffer> d_coarse_y, d_coarse_x; // stores the scalar vectors
std::once_flag opencl_buffers_allocated; // only allocate OpenCL Buffers once
std::unique_ptr<BILU0<Scalar,block_size>> bilu0; // Blocked ILU0 preconditioner
BlockedMatrix<Scalar>* mat = nullptr; // input matrix, blocked
using DuneMat = Dune::BCRSMatrix<Dune::FieldMatrix<Scalar, 1, 1> >;
using DuneVec = Dune::BlockVector<Dune::FieldVector<Scalar, 1> >;
using MatrixOperator = Dune::MatrixAdapter<DuneMat, DuneVec, DuneVec>;
using DuneAmg = Dune::Amg::MatrixHierarchy<MatrixOperator, Dune::Amg::SequentialInformation>;
std::unique_ptr<DuneAmg> dune_amg;
std::unique_ptr<DuneMat> dune_coarse; // extracted pressure matrix, finest level in AMG hierarchy
std::shared_ptr<MatrixOperator> dune_op; // operator, input to Dune AMG
std::vector<int> level_sizes; // size of each level in the AMG hierarchy
std::vector<std::vector<int> > diagIndices; // index of diagonal value for each level
Dune::UMFPack<DuneMat> umfpack; // dune/istl/umfpack object used to solve the coarsest level of AMG
bool always_recalculate_aggregates = false; // OPM always reuses the aggregates by default
bool recalculate_aggregates = true; // only rerecalculate if true
const int pressure_idx = 1; // hardcoded to mimic OPM
unsigned num_pre_smooth_steps; // number of Jacobi smooth steps before restriction
unsigned num_post_smooth_steps; // number of Jacobi smooth steps after prolongation
std::unique_ptr<openclBILU0<Scalar,block_size>> bilu0; // Blocked ILU0 preconditioner
std::unique_ptr<openclSolverBackend<Scalar,1>> coarse_solver; // coarse solver is scalar
bool opencl_ilu_parallel; // whether ILU0 operation should be parallelized
// Analyze the AMG hierarchy build by Dune
void analyzeHierarchy();
// Analyze the aggregateMaps from the AMG hierarchy
// These can be reused, so only use when recalculate_aggregates is true
void analyzeAggregateMaps();
// Initialize and allocate matrices and vectors
void init_opencl_buffers();
@ -109,10 +81,8 @@ private:
void amg_cycle_gpu(const int level, cl::Buffer &y, cl::Buffer &x);
void create_preconditioner_amg(BlockedMatrix<Scalar>* mat);
public:
CPR(bool opencl_ilu_parallel, int verbosity);
openclCPR(bool opencl_ilu_parallel, int verbosity);
bool analyze_matrix(BlockedMatrix<Scalar>* mat) override;
bool analyze_matrix(BlockedMatrix<Scalar>* mat,
@ -125,18 +95,13 @@ public:
// applies blocked ilu0
// also applies amg for pressure component
void apply(const cl::Buffer& y, cl::Buffer& x) override;
void apply(Scalar& y, Scalar& x) {}
bool create_preconditioner(BlockedMatrix<Scalar>* mat) override;
bool create_preconditioner(BlockedMatrix<Scalar>* mat,
BlockedMatrix<Scalar>* jacMat) override;
};
// solve A^T * x = b
// A should represent a 3x3 matrix
// x and b are vectors with 3 elements
template<class Scalar>
void solve_transposed_3x3(const Scalar* A, const Scalar* b, Scalar* x);
} // namespace Opm::Accelerator
#endif

View File

@ -26,6 +26,8 @@
#include <opm/simulators/linalg/bda/opencl/ChowPatelIlu.hpp> // defines CHOW_PATEL
#include <opm/simulators/linalg/bda/Misc.hpp>
#include <cmath>
#include <sstream>
@ -84,12 +86,6 @@ std::unique_ptr<isaiL_kernel_type> OpenclKernels<Scalar>::isaiL_k;
template<class Scalar>
std::unique_ptr<isaiU_kernel_type> OpenclKernels<Scalar>::isaiU_k;
// divide A by B, and round up: return (int)ceil(A/B)
unsigned int ceilDivision(const unsigned int A, const unsigned int B)
{
return A / B + (A % B > 0);
}
template<class Scalar>
void OpenclKernels<Scalar>::init(cl::Context *context,
cl::CommandQueue *queue_,

View File

@ -0,0 +1,74 @@
/*
Copyright 2021 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBILU0.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBISAI.hpp>
#include <opm/simulators/linalg/bda/opencl/openclCPR.hpp>
#include <opm/simulators/linalg/bda/opencl/openclPreconditioner.hpp>
#include <memory>
#include <string>
namespace Opm::Accelerator {
template<class Scalar, unsigned int block_size>
std::unique_ptr<openclPreconditioner<Scalar,block_size>>
openclPreconditioner<Scalar,block_size>::
create(PreconditionerType type,
int verbosity,
bool opencl_ilu_parallel)
{
switch (type ) {
case PreconditionerType::BILU0:
return std::make_unique<openclBILU0<Scalar,block_size>>(opencl_ilu_parallel, verbosity);
case PreconditionerType::CPR:
return std::make_unique<openclCPR<Scalar,block_size>>(opencl_ilu_parallel, verbosity);
case PreconditionerType::BISAI:
return std::make_unique<openclBISAI<Scalar,block_size>>(opencl_ilu_parallel, verbosity);
}
OPM_THROW(std::logic_error,
"Invalid preconditioner type " + std::to_string(static_cast<int>(type)));
}
template<class Scalar, unsigned int block_size>
void openclPreconditioner<Scalar,block_size>::
setOpencl(std::shared_ptr<cl::Context>& context_,
std::shared_ptr<cl::CommandQueue>& queue_)
{
context = context_;
queue = queue_;
}
#define INSTANCE_TYPE(T) \
template class openclPreconditioner<T,1>; \
template class openclPreconditioner<T,2>; \
template class openclPreconditioner<T,3>; \
template class openclPreconditioner<T,4>; \
template class openclPreconditioner<T,5>; \
template class openclPreconditioner<T,6>;
INSTANCE_TYPE(double)
} // namespace Opm::Accelerator

View File

@ -0,0 +1,62 @@
/*
Copyright 2021 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_OPENCLPRECONDITIONER_HEADER_INCLUDED
#define OPM_OPENCLPRECONDITIONER_HEADER_INCLUDED
#include <opm/simulators/linalg/bda/opencl/opencl.hpp>
#include <opm/simulators/linalg/bda/Preconditioner.hpp>
namespace Opm::Accelerator {
template<class Scalar> class BlockedMatrix;
template <class Scalar, unsigned int block_size>
class openclPreconditioner : public Preconditioner<Scalar, block_size>
{
protected:
std::shared_ptr<cl::Context> context;
std::shared_ptr<cl::CommandQueue> queue;
std::vector<cl::Event> events;
cl_int err;
openclPreconditioner(int verbosity_) :
Preconditioner<Scalar, block_size>(verbosity_)
{};
public:
virtual ~openclPreconditioner() = default;
static std::unique_ptr<openclPreconditioner<Scalar, block_size>> create(PreconditionerType type, int verbosity, bool opencl_ilu_parallel);
// nested Preconditioners might need to override this
virtual void setOpencl(std::shared_ptr<cl::Context>& context, std::shared_ptr<cl::CommandQueue>& queue);
// apply preconditioner, x = prec(y)
virtual void apply(const cl::Buffer& y, cl::Buffer& x) = 0;
// create/update preconditioner, probably used every linear solve
// the version with two params can be overloaded, if not, it will default to using the one param version
virtual bool create_preconditioner(BlockedMatrix<Scalar> *mat) = 0;
virtual bool create_preconditioner(BlockedMatrix<Scalar> *mat, BlockedMatrix<Scalar> *jacMat) = 0;
};
} //namespace Opm
#endif

View File

@ -71,16 +71,13 @@ openclSolverBackend(int verbosity_,
OPM_THROW(std::logic_error, "Error unknown value for argument --linear-solver, " + linsolver);
}
using PreconditionerType = Preconditioner<Scalar,block_size>;
using PreconditionerType = typename Opm::Accelerator::PreconditionerType;
if (use_cpr) {
prec = PreconditionerType::create(PreconditionerType::Type::CPR,
opencl_ilu_parallel, verbosity);
prec = openclPreconditioner<Scalar, block_size>::create(PreconditionerType::CPR, verbosity, opencl_ilu_parallel);
} else if (use_isai) {
prec = PreconditionerType::create(PreconditionerType::Type::BISAI,
opencl_ilu_parallel, verbosity);
prec = openclPreconditioner<Scalar, block_size>::create(PreconditionerType::BISAI, verbosity, opencl_ilu_parallel);
} else {
prec = PreconditionerType::create(PreconditionerType::Type::BILU0,
opencl_ilu_parallel, verbosity);
prec = openclPreconditioner<Scalar, block_size>::create(PreconditionerType::BILU0, verbosity, opencl_ilu_parallel);
}
std::ostringstream out;
@ -228,8 +225,10 @@ openclSolverBackend(int verbosity_,
template<class Scalar, unsigned int block_size>
openclSolverBackend<Scalar,block_size>::
openclSolverBackend(int verbosity_, int maxit_,
Scalar tolerance_, bool opencl_ilu_parallel_)
openclSolverBackend(int verbosity_,
int maxit_,
Scalar tolerance_,
bool opencl_ilu_parallel_)
: Base(verbosity_, maxit_, tolerance_)
, opencl_ilu_parallel(opencl_ilu_parallel_)
{
@ -248,7 +247,8 @@ setOpencl(std::shared_ptr<cl::Context>& context_,
template<class Scalar, unsigned int block_size>
void openclSolverBackend<Scalar,block_size>::
gpu_pbicgstab(WellContributions<Scalar>& wellContribs, BdaResult& res)
gpu_pbicgstab(WellContributions<Scalar>& wellContribs,
BdaResult& res)
{
float it;
Scalar rho, rhop, beta, alpha, omega, tmp1, tmp2;

View File

@ -25,7 +25,7 @@
#include <opm/simulators/linalg/bda/BdaSolver.hpp>
#include <opm/simulators/linalg/bda/WellContributions.hpp>
#include <opm/simulators/linalg/bda/opencl/Preconditioner.hpp>
#include <opm/simulators/linalg/bda/opencl/openclPreconditioner.hpp>
namespace Opm::Accelerator {
@ -60,7 +60,7 @@ private:
bool useJacMatrix = false;
std::unique_ptr<Preconditioner<Scalar,block_size>> prec;
std::unique_ptr<openclPreconditioner<Scalar,block_size>> prec;
// can perform blocked ILU0 and AMG on pressure component
bool is_root; // allow for nested solvers, the root solver is called by BdaBridge
bool analysis_done = false;

View File

@ -0,0 +1,493 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <cmath>
#include <sstream>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <opm/simulators/linalg/bda/rocm/hipKernels.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
#include <hip/hip_runtime.h>
namespace Opm {
using Opm::OpmLog;
using Dune::Timer;
// define static variables and kernels
template<class Scalar> int HipKernels<Scalar>::verbosity = 0;
template<class Scalar> bool HipKernels<Scalar>::initialized = false;
#ifdef __HIP__
/// HIP kernel to multiply vector with another vector and a scalar, element-wise
// add result to a third vector
template<class Scalar>
__global__ void vmul_k(const Scalar alpha,
Scalar const *in1,
Scalar const *in2,
Scalar *out,
const int N)
{
unsigned int NUM_THREADS = gridDim.x;
int idx = blockDim.x * blockIdx.x + threadIdx.x;
while(idx < N){
out[idx] += alpha * in1[idx] * in2[idx];
idx += NUM_THREADS;
}
}
/// HIP kernel to transform blocked vector to scalar vector using pressure-weights
// every workitem handles one blockrow
template<class Scalar>
__global__ void full_to_pressure_restriction_k(const Scalar *fine_y,
const Scalar *weights,
Scalar *coarse_y,
const unsigned int Nb)
{
const unsigned int NUM_THREADS = gridDim.x;
const unsigned int block_size = 3;
unsigned int target_block_row = blockDim.x * blockIdx.x + threadIdx.x;
while(target_block_row < Nb){
Scalar sum = 0.0;
unsigned int idx = block_size * target_block_row;
for (unsigned int i = 0; i < block_size; ++i) {
sum += fine_y[idx + i] * weights[idx + i];
}
coarse_y[target_block_row] = sum;
target_block_row += NUM_THREADS;
}
}
/// HIP kernel to add the coarse pressure solution back to the finer, complete solution
// every workitem handles one blockrow
template<class Scalar>
__global__ void add_coarse_pressure_correction_k(const Scalar *coarse_x,
Scalar *fine_x,
const unsigned int pressure_idx,
const unsigned int Nb)
{
const unsigned int NUM_THREADS = gridDim.x;
const unsigned int block_size = 3;
unsigned int target_block_row = blockDim.x * blockIdx.x + threadIdx.x;
while(target_block_row < Nb){
fine_x[target_block_row * block_size + pressure_idx] += coarse_x[target_block_row];
target_block_row += NUM_THREADS;
}
}
/// HIP kernel to prolongate vector during amg cycle
// every workitem handles one row
template<class Scalar>
__global__ void prolongate_vector_k(const Scalar *in,
Scalar *out,
const int *cols,
const unsigned int N)
{
const unsigned int NUM_THREADS = gridDim.x;
unsigned int row = blockDim.x * blockIdx.x + threadIdx.x;
while(row < N){
out[row] += in[cols[row]];
row += NUM_THREADS;
}
}
// res = rhs - mat * x
// algorithm based on:
// Optimization of Block Sparse Matrix-Vector Multiplication on Shared-MemoryParallel Architectures,
// Ryan Eberhardt, Mark Hoemmen, 2016, https://doi.org/10.1109/IPDPSW.2016.42
template<class Scalar>
__global__ void residual_blocked_k(const Scalar *vals,
const int *cols,
const int *rows,
const int Nb,
const Scalar *x,
const Scalar *rhs,
Scalar *out,
const unsigned int block_size)
{
extern __shared__ Scalar tmp[];
const unsigned int warpsize = warpSize;
const unsigned int bsize = blockDim.x;
const unsigned int gid = blockDim.x * blockIdx.x + threadIdx.x;
const unsigned int idx_b = gid / bsize;
const unsigned int idx_t = threadIdx.x;
unsigned int idx = idx_b * bsize + idx_t;
const unsigned int bs = block_size;
const unsigned int num_active_threads = (warpsize/bs/bs)*bs*bs;
const unsigned int num_blocks_per_warp = warpsize/bs/bs;
const unsigned int NUM_THREADS = gridDim.x;
const unsigned int num_warps_in_grid = NUM_THREADS / warpsize;
unsigned int target_block_row = idx / warpsize;
const unsigned int lane = idx_t % warpsize;
const unsigned int c = (lane / bs) % bs;
const unsigned int r = lane % bs;
// for 3x3 blocks:
// num_active_threads: 27 (CUDA) vs 63 (ROCM)
// num_blocks_per_warp: 3 (CUDA) vs 7 (ROCM)
int offsetTarget = warpsize == 64 ? 48 : 32;
while(target_block_row < Nb){
unsigned int first_block = rows[target_block_row];
unsigned int last_block = rows[target_block_row+1];
unsigned int block = first_block + lane / (bs*bs);
Scalar local_out = 0.0;
if(lane < num_active_threads){
for(; block < last_block; block += num_blocks_per_warp){
Scalar x_elem = x[cols[block]*bs + c];
Scalar A_elem = vals[block*bs*bs + c + r*bs];
local_out += x_elem * A_elem;
}
}
// do reduction in shared mem
tmp[lane] = local_out;
for(unsigned int offset = 3; offset <= offsetTarget; offset <<= 1)
{
if (lane + offset < warpsize)
{
tmp[lane] += tmp[lane + offset];
}
__syncthreads();
}
if(lane < bs){
unsigned int row = target_block_row*bs + lane;
out[row] = rhs[row] - tmp[lane];
}
target_block_row += num_warps_in_grid;
}
}
// KERNEL residual_k
// res = rhs - mat * x
// algorithm based on:
// Optimization of Block Sparse Matrix-Vector Multiplication on Shared-MemoryParallel Architectures,
// Ryan Eberhardt, Mark Hoemmen, 2016, https://doi.org/10.1109/IPDPSW.2016.42
// template <unsigned shared_mem_size>
template<class Scalar>
__global__ void residual_k(const Scalar *vals,
const int *cols,
const int *rows,
const int N,
const Scalar *x,
const Scalar *rhs,
Scalar *out)
{
extern __shared__ Scalar tmp[];
const unsigned int bsize = blockDim.x;
const unsigned int gid = blockDim.x * blockIdx.x + threadIdx.x;
const unsigned int idx_b = gid / bsize;
const unsigned int idx_t = threadIdx.x;
const unsigned int num_workgroups = gridDim.x;
int row = idx_b;
while (row < N) {
int rowStart = rows[row];
int rowEnd = rows[row+1];
int rowLength = rowEnd - rowStart;
Scalar local_sum = 0.0;
for (int j = rowStart + idx_t; j < rowEnd; j += bsize) {
int col = cols[j];
local_sum += vals[j] * x[col];
}
tmp[idx_t] = local_sum;
__syncthreads();
int offset = bsize / 2;
while(offset > 0) {
if (idx_t < offset) {
tmp[idx_t] += tmp[idx_t + offset];
}
__syncthreads();
offset = offset / 2;
}
if (idx_t == 0) {
out[row] = rhs[row] - tmp[idx_t];
}
row += num_workgroups;
}
}
template<class Scalar>
__global__ void spmv_k(const Scalar *vals,
const int *cols,
const int *rows,
const int N,
const Scalar *x,
Scalar *out)
{
extern __shared__ Scalar tmp[];
const unsigned int bsize = blockDim.x;
const unsigned int gid = blockDim.x * blockIdx.x + threadIdx.x;
const unsigned int idx_b = gid / bsize;
const unsigned int idx_t = threadIdx.x;
const unsigned int num_workgroups = gridDim.x;
int row = idx_b;
while (row < N) {
int rowStart = rows[row];
int rowEnd = rows[row+1];
int rowLength = rowEnd - rowStart;
Scalar local_sum = 0.0;
for (int j = rowStart + idx_t; j < rowEnd; j += bsize) {
int col = cols[j];
local_sum += vals[j] * x[col];
}
tmp[idx_t] = local_sum;
__syncthreads();
int offset = bsize / 2;
while(offset > 0) {
if (idx_t < offset) {
tmp[idx_t] += tmp[idx_t + offset];
}
__syncthreads();
offset = offset / 2;
}
if (idx_t == 0) {
out[row] = tmp[idx_t];
}
row += num_workgroups;
}
}
#endif
template<class Scalar>
void HipKernels<Scalar>::
init(int verbosity_)
{
if (initialized) {
OpmLog::debug("Warning HipKernels is already initialized");
return;
}
verbosity = verbosity_;
initialized = true;
}
template<class Scalar>
void HipKernels<Scalar>::
vmul(const Scalar alpha,
Scalar* in1,
Scalar* in2,
Scalar* out,
int N,
hipStream_t stream)
{
Timer t_vmul;
#ifdef __HIP__
unsigned blockDim = 64;
unsigned blocks = Accelerator::ceilDivision(N, blockDim);
unsigned gridDim = blocks * blockDim;
// dim3(N) will create a vector {N, 1, 1}
vmul_k<<<dim3(gridDim), dim3(blockDim), 0, stream>>>(alpha, in1, in2, out, N);
HIP_CHECK(hipStreamSynchronize(stream));
#else
OPM_THROW(std::logic_error, "Error vmul for rocsparse only supported when compiling with hipcc");
#endif
if (verbosity >= 4) {
std::ostringstream oss;
oss << std::scientific << "HipKernels vmul() time: " << t_vmul.stop() << " s";
OpmLog::info(oss.str());
}
}
template<class Scalar>
void HipKernels<Scalar>::
full_to_pressure_restriction(const Scalar* fine_y,
Scalar* weights,
Scalar* coarse_y,
int Nb,
hipStream_t stream)
{
Timer t;
#ifdef __HIP__
unsigned blockDim = 64;
unsigned blocks = Accelerator::ceilDivision(Nb, blockDim);
unsigned gridDim = blocks * blockDim;
// dim3(N) will create a vector {N, 1, 1}
full_to_pressure_restriction_k<<<dim3(gridDim), dim3(blockDim), 0, stream>>>(fine_y, weights, coarse_y, Nb);
HIP_CHECK(hipStreamSynchronize(stream));
#else
OPM_THROW(std::logic_error, "Error full_to_pressure_restriction for rocsparse only supported when compiling with hipcc");
#endif
if (verbosity >= 4) {
std::ostringstream oss;
oss << std::scientific << "HipKernels full_to_pressure_restriction() time: " << t.stop() << " s";
OpmLog::info(oss.str());
}
}
template<class Scalar>
void HipKernels<Scalar>::
add_coarse_pressure_correction(Scalar* coarse_x,
Scalar* fine_x,
int pressure_idx,
int Nb,
hipStream_t stream)
{
Timer t;
#ifdef __HIP__
unsigned blockDim = 64;
unsigned blocks = Accelerator::ceilDivision(Nb, blockDim);
unsigned gridDim = blocks * blockDim;
// dim3(N) will create a vector {N, 1, 1}
add_coarse_pressure_correction_k<<<dim3(gridDim), dim3(blockDim), 0, stream>>>(coarse_x, fine_x, pressure_idx, Nb);
HIP_CHECK(hipStreamSynchronize(stream));
#else
OPM_THROW(std::logic_error, "Error add_coarse_pressure_correction for rocsparse only supported when compiling with hipcc");
#endif
if (verbosity >= 4) {
std::ostringstream oss;
oss << std::scientific << "HipKernels add_coarse_pressure_correction() time: " << t.stop() << " s";
OpmLog::info(oss.str());
}
}
template<class Scalar>
void HipKernels<Scalar>::
prolongate_vector(const Scalar* in,
Scalar* out,
const int* cols,
int N,
hipStream_t stream)
{
Timer t;
#ifdef __HIP__
unsigned blockDim = 64;
unsigned blocks = Accelerator::ceilDivision(N, blockDim);
unsigned gridDim = blocks * blockDim;
unsigned shared_mem_size = blockDim * sizeof(Scalar);
// dim3(N) will create a vector {N, 1, 1}
prolongate_vector_k<<<dim3(gridDim), dim3(blockDim), shared_mem_size, stream>>>(in, out, cols, N);
HIP_CHECK(hipStreamSynchronize(stream));
#else
OPM_THROW(std::logic_error, "Error prolongate_vector for rocsparse only supported when compiling with hipcc");
#endif
if (verbosity >= 4) {
std::ostringstream oss;
oss << std::scientific << "HipKernels prolongate_vector() time: " << t.stop() << " s";
OpmLog::info(oss.str());
}
}
template<class Scalar>
void HipKernels<Scalar>::
residual(Scalar* vals,
int* cols,
int* rows,
Scalar* x,
const Scalar* rhs,
Scalar* out,
int Nb,
unsigned int block_size,
hipStream_t stream)
{
Timer t_residual;
#ifdef __HIP__
unsigned blockDim = 64;
const unsigned int num_work_groups = Accelerator::ceilDivision(Nb, blockDim);
unsigned gridDim = num_work_groups * blockDim;
unsigned shared_mem_size = blockDim * sizeof(Scalar);
if (block_size > 1) {
// dim3(N) will create a vector {N, 1, 1}
residual_blocked_k<<<dim3(gridDim), dim3(blockDim), shared_mem_size, stream>>>(vals, cols, rows, Nb, x, rhs, out, block_size);
} else {
residual_k<<<dim3(gridDim), dim3(blockDim), shared_mem_size, stream>>>(vals, cols, rows, Nb, x, rhs, out);
}
HIP_CHECK(hipStreamSynchronize(stream));
#else
OPM_THROW(std::logic_error, "Error residual for rocsparse only supported when compiling with hipcc");
#endif
if (verbosity >= 4) {
HIP_CHECK(hipStreamSynchronize(stream));
std::ostringstream oss;
oss << std::scientific << "HipKernels residual() time: " << t_residual.stop() << " s";
OpmLog::info(oss.str());
}
}
template<class Scalar>
void HipKernels<Scalar>::
spmv(Scalar* vals,
int* cols,
int* rows,
Scalar* x,
Scalar* y,
int Nb,
unsigned int block_size,
hipStream_t stream)
{//NOTE: block_size not used since I use this kernel only for block sizes 1, other uses use rocsparse!
Timer t_spmv;
#ifdef __HIP__
unsigned blockDim = 64;
const unsigned int num_work_groups = Accelerator::ceilDivision(Nb, blockDim);
unsigned gridDim = num_work_groups * blockDim;
unsigned shared_mem_size = blockDim * sizeof(Scalar);
spmv_k<<<dim3(gridDim), dim3(blockDim), shared_mem_size, stream>>>(vals, cols, rows, Nb, x, y);
HIP_CHECK(hipStreamSynchronize(stream));
#else
OPM_THROW(std::logic_error, "Error spmv for rocsparse only supported when compiling with hipcc");
#endif
if (verbosity >= 4) {
std::ostringstream oss;
oss << std::scientific << "HipKernels spmv_blocked() time: " << t_spmv.stop() << " s";
OpmLog::info(oss.str());
}
}
template class HipKernels<double>;
} // namespace Opm

View File

@ -0,0 +1,138 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_HIPKERNELS_HPP
#define OPM_HIPKERNELS_HPP
#include <string>
#include <memory>
#include <cstddef>
#include <hip/hip_runtime_api.h>
#include <hip/hip_version.h>
namespace Opm {
template<class Scalar>
class HipKernels
{
private:
static int verbosity;
static bool initialized;
HipKernels();
public:
/// Initialize verbosity level for the HIP kernels
/// \param[in] verbosity verbosity level
static void init(int verbosity);
/// Transform blocked vector to scalar vector using pressure-weights, where every workitem handles one blockrow
/// \param[in] fine_y Input y vector
/// \param[in] weights Weights used to combine cells
/// \param[out] course_y Output y vector
/// \param[in] Nb Number of blocks in the original matrix
/// \param[in] stream Hip stream to use for the computations
static void full_to_pressure_restriction(const Scalar* fine_y,
Scalar* weights,
Scalar* coarse_y,
int Nb,
hipStream_t stream);
/// Add the coarse pressure solution back to the finer, complete solution; every workitem handles one blockrow
/// \param[in] coarse_x Input scalar x vector
/// \param[out] fine_x Output blocked x vector
/// \param[in] pressure_idx Pressure index
/// \param[in] Nb Number of blocks in the original matrix
/// \param[in] stream Hip stream to use for the computations
static void add_coarse_pressure_correction(Scalar* coarse_x,
Scalar* fine_x,
int pressure_idx,
int Nb,
hipStream_t stream);
/// Function to multiply vector with another vector and a scalar, element-wise and add the result to a third vector (out = alpha * in1 + in2)
/// \param[in] alpha Input scalar
/// \param[in] in1 First input vector
/// \param[in] in2 Second input vector
/// \param[out] out Output vector
/// \param[in] N Size of the vector
/// \param[in] stream Hip stream to use for the computations
static void vmul(const Scalar alpha,
Scalar* in1,
Scalar* in2,
Scalar* out,
int N,
hipStream_t stream);
/// Function to prolongate vector during amg cycle, every workitem handles one row
/// \param[in] in Input fine-grained vector
/// \param[out] out Output course-graned vector
/// \param[in] cols Column indexes
/// \param[in] N Size of the vector
/// \param[in] stream Hip stream to use for the computations
static void prolongate_vector(const Scalar* in,
Scalar* out,
const int* cols,
int N,
hipStream_t stream);
/// Function to perform res = rhs - mat * x
/// \param[in] vals Matrix values
/// \param[in] cols Column indexes
/// \param[in] rows Row pointers
/// \param[in] x X vector
/// \param[in] rhs Rhs vector
/// \param[out] out Output res vector
/// \param[in] Nb Number of non-zero blocks in the original matrix
/// \param[in] block_size Block size
/// \param[in] stream Hip stream to use for the computations
static void residual(Scalar* vals,
int* cols,
int* rows,
Scalar* x,
const Scalar* rhs,
Scalar* out,
int Nb,
unsigned int block_size,
hipStream_t stream);
/// Function to perform sparse matrix vector multipliation
/// \param[in] vals Matrix values
/// \param[in] cols Column indexes
/// \param[in] rows Row pointers
/// \param[in] x Input x vector
/// \param[out] y Output y vector
/// \param[in] Nb Number of non-zero blocks in the original matrix
/// \param[in] block_size Block size
/// \param[in] stream Hip stream to use for the computations
static void spmv(Scalar* vals,
int* cols,
int* rows,
Scalar* x,
Scalar* y,
int Nb,
unsigned int block_size,
hipStream_t stream);
};
} // namespace Opm
#endif

View File

@ -37,7 +37,7 @@
#undef HAVE_CUDA
#include <opm/simulators/linalg/bda/rocalutionSolverBackend.hpp>
#include <opm/simulators/linalg/bda/rocm/rocalutionSolverBackend.hpp>
#include <rocalution.hpp>
#include <base/matrix_formats_ind.hpp> // check if blocks are interpreted as row-major or column-major

View File

@ -0,0 +1,286 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <algorithm>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <opm/simulators/linalg/bda/rocm/rocsparseBILU0.hpp>
#include <opm/simulators/linalg/bda/Reorder.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
#include <sstream>
#include <thread>
extern std::shared_ptr<std::thread> copyThread;
#if HAVE_OPENMP
#include <omp.h>
#endif //HAVE_OPENMP
namespace Opm::Accelerator {
using Opm::OpmLog;
using Dune::Timer;
template <class Scalar, unsigned int block_size>
rocsparseBILU0<Scalar, block_size>::
rocsparseBILU0(int verbosity_) :
Base(verbosity_)
{
}
template <class Scalar, unsigned int block_size>
bool rocsparseBILU0<Scalar, block_size>::
initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
std::shared_ptr<BlockedMatrix<Scalar>> jacMatrix,
rocsparse_int *d_Arows,
rocsparse_int *d_Acols)
{
this->Nb = matrix->Nb;
this->N = Nb * block_size;
this->nnzb = matrix->nnzbs;
this->nnz = nnzb * block_size * block_size;
this->nnzbs_prec = this->nnzb;
if (jacMatrix) {
this->useJacMatrix = true;
this->nnzbs_prec = jacMatrix->nnzbs;
this->jacMat = jacMatrix;
}
HIP_CHECK(hipMalloc((void**)&d_t, sizeof(Scalar) * this->N));
if (this->useJacMatrix) {
HIP_CHECK(hipMalloc((void**)&d_Mrows, sizeof(rocsparse_int) * (Nb + 1)));
HIP_CHECK(hipMalloc((void**)&d_Mcols, sizeof(rocsparse_int) * this->nnzbs_prec));
HIP_CHECK(hipMalloc((void**)&d_Mvals, sizeof(Scalar) * this->nnzbs_prec * block_size * block_size));
} else { // preconditioner matrix is same
HIP_CHECK(hipMalloc((void**)&d_Mvals, sizeof(Scalar) * this->nnzbs_prec * block_size * block_size));
d_Mcols = d_Acols;
d_Mrows = d_Arows;
}
return true;
} // end initialize()
template <class Scalar, unsigned int block_size>
bool rocsparseBILU0<Scalar, block_size>::
analyze_matrix(BlockedMatrix<Scalar> *mat) {
return analyze_matrix(mat, &(*this->jacMat));
}
template <class Scalar, unsigned int block_size>
bool rocsparseBILU0<Scalar, block_size>::
analyze_matrix(BlockedMatrix<Scalar> *mat,
BlockedMatrix<Scalar> *jacMat)
{
std::size_t d_bufferSize_M, d_bufferSize_L, d_bufferSize_U, d_bufferSize;
Timer t;
ROCSPARSE_CHECK(rocsparse_create_mat_info(&ilu_info));
#if HIP_VERSION >= 50400000
ROCSPARSE_CHECK(rocsparse_create_mat_info(&spmv_info));
#endif
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_M));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_L));
ROCSPARSE_CHECK(rocsparse_set_mat_fill_mode(descr_L, rocsparse_fill_mode_lower));
ROCSPARSE_CHECK(rocsparse_set_mat_diag_type(descr_L, rocsparse_diag_type_unit));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_U));
ROCSPARSE_CHECK(rocsparse_set_mat_fill_mode(descr_U, rocsparse_fill_mode_upper));
ROCSPARSE_CHECK(rocsparse_set_mat_diag_type(descr_U, rocsparse_diag_type_non_unit));
ROCSPARSE_CHECK(rocsparse_dbsrilu0_buffer_size(this->handle, this->dir, Nb, this->nnzbs_prec, descr_M, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, &d_bufferSize_M));
ROCSPARSE_CHECK(rocsparse_dbsrsv_buffer_size(this->handle, this->dir, this->operation, Nb, this->nnzbs_prec,
descr_L, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, &d_bufferSize_L));
ROCSPARSE_CHECK(rocsparse_dbsrsv_buffer_size(this->handle, this->dir, this->operation, Nb, this->nnzbs_prec,
descr_U, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, &d_bufferSize_U));
d_bufferSize = std::max(d_bufferSize_M, std::max(d_bufferSize_L, d_bufferSize_U));
HIP_CHECK(hipMalloc((void**)&d_buffer, d_bufferSize));
// analysis of ilu LU decomposition
ROCSPARSE_CHECK(rocsparse_dbsrilu0_analysis(this->handle, this->dir, \
Nb, this->nnzbs_prec, descr_M, d_Mvals, d_Mrows, d_Mcols, \
block_size, ilu_info, rocsparse_analysis_policy_reuse, rocsparse_solve_policy_auto, d_buffer));
int zero_position = 0;
rocsparse_status status = rocsparse_bsrilu0_zero_pivot(this->handle, ilu_info, &zero_position);
if (rocsparse_status_success != status) {
printf("L has structural and/or numerical zero at L(%d,%d)\n", zero_position, zero_position);
return false;
}
// analysis of ilu apply
ROCSPARSE_CHECK(rocsparse_dbsrsv_analysis(this->handle, this->dir, this->operation, \
Nb, this->nnzbs_prec, descr_L, d_Mvals, d_Mrows, d_Mcols, \
block_size, ilu_info, rocsparse_analysis_policy_reuse, rocsparse_solve_policy_auto, d_buffer));
ROCSPARSE_CHECK(rocsparse_dbsrsv_analysis(this->handle, this->dir, this->operation, \
Nb, this->nnzbs_prec, descr_U, d_Mvals, d_Mrows, d_Mcols, \
block_size, ilu_info, rocsparse_analysis_policy_reuse, rocsparse_solve_policy_auto, d_buffer));
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(this->stream));
std::ostringstream out;
out << "rocsparseBILU0::analyze_matrix(): " << t.stop() << " s";
OpmLog::info(out.str());
}
return true;
}
template <class Scalar, unsigned int block_size>
bool rocsparseBILU0<Scalar, block_size>::
create_preconditioner(BlockedMatrix<Scalar> *mat) {
return create_preconditioner(mat, &*this->jacMat);
}
template <class Scalar, unsigned int block_size>
bool rocsparseBILU0<Scalar, block_size>::
create_preconditioner(BlockedMatrix<Scalar> *mat,
BlockedMatrix<Scalar> *jacMat)
{
Timer t;
bool result = true;
ROCSPARSE_CHECK(rocsparse_dbsrilu0(this->handle, this->dir, Nb, this->nnzbs_prec, descr_M, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, rocsparse_solve_policy_auto, d_buffer));
// Check for zero pivot
int zero_position = 0;
rocsparse_status status = rocsparse_bsrilu0_zero_pivot(this->handle, ilu_info, &zero_position);
if(rocsparse_status_success != status)
{
printf("L has structural and/or numerical zero at L(%d,%d)\n", zero_position, zero_position);
return false;
}
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(this->stream));
std::ostringstream out;
out << "rocsparseBILU0::create_preconditioner(): " << t.stop() << " s";
OpmLog::info(out.str());
}
return result;
} // end create_preconditioner()
template <class Scalar, unsigned int block_size>
void rocsparseBILU0<Scalar, block_size>::
copy_system_to_gpu(Scalar *d_Avals) {
Timer t;
bool use_multithreading = true;
#if HAVE_OPENMP
if (omp_get_max_threads() == 1)
use_multithreading = false;
#endif
if (this->useJacMatrix) {
if (use_multithreading) {
copyThread->join();
}
HIP_CHECK(hipMemcpyAsync(d_Mrows, this->jacMat->rowPointers, sizeof(rocsparse_int) * (Nb + 1), hipMemcpyHostToDevice, this->stream));
HIP_CHECK(hipMemcpyAsync(d_Mcols, this->jacMat->colIndices, sizeof(rocsparse_int) * this->nnzbs_prec, hipMemcpyHostToDevice, this->stream));
HIP_CHECK(hipMemcpyAsync(d_Mvals, this->jacMat->nnzValues, sizeof(Scalar) * this->nnzbs_prec * block_size * block_size, hipMemcpyHostToDevice, this->stream));
} else {
HIP_CHECK(hipMemcpyAsync(d_Mvals, d_Avals, sizeof(Scalar) * nnz, hipMemcpyDeviceToDevice, this->stream));
}
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(this->stream));
std::ostringstream out;
out << "rocsparseBILU0::copy_system_to_gpu(): " << t.stop() << " s";
OpmLog::info(out.str());
}
} // end copy_system_to_gpu()
// don't copy rowpointers and colindices, they stay the same
template <class Scalar, unsigned int block_size>
void rocsparseBILU0<Scalar, block_size>::
update_system_on_gpu(Scalar *d_Avals) {
Timer t;
bool use_multithreading = true;
#if HAVE_OPENMP
if (omp_get_max_threads() == 1)
use_multithreading = false;
#endif
if (this->useJacMatrix) {
if (use_multithreading) {
copyThread->join();
}
HIP_CHECK(hipMemcpyAsync(d_Mvals, this->jacMat->nnzValues, sizeof(Scalar) * this->nnzbs_prec * block_size * block_size, hipMemcpyHostToDevice, this->stream));
} else {
HIP_CHECK(hipMemcpyAsync(d_Mvals, d_Avals, sizeof(Scalar) * nnz, hipMemcpyDeviceToDevice, this->stream));
}
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(this->stream));
std::ostringstream out;
out << "rocsparseSolver::update_system_on_gpu(): " << t.stop() << " s";
OpmLog::info(out.str());
}
} // end update_system_on_gpu()
template <class Scalar, unsigned int block_size>
void rocsparseBILU0<Scalar, block_size>::
apply(Scalar& y, Scalar& x) {
Scalar zero = 0.0;
Scalar one = 1.0;
Timer t_apply;
ROCSPARSE_CHECK(rocsparse_dbsrsv_solve(this->handle, this->dir, \
this->operation, Nb, this->nnzbs_prec, &one, \
descr_L, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, &y, d_t, rocsparse_solve_policy_auto, d_buffer));
ROCSPARSE_CHECK(rocsparse_dbsrsv_solve(this->handle, this->dir, \
this->operation, Nb, this->nnzbs_prec, &one, \
descr_U, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, d_t, &x, rocsparse_solve_policy_auto, d_buffer));
if (verbosity >= 3) {
std::ostringstream out;
HIP_CHECK(hipStreamSynchronize(this->stream));
out << "rocsparseBILU0 apply: " << t_apply.stop() << " s";
OpmLog::info(out.str());
}
}
#define INSTANCE_TYPE(T) \
template class rocsparseBILU0<T,1>; \
template class rocsparseBILU0<T,2>; \
template class rocsparseBILU0<T,3>; \
template class rocsparseBILU0<T,4>; \
template class rocsparseBILU0<T,5>; \
template class rocsparseBILU0<T,6>;
INSTANCE_TYPE(double)
} // namespace Opm

View File

@ -0,0 +1,125 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_ROCSPARSEBILU0_HPP
#define OPM_ROCSPARSEBILU0_HPP
#include <mutex>
#include <vector>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparsePreconditioner.hpp>
#include <rocblas/rocblas.h>
#include <rocsparse/rocsparse.h>
#include <hip/hip_version.h>
namespace Opm::Accelerator {
/// This class implements a Blocked ILU0 preconditioner
/// The decomposition is done on GPU, using exact decomposition, or ChowPatel decomposition
/// The preconditioner is applied via two exact triangular solves
template <class Scalar, unsigned int block_size>
class rocsparseBILU0 : public rocsparsePreconditioner<Scalar, block_size>
{
typedef rocsparsePreconditioner<Scalar, block_size> Base;
using Base::N;
using Base::Nb;
using Base::nnz;
using Base::nnzb;
using Base::verbosity;
private:
rocsparse_mat_descr descr_M, descr_L, descr_U;
rocsparse_mat_info ilu_info;
#if HIP_VERSION >= 50400000
rocsparse_mat_info spmv_info;
#endif
rocsparse_int *d_Mrows, *d_Mcols;
Scalar *d_Mvals, *d_t;
void *d_buffer; // buffer space, used by rocsparse ilu0 analysis
public:
rocsparseBILU0(int verbosity_);
/// Initialize GPU and allocate memory
/// \param[in] matrix matrix A
/// \param[in] jacMatrix matrix for preconditioner
bool initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
std::shared_ptr<BlockedMatrix<Scalar>> jacMatrix,
rocsparse_int *d_Arows,
rocsparse_int *d_Acols);
/// Analysis, extract parallelism if specified
/// \param[in] mat matrix A
bool analyze_matrix(BlockedMatrix<Scalar> *mat);
/// Analysis, extract parallelism if specified
/// \param[in] mat matrix A
/// \param[in] jacMat matrix for preconditioner, analyze this as well
bool analyze_matrix(BlockedMatrix<Scalar> *mat,
BlockedMatrix<Scalar> *jacMat);
/// ILU decomposition
/// \param[in] mat matrix A to decompose
bool create_preconditioner(BlockedMatrix<Scalar> *mat) override;
/// ILU decomposition
/// \param[in] mat matrix A
/// \param[in] jacMat matrix for preconditioner, decompose this one if used
bool create_preconditioner(BlockedMatrix<Scalar> *mat,
BlockedMatrix<Scalar> *jacMat) override;
/// Apply preconditioner, x = prec(y)
/// via Lz = y
/// and Ux = z
/// \param[in] y Input y vector
/// \param[out] x Output x vector
void apply(Scalar& y,
Scalar& x) override;
#if HAVE_OPENCL
// apply preconditioner, x = prec(y)
void apply(const cl::Buffer& y,
cl::Buffer& x) {}
#endif
/// Copy matrix A values to GPU
/// \param[in] mVals Input values
void copy_system_to_gpu(Scalar *mVals);
/// Reassign pointers, in case the addresses of the Dune variables have changed --> TODO: check when/if we need this method
// /// \param[in] vals New values
// /// \param[in] b New b vector
// void update_system(Scalar *vals, Scalar *b);
/// Update GPU values after a new assembly is done
/// \param[in] b New b vector
void update_system_on_gpu(Scalar *b);
};
} // namespace Opm
#endif

View File

@ -0,0 +1,338 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <dune/common/shared_ptr.hh>
#include <opm/simulators/linalg/PreconditionerFactory.hpp>
#include <opm/simulators/linalg/PropertyTree.hpp>
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseCPR.hpp>
#include <opm/simulators/linalg/bda/rocm/hipKernels.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
namespace Opm::Accelerator {
using Opm::OpmLog;
using Dune::Timer;
template <class Scalar, unsigned int block_size>
rocsparseCPR<Scalar, block_size>::rocsparseCPR(int verbosity_) :
rocsparsePreconditioner<Scalar, block_size>(verbosity_)
{
bilu0 = std::make_unique<rocsparseBILU0<Scalar, block_size> >(verbosity_);
}
template <class Scalar, unsigned int block_size>
bool rocsparseCPR<Scalar, block_size>::
initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
std::shared_ptr<BlockedMatrix<Scalar>> jacMatrix,
rocsparse_int *d_Arows,
rocsparse_int *d_Acols)
{
this->Nb = matrix->Nb;
this->nnzb = matrix->nnzbs;
this->N = Nb * block_size;
this->nnz = nnzb * block_size * block_size;
bilu0->set_context(this->handle, this->dir, this->operation, this->stream);
bilu0->setJacMat(*this->jacMat.get());
bilu0->initialize(matrix,jacMatrix,d_Arows,d_Acols);
return true;
}
template <class Scalar, unsigned int block_size>
void rocsparseCPR<Scalar, block_size>::
copy_system_to_gpu(Scalar *b) {
bilu0->copy_system_to_gpu(b);
}
template <class Scalar, unsigned int block_size>
void rocsparseCPR<Scalar, block_size>::
update_system_on_gpu(Scalar *vals) {
bilu0->update_system_on_gpu(vals);
}
template <class Scalar, unsigned int block_size>
bool rocsparseCPR<Scalar, block_size>::
analyze_matrix(BlockedMatrix<Scalar> *mat_) {
this->Nb = mat_->Nb;
this->nnzb = mat_->nnzbs;
this->N = Nb * block_size;
this->nnz = nnzb * block_size * block_size;
bool success = bilu0->analyze_matrix(mat_);
this->mat = mat_;
return success;
}
template <class Scalar, unsigned int block_size>
bool rocsparseCPR<Scalar, block_size>::
analyze_matrix(BlockedMatrix<Scalar> *mat_,
BlockedMatrix<Scalar> *jacMat)
{
this->Nb = mat_->Nb;
this->nnzb = mat_->nnzbs;
this->N = Nb * block_size;
this->nnz = nnzb * block_size * block_size;
bool success = bilu0->analyze_matrix(mat_, jacMat);
this->mat = mat_;
return success;
}
template <class Scalar, unsigned int block_size>
bool rocsparseCPR<Scalar, block_size>::
create_preconditioner(BlockedMatrix<Scalar> *mat_,
BlockedMatrix<Scalar> *jacMat)
{
Dune::Timer t_bilu0;
bool result = bilu0->create_preconditioner(mat_, jacMat);
if (verbosity >= 3) {
std::ostringstream out;
out << "rocsparseCPR create_preconditioner bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
this->create_preconditioner_amg(this->mat);
if (verbosity >= 3) {
std::ostringstream out;
out << "rocsparseCPR create_preconditioner_amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
auto init_func = std::bind(&rocsparseCPR::init_rocm_buffers, this);
std::call_once(rocm_buffers_allocated, init_func);
// upload matrices and vectors to GPU
rocm_upload();
return result;
}
template <class Scalar, unsigned int block_size>
bool rocsparseCPR<Scalar, block_size>::
create_preconditioner(BlockedMatrix<Scalar> *mat_) {
Dune::Timer t_bilu0;
bool result = bilu0->create_preconditioner(mat_);
if (verbosity >= 3) {
std::ostringstream out;
out << "rocsparseCPR create_preconditioner bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
this->create_preconditioner_amg(this->mat);
if (verbosity >= 3) {
std::ostringstream out;
out << "rocsparseCPR create_preconditioner_amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
auto init_func = std::bind(&rocsparseCPR::init_rocm_buffers, this);
std::call_once(rocm_buffers_allocated, init_func);
// upload matrices and vectors to GPU
rocm_upload();
return result;
}
template <class Scalar, unsigned int block_size>
void rocsparseCPR<Scalar, block_size>::
init_rocm_buffers() {
d_Amatrices.reserve(this->num_levels);
d_Rmatrices.reserve(this->num_levels - 1);
d_invDiags.reserve(this->num_levels - 1);
for (Matrix<Scalar>& m : this->Amatrices) {
d_Amatrices.emplace_back(m.N, m.M, m.nnzs, 1);
}
for (Matrix<Scalar>& m : this->Rmatrices) {
d_Rmatrices.emplace_back(m.N, m.M, m.nnzs, 1);
d_f.emplace_back(m.N);
d_u.emplace_back(m.N);
d_PcolIndices.emplace_back(m.M);
d_invDiags.emplace_back(m.M);
d_t.emplace_back(m.M);
}
d_weights.emplace_back(this->N);
d_rs.emplace_back(this->N);
d_mat = std::make_unique<RocmMatrix<Scalar>>(this->Nb, this->Nb, this->nnzb, block_size);
d_coarse_y.emplace_back(this->Nb);
d_coarse_x.emplace_back(this->Nb);
}
template <class Scalar, unsigned int block_size>
void rocsparseCPR<Scalar, block_size>::
rocm_upload() {
d_mat->upload(this->mat, this->stream);
HIP_CHECK(hipMemcpyAsync(d_weights.data()->nnzValues, this->weights.data(), sizeof(Scalar) * this->N, hipMemcpyHostToDevice, this->stream));
for (unsigned int i = 0; i < this->Rmatrices.size(); ++i) {
d_Amatrices[i].upload(&this->Amatrices[i], this->stream);
HIP_CHECK(hipMemcpyAsync(d_invDiags[i].nnzValues, this->invDiags[i].data(), sizeof(Scalar) * this->Amatrices[i].N, hipMemcpyHostToDevice, this->stream));
HIP_CHECK(hipMemcpyAsync(d_PcolIndices[i].nnzValues, this->PcolIndices[i].data(), sizeof(int) * this->Amatrices[i].N, hipMemcpyHostToDevice, this->stream));
}
for (unsigned int i = 0; i < this->Rmatrices.size(); ++i) {
d_Rmatrices[i].upload(&this->Rmatrices[i], this->stream);
}
}
template <class Scalar, unsigned int block_size>
void rocsparseCPR<Scalar, block_size>::
amg_cycle_gpu(const int level,
Scalar &y,
Scalar &x)
{
RocmMatrix<Scalar> *A = &d_Amatrices[level];
RocmMatrix<Scalar> *R = &d_Rmatrices[level];
int Ncur = A->Nb;
Scalar zero = 0.0;
Scalar one = 1.0;
rocsparse_mat_info spmv_info;
rocsparse_mat_descr descr_R;
ROCSPARSE_CHECK(rocsparse_create_mat_info(&spmv_info));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_R));
if (level == this->num_levels - 1) {
// solve coarsest level
std::vector<Scalar> h_y(Ncur), h_x(Ncur, 0);
HIP_CHECK(hipMemcpyAsync(h_y.data(), &y, sizeof(Scalar) * Ncur, hipMemcpyDeviceToHost, this->stream));
// solve coarsest level using umfpack
this->umfpack.apply(h_x.data(), h_y.data());
HIP_CHECK(hipMemcpyAsync(&x, h_x.data(), sizeof(Scalar) * Ncur, hipMemcpyHostToDevice, this->stream));
return;
}
int Nnext = d_Amatrices[level+1].Nb;
RocmVector<Scalar>& t = d_t[level];
RocmVector<Scalar>& f = d_f[level];
RocmVector<Scalar>& u = d_u[level]; // u was 0-initialized earlier
// presmooth
Scalar jacobi_damping = 0.65; // default value in amgcl: 0.72
for (unsigned i = 0; i < this->num_pre_smooth_steps; ++i){
HipKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers, &x, &y, t.nnzValues, Ncur, 1, this->stream);
HipKernels<Scalar>::vmul(jacobi_damping, d_invDiags[level].nnzValues, t.nnzValues, &x, Ncur, this->stream);
}
// move to coarser level
HipKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers, &x, &y, t.nnzValues, Ncur, 1, this->stream);
// TODO: understand why rocsparse spmv library function does not here.
// ROCSPARSE_CHECK(rocsparse_dbsrmv(this->handle, this->dir, this->operation,
// R->Nb, R->Mb, R->nnzbs, &one, descr_R,
// R->nnzValues, R->rowPointers, R->colIndices, 1,
// t.nnzValues, &zero, f.nnzValues));
HipKernels<Scalar>::spmv(R->nnzValues, R->colIndices, R->rowPointers, t.nnzValues, f.nnzValues, Nnext, 1, this->stream);
amg_cycle_gpu(level + 1, *f.nnzValues, *u.nnzValues);
HipKernels<Scalar>::prolongate_vector(u.nnzValues, &x, d_PcolIndices[level].nnzValues, Ncur, this->stream);
// postsmooth
for (unsigned i = 0; i < this->num_post_smooth_steps; ++i){
HipKernels<Scalar>::residual(A->nnzValues, A->colIndices, A->rowPointers, &x, &y, t.nnzValues, Ncur, 1, this->stream);
HipKernels<Scalar>::vmul(jacobi_damping, d_invDiags[level].nnzValues, t.nnzValues, &x, Ncur, this->stream);
}
}
// x = prec(y)
template <class Scalar, unsigned int block_size>
void rocsparseCPR<Scalar, block_size>::
apply_amg(const Scalar& y,
Scalar& x)
{
HIP_CHECK(hipMemsetAsync(d_coarse_x.data()->nnzValues, 0, sizeof(Scalar) * this->Nb, this->stream));
for (unsigned int i = 0; i < d_u.size(); ++i) {
d_u[i].upload(this->Rmatrices[i].nnzValues.data(), this->stream);
}
HipKernels<Scalar>::residual(d_mat->nnzValues, d_mat->colIndices, d_mat->rowPointers, &x, &y, d_rs.data()->nnzValues, this->Nb, block_size, this->stream);
HipKernels<Scalar>::full_to_pressure_restriction(d_rs.data()->nnzValues, d_weights.data()->nnzValues, d_coarse_y.data()->nnzValues, Nb, this->stream);
amg_cycle_gpu(0, *(d_coarse_y.data()->nnzValues), *(d_coarse_x.data()->nnzValues));
HipKernels<Scalar>::add_coarse_pressure_correction(d_coarse_x.data()->nnzValues, &x, this->pressure_idx, Nb, this->stream);
}
template <class Scalar, unsigned int block_size>
void rocsparseCPR<Scalar, block_size>::
apply(Scalar& y,
Scalar& x)
{
Dune::Timer t_bilu0;
bilu0->apply(y, x);
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(this->stream));
std::ostringstream out;
out << "rocsparseCPR apply bilu0(): " << t_bilu0.stop() << " s";
OpmLog::info(out.str());
}
Dune::Timer t_amg;
apply_amg(y, x);
if (verbosity >= 3) {
std::ostringstream out;
out << "rocsparseCPR apply amg(): " << t_amg.stop() << " s";
OpmLog::info(out.str());
}
}
#define INSTANCE_TYPE(T) \
template class rocsparseCPR<T,1>; \
template class rocsparseCPR<T,2>; \
template class rocsparseCPR<T,3>; \
template class rocsparseCPR<T,4>; \
template class rocsparseCPR<T,5>; \
template class rocsparseCPR<T,6>;
INSTANCE_TYPE(double)
} // namespace Opm

View File

@ -0,0 +1,142 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_ROCSPARSECPR_HPP
#define OPM_ROCSPARSECPR_HPP
#include <mutex>
#include <opm/simulators/linalg/bda/rocm/rocsparseBILU0.hpp>
#include <opm/simulators/linalg/bda/Matrix.hpp>
#include <opm/simulators/linalg/bda/CprCreation.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseMatrix.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparsePreconditioner.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseSolverBackend.hpp>
namespace Opm::Accelerator {
template<class Scalar> class BlockedMatrix;
/// This class implements a Constrained Pressure Residual (CPR) preconditioner
template <class Scalar, unsigned int block_size>
class rocsparseCPR : public rocsparsePreconditioner<Scalar, block_size>, public CprCreation<Scalar, block_size>
{
typedef rocsparsePreconditioner<Scalar, block_size> Base;
using Base::N;
using Base::Nb;
using Base::nnz;
using Base::nnzb;
using Base::verbosity;
private:
std::vector<RocmMatrix<Scalar>> d_Amatrices, d_Rmatrices; // scalar matrices that represent the AMG hierarchy
std::vector<RocmVector<int>> d_PcolIndices; // prolongation does not need a full matrix, only store colIndices
std::vector<RocmVector<Scalar>> d_invDiags; // inverse of diagonal of Amatrices
std::vector<RocmVector<Scalar>> d_t, d_f; // intermediate vectors used during amg cycle
std::vector<RocmVector<Scalar>> d_u; // intermediate vectors used during amg cycle
std::vector<RocmVector<Scalar>> d_rs; // use before extracting the pressure
std::vector<RocmVector<Scalar>> d_weights; // the quasiimpes weights, used to extract pressure
std::unique_ptr<RocmMatrix<Scalar>> d_mat; // stores blocked matrix
std::vector<RocmVector<Scalar>> d_coarse_y, d_coarse_x; // stores the scalar vectors
std::once_flag rocm_buffers_allocated; // only allocate OpenCL Buffers once
std::unique_ptr<rocsparseBILU0<Scalar, block_size> > bilu0; // Blocked ILU0 preconditioner
std::unique_ptr<rocsparseSolverBackend<Scalar, 1> > coarse_solver; // coarse solver is scalar
// Initialize and allocate matrices and vectors
void init_rocm_buffers();
// Copy matrices and vectors to GPU
void rocm_upload();
// apply pressure correction to vector
void apply_amg(const Scalar& y, Scalar& x);
// Apply the AMG preconditioner
void amg_cycle_gpu(const int level, Scalar &y, Scalar &x);
public:
rocsparseCPR(int verbosity);
/// Initialize GPU and allocate memory
/// \param[in] matrix matrix A
/// \param[in] jacMatrix matrix for preconditioner
bool initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
std::shared_ptr<BlockedMatrix<Scalar>> jacMatrix,
rocsparse_int *d_Arows,
rocsparse_int *d_Acols);
/// Analysis, extract parallelism if specified
/// \param[in] mat matrix A
bool analyze_matrix(BlockedMatrix<Scalar> *mat);
/// Analysis, extract parallelism if specified
/// \param[in] mat matrix A
/// \param[in] jacMat matrix for preconditioner, analyze this as well
bool analyze_matrix(BlockedMatrix<Scalar> *mat,
BlockedMatrix<Scalar> *jacMat);
/// Create AMG preconditioner and perform ILU decomposition
/// \param[in] mat matrix A
bool create_preconditioner(BlockedMatrix<Scalar> *mat);
/// Create AMG preconditioner and perform ILU decomposition
/// \param[in] mat matrix A
/// \param[in] jacMat matrix for preconditioner, decompose this one if used
bool create_preconditioner(BlockedMatrix<Scalar> *mat,
BlockedMatrix<Scalar> *jacMat);
/// Apply preconditioner, x = prec(y)
/// applies blocked ilu0
/// also applies amg for pressure component
/// \param[in] y Input y vector
/// \param[out] x Output x vector
void apply(Scalar& y,
Scalar& x) override;
#if HAVE_OPENCL
// apply preconditioner, x = prec(y)
void apply(const cl::Buffer& y,
cl::Buffer& x) {}
#endif
/// Copy matrix A values to GPU
/// \param[in] mVals Input values
void copy_system_to_gpu(Scalar *b);
/// Reassign pointers, in case the addresses of the Dune variables have changed --> TODO: check when/if we need this method
/// \param[in] vals array of nonzeroes, each block is stored row-wise and contiguous, contains nnz values
/// \param[in] b input vector b, contains N values
// void update_system(Scalar *vals, Scalar *b);
/// Update linear system to GPU
/// \param[in] b input vector, contains N values
void update_system_on_gpu(Scalar *b);
};
} // namespace Opm
#endif

View File

@ -0,0 +1,113 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseMatrix.hpp>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
#include <opm/simulators/linalg/bda/Matrix.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
#include <sstream>
#include <iostream>
namespace Opm::Accelerator {
template<class Scalar>
RocmMatrix<Scalar>::
RocmMatrix(int Nb_,
int Mb_,
int nnzbs_,
unsigned int block_size_)
: Nb(Nb_),
Mb(Mb_),
nnzbs(nnzbs_),
block_size(block_size_)
{
HIP_CHECK(hipMalloc((void**)&nnzValues, sizeof(Scalar) * block_size * block_size * nnzbs));
HIP_CHECK(hipMalloc((void**)&colIndices, sizeof(int) * nnzbs));
HIP_CHECK(hipMalloc((void**)&rowPointers, sizeof(int) * (Nb + 1)));
}
template <class Scalar>
void RocmMatrix<Scalar>::
upload(Scalar *vals,
int *cols,
int *rows,
hipStream_t stream)
{
HIP_CHECK(hipMemcpyAsync(nnzValues, vals, sizeof(Scalar) * block_size * block_size * nnzbs, hipMemcpyHostToDevice, stream));
HIP_CHECK(hipMemcpyAsync(colIndices, cols, sizeof(int) * nnzbs, hipMemcpyHostToDevice, stream));
HIP_CHECK(hipMemcpyAsync(rowPointers, rows, sizeof(int) * (Nb + 1), hipMemcpyHostToDevice, stream));
}
template <class Scalar>
void RocmMatrix<Scalar>::
upload(Matrix<Scalar> *matrix,
hipStream_t stream)
{
if (block_size != 1) {
OPM_THROW(std::logic_error, "Error trying to upload a BlockedMatrix to RocmMatrix with different block_size");
}
upload(matrix->nnzValues.data(), matrix->colIndices.data(), matrix->rowPointers.data(), stream);
}
template <class Scalar>
void RocmMatrix<Scalar>::
upload(BlockedMatrix<Scalar> *matrix,
hipStream_t stream)
{
if (matrix->block_size != block_size) {
OPM_THROW(std::logic_error, "Error trying to upload a BlockedMatrix to RocmMatrix with different block_size");
}
upload(matrix->nnzValues, matrix->colIndices, matrix->rowPointers, stream);
}
template <class Scalar>
RocmVector<Scalar>::RocmVector(int N)
: size(N)
{
HIP_CHECK(hipMalloc((void**)&nnzValues, sizeof(Scalar) * N));
}
template <class Scalar>
void RocmVector<Scalar>::
upload(Scalar *vals,
hipStream_t stream)
{
HIP_CHECK(hipMemcpyAsync(nnzValues, vals, sizeof(Scalar) * size, hipMemcpyHostToDevice, stream));
}
#define INSTANCE_TYPE(T) \
template class RocmVector<T>;\
template class RocmMatrix<T>;
INSTANCE_TYPE(int);
INSTANCE_TYPE(double);
} // namespace Opm

View File

@ -0,0 +1,73 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_ROCMMATRIX_HEADER_INCLUDED
#define OPM_ROCMMATRIX_HEADER_INCLUDED
#include <hip/hip_runtime_api.h>
namespace Opm::Accelerator {
template<class Scalar> class Matrix;
template<class Scalar> class BlockedMatrix;
/// This struct resembles a csr matrix
template<class Scalar>
class RocmMatrix {
public:
RocmMatrix(int Nb_, int Mb_, int nnzbs_, unsigned int block_size_);
void upload(Scalar *vals,
int *cols,
int *rows,
hipStream_t stream);
void upload(Matrix<Scalar> *matrix,
hipStream_t stream);
void upload(BlockedMatrix<Scalar> *matrix,
hipStream_t stream);
Scalar* nnzValues;
int* colIndices;
int* rowPointers;
int Nb, Mb;
int nnzbs;
unsigned int block_size;
};
template <typename Scalar>
class RocmVector {
public:
RocmVector(int N);
void upload(Scalar *vals,
hipStream_t stream);
void upload(Matrix<Scalar> *matrix,
hipStream_t stream);
Scalar* nnzValues;
int size;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,86 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <memory>
#include <opm/common/TimingMacros.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseBILU0.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseCPR.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparsePreconditioner.hpp>
namespace Opm::Accelerator {
template <class Scalar, unsigned int block_size>
std::unique_ptr<rocsparsePreconditioner<Scalar,block_size> > rocsparsePreconditioner<Scalar,block_size>::
create(PreconditionerType type,
int verbosity)
{
switch (type ) {
case PreconditionerType::BILU0:
return std::make_unique<Opm::Accelerator::rocsparseBILU0<Scalar, block_size> >(verbosity);
case PreconditionerType::CPR:
return std::make_unique<Opm::Accelerator::rocsparseCPR<Scalar, block_size> >(verbosity);
}
OPM_THROW(std::logic_error,
"Invalid preconditioner type " + std::to_string(static_cast<int>(type)));
}
template <class Scalar, unsigned int block_size>
void rocsparsePreconditioner<Scalar, block_size>::
set_matrix_analysis(rocsparse_mat_descr descr_L,
rocsparse_mat_descr descr_U)
{
descr_L = descr_L;
descr_U = descr_U;
}
template <class Scalar, unsigned int block_size>
void rocsparsePreconditioner<Scalar, block_size>::
set_context(rocsparse_handle handle,
rocsparse_direction dir,
rocsparse_operation operation,
hipStream_t stream)
{
this->handle = handle;
this->dir = dir;
this->operation = operation;
this->stream = stream;
}
template <class Scalar, unsigned int block_size>
void rocsparsePreconditioner<Scalar, block_size>::
setJacMat(BlockedMatrix<Scalar> jacMat) {
this->jacMat = std::make_shared<BlockedMatrix<Scalar>>(jacMat);
}
#define INSTANTIATE_TYPE(T) \
template class rocsparsePreconditioner<T,1>; \
template class rocsparsePreconditioner<T,2>; \
template class rocsparsePreconditioner<T,3>; \
template class rocsparsePreconditioner<T,4>; \
template class rocsparsePreconditioner<T,5>; \
template class rocsparsePreconditioner<T,6>;
INSTANTIATE_TYPE(double)
} //namespace Opm

View File

@ -0,0 +1,91 @@
/*
Copyright 2024 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_ROCSPARSEPRECONDITIONER_HEADER_INCLUDED
#define OPM_ROCSPARSEPRECONDITIONER_HEADER_INCLUDED
#include <opm/simulators/linalg/bda/Preconditioner.hpp>
#include <rocsparse/rocsparse.h>
namespace Opm::Accelerator {
template<class Scalar> class BlockedMatrix;
template <class Scalar, unsigned int block_size>
class rocsparsePreconditioner : public Preconditioner<Scalar, block_size>
{
protected:
rocsparse_handle handle;
rocsparse_direction dir = rocsparse_direction_row;
rocsparse_operation operation = rocsparse_operation_none;
rocsparse_mat_descr descr_L, descr_U;
hipStream_t stream;
rocsparsePreconditioner(int verbosity_) :
Preconditioner<Scalar, block_size>(verbosity_)
{};
public:
int nnzbs_prec = 0; // number of nnz blocks in preconditioner matrix M
bool useJacMatrix = false;
std::shared_ptr<BlockedMatrix<Scalar>> jacMat{}; // matrix for preconditioner
virtual ~rocsparsePreconditioner() = default;
static std::unique_ptr<rocsparsePreconditioner<Scalar, block_size>> create(PreconditionerType type,
int verbosity);
// apply preconditioner, x = prec(y)
virtual void apply(Scalar& y, Scalar& x) = 0;
// create/update preconditioner, probably used every linear solve
// the version with two params can be overloaded, if not, it will default to using the one param version
virtual bool create_preconditioner(BlockedMatrix<Scalar> *mat) = 0;
virtual bool create_preconditioner(BlockedMatrix<Scalar> *mat,
BlockedMatrix<Scalar> *jacMat) = 0;
virtual bool initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
std::shared_ptr<BlockedMatrix<Scalar>> jacMatrix,
rocsparse_int *d_Arows,
rocsparse_int *d_Acols) = 0;
virtual void copy_system_to_gpu(Scalar *b)=0;
/// Update linear system to GPU
/// \param[in] b input vector, contains N values
virtual void update_system_on_gpu(Scalar *b)=0;
void set_matrix_analysis(rocsparse_mat_descr descr_L,
rocsparse_mat_descr descr_U);
void set_context(rocsparse_handle handle,
rocsparse_direction dir,
rocsparse_operation operation,
hipStream_t stream);
void setJacMat(BlockedMatrix<Scalar> jacMat);
};
} //namespace Opm
#endif

View File

@ -36,63 +36,22 @@
#undef HAVE_CUDA
#include <opm/simulators/linalg/bda/rocsparseSolverBackend.hpp>
#include <opm/simulators/linalg/bda/rocsparseWellContributions.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseSolverBackend.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseWellContributions.hpp>
#include <opm/simulators/linalg/bda/BdaResult.hpp>
#include <hip/hip_runtime_api.h>
#include <hip/hip_version.h>
#include <opm/simulators/linalg/bda/Preconditioner.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
#ifdef HIP_HAVE_CUDA_DEFINED
#define HAVE_CUDA HIP_HAVE_CUDA_DEFINED
#undef HIP_HAVE_CUDA_DEFINED
#endif
#define HIP_CHECK(STAT) \
do { \
const hipError_t stat = (STAT); \
if(stat != hipSuccess) \
{ \
std::ostringstream oss; \
oss << "rocsparseSolverBackend::hip "; \
oss << "error: " << hipGetErrorString(stat); \
OPM_THROW(std::logic_error, oss.str()); \
} \
} while(0)
#define ROCSPARSE_CHECK(STAT) \
do { \
const rocsparse_status stat = (STAT); \
if(stat != rocsparse_status_success) \
{ \
std::ostringstream oss; \
oss << "rocsparseSolverBackend::rocsparse "; \
oss << "error: " << stat; \
OPM_THROW(std::logic_error, oss.str()); \
} \
} while(0)
#define ROCBLAS_CHECK(STAT) \
do { \
const rocblas_status stat = (STAT); \
if(stat != rocblas_status_success) \
{ \
std::ostringstream oss; \
oss << "rocsparseSolverBackend::rocblas "; \
oss << "error: " << stat; \
OPM_THROW(std::logic_error, oss.str()); \
} \
} while(0)
#include <cstddef>
#if HAVE_OPENMP
#include <thread>
#include <omp.h>
extern std::shared_ptr<std::thread> copyThread;
#endif //HAVE_OPENMP
namespace Opm::Accelerator {
using Dune::Timer;
@ -100,10 +59,26 @@ using Dune::Timer;
template<class Scalar, unsigned int block_size>
rocsparseSolverBackend<Scalar,block_size>::
rocsparseSolverBackend(int verbosity_, int maxit_, Scalar tolerance_,
unsigned int platformID_, unsigned int deviceID_)
unsigned int platformID_, unsigned int deviceID_, std::string linsolver)
: Base(verbosity_, maxit_, tolerance_, platformID_, deviceID_)
{
int numDevices = 0;
bool use_cpr, use_isai;
if (linsolver.compare("ilu0") == 0) {
use_cpr = false;
use_isai = false;
} else if (linsolver.compare("cpr_quasiimpes") == 0) {
use_cpr = true;
use_isai = false;
} else if (linsolver.compare("isai") == 0) {
OPM_THROW(std::logic_error, "Error rocsparseSolver does not support --linerar-solver=isai");
} else if (linsolver.compare("cpr_trueimpes") == 0) {
OPM_THROW(std::logic_error, "Error rocsparseSolver does not support --linerar-solver=cpr_trueimpes");
} else {
OPM_THROW(std::logic_error, "Error unknown value for argument --linear-solver, " + linsolver);
}
HIP_CHECK(hipGetDeviceCount(&numDevices));
if (static_cast<int>(deviceID) >= numDevices) {
OPM_THROW(std::runtime_error, "Invalid HIP device ID");
@ -124,6 +99,15 @@ rocsparseSolverBackend(int verbosity_, int maxit_, Scalar tolerance_,
HIP_CHECK(hipStreamCreate(&stream));
ROCSPARSE_CHECK(rocsparse_set_stream(handle, stream));
ROCBLAS_CHECK(rocblas_set_stream(blas_handle, stream));
using PreconditionerType = typename Opm::Accelerator::PreconditionerType;
if (use_cpr) {
prec = rocsparsePreconditioner<Scalar, block_size>::create(PreconditionerType::CPR, verbosity);
} else {
prec = rocsparsePreconditioner<Scalar, block_size>::create(PreconditionerType::BILU0, verbosity);
}
prec->set_context(handle, dir, operation, stream);
}
template<class Scalar, unsigned int block_size>
@ -170,17 +154,17 @@ gpu_pbicgstab([[maybe_unused]] WellContributions<Scalar>& wellContribs,
// HIP_VERSION is defined as (HIP_VERSION_MAJOR * 10000000 + HIP_VERSION_MINOR * 100000 + HIP_VERSION_PATCH)
#if HIP_VERSION >= 60000000
ROCSPARSE_CHECK(rocsparse_dbsrmv(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
spmv_info, d_x, &zero, d_r));
#elif HIP_VERSION >= 50400000
ROCSPARSE_CHECK(rocsparse_dbsrmv_ex(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
spmv_info, d_x, &zero, d_r));
#else
ROCSPARSE_CHECK(rocsparse_dbsrmv(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
d_x, &zero, d_r));
#endif
@ -216,13 +200,9 @@ gpu_pbicgstab([[maybe_unused]] WellContributions<Scalar>& wellContribs,
t_prec.start();
}
// apply ilu0
ROCSPARSE_CHECK(rocsparse_dbsrsv_solve(handle, dir, \
operation, Nb, nnzbs_prec, &one, \
descr_L, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, d_p, d_t, rocsparse_solve_policy_auto, d_buffer));
ROCSPARSE_CHECK(rocsparse_dbsrsv_solve(handle, dir, \
operation, Nb, nnzbs_prec, &one, \
descr_U, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, d_t, d_pw, rocsparse_solve_policy_auto, d_buffer));
// apply ilu0
prec->apply(*d_p, *d_pw);
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(stream));
t_prec.stop();
@ -232,17 +212,17 @@ gpu_pbicgstab([[maybe_unused]] WellContributions<Scalar>& wellContribs,
// spmv
#if HIP_VERSION >= 60000000
ROCSPARSE_CHECK(rocsparse_dbsrmv(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
spmv_info, d_pw, &zero, d_v));
#elif HIP_VERSION >= 50400000
ROCSPARSE_CHECK(rocsparse_dbsrmv_ex(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
spmv_info, d_pw, &zero, d_v));
#else
ROCSPARSE_CHECK(rocsparse_dbsrmv(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
d_pw, &zero, d_v));
#endif
@ -283,12 +263,9 @@ gpu_pbicgstab([[maybe_unused]] WellContributions<Scalar>& wellContribs,
if (verbosity >= 3) {
t_prec.start();
}
ROCSPARSE_CHECK(rocsparse_dbsrsv_solve(handle, dir, \
operation, Nb, nnzbs_prec, &one, \
descr_L, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, d_r, d_t, rocsparse_solve_policy_auto, d_buffer));
ROCSPARSE_CHECK(rocsparse_dbsrsv_solve(handle, dir, \
operation, Nb, nnzbs_prec, &one, \
descr_U, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, d_t, d_s, rocsparse_solve_policy_auto, d_buffer));
prec->apply(*d_r, *d_s);
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(stream));
t_prec.stop();
@ -298,17 +275,17 @@ gpu_pbicgstab([[maybe_unused]] WellContributions<Scalar>& wellContribs,
// spmv
#if HIP_VERSION >= 60000000
ROCSPARSE_CHECK(rocsparse_dbsrmv(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
spmv_info, d_s, &zero, d_t));
#elif HIP_VERSION >= 50400000
ROCSPARSE_CHECK(rocsparse_dbsrmv_ex(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
spmv_info, d_s, &zero, d_t));
#else
ROCSPARSE_CHECK(rocsparse_dbsrmv(handle, dir, operation,
Nb, Nb, nnzb, &one, descr_M,
Nb, Nb, nnzb, &one, descr_A,
d_Avals, d_Arows, d_Acols, block_size,
d_s, &zero, d_t));
#endif
@ -384,14 +361,18 @@ initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
std::shared_ptr<BlockedMatrix<Scalar>> jacMatrix)
{
this->Nb = matrix->Nb;
this->N = Nb * block_size;
this->N = this->Nb * block_size;
this->nnzb = matrix->nnzbs;
this->nnz = nnzb * block_size * block_size;
nnzbs_prec = nnzb;
this->nnz = this->nnzb * block_size * block_size;
if (jacMatrix) {
useJacMatrix = true;
nnzbs_prec = jacMatrix->nnzbs;
prec->useJacMatrix = true;
prec->jacMat = jacMatrix;
prec->nnzbs_prec = jacMatrix->nnzbs;
} else {
prec->useJacMatrix = false;
prec->jacMat = matrix;
prec->nnzbs_prec = this->nnzb;
}
std::ostringstream out;
@ -408,7 +389,6 @@ initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
out.clear();
mat = matrix;
jacMat = jacMatrix;
HIP_CHECK(hipMalloc((void**)&d_r, sizeof(Scalar) * N));
HIP_CHECK(hipMalloc((void**)&d_rw, sizeof(Scalar) * N));
@ -424,15 +404,7 @@ initialize(std::shared_ptr<BlockedMatrix<Scalar>> matrix,
HIP_CHECK(hipMalloc((void**)&d_x, sizeof(Scalar) * N));
HIP_CHECK(hipMalloc((void**)&d_b, sizeof(Scalar) * N));
if (useJacMatrix) {
HIP_CHECK(hipMalloc((void**)&d_Mrows, sizeof(rocsparse_int) * (Nb + 1)));
HIP_CHECK(hipMalloc((void**)&d_Mcols, sizeof(rocsparse_int) * nnzbs_prec));
HIP_CHECK(hipMalloc((void**)&d_Mvals, sizeof(Scalar) * nnzbs_prec * block_size * block_size));
} else { // preconditioner matrix is same
HIP_CHECK(hipMalloc((void**)&d_Mvals, sizeof(Scalar) * nnzbs_prec * block_size * block_size));
d_Mcols = d_Acols;
d_Mrows = d_Arows;
}
prec->initialize(matrix, jacMatrix, d_Arows, d_Acols);//TODO: do we need all parameters?
initialized = true;
} // end initialize()
@ -453,28 +425,10 @@ copy_system_to_gpu(Scalar *b)
sizeof(Scalar) * nnz,
hipMemcpyHostToDevice, stream));
HIP_CHECK(hipMemsetAsync(d_x, 0, N * sizeof(Scalar), stream));
HIP_CHECK(hipMemcpyAsync(d_b, b, N * sizeof(Scalar) * N,
HIP_CHECK(hipMemcpyAsync(d_b, b, N * sizeof(Scalar),
hipMemcpyHostToDevice, stream));
if (useJacMatrix) {
#if HAVE_OPENMP
if (omp_get_max_threads() > 1) {
copyThread->join();
}
#endif
HIP_CHECK(hipMemcpyAsync(d_Mrows, jacMat->rowPointers,
sizeof(rocsparse_int) * (Nb + 1),
hipMemcpyHostToDevice, stream));
HIP_CHECK(hipMemcpyAsync(d_Mcols, jacMat->colIndices,
sizeof(rocsparse_int) * nnzbs_prec,
hipMemcpyHostToDevice, stream));
HIP_CHECK(hipMemcpyAsync(d_Mvals, jacMat->nnzValues,
sizeof(Scalar) * nnzbs_prec * block_size * block_size,
hipMemcpyHostToDevice, stream));
} else {
HIP_CHECK(hipMemcpyAsync(d_Mvals, d_Avals,
sizeof(Scalar) * nnz, hipMemcpyDeviceToDevice, stream));
}
prec->copy_system_to_gpu(d_Avals);
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(stream));
@ -500,19 +454,8 @@ update_system_on_gpu(Scalar* b)
HIP_CHECK(hipMemcpyAsync(d_b, b, N* sizeof(Scalar),
hipMemcpyHostToDevice, stream));
if (useJacMatrix) {
#if HAVE_OPENMP
if (omp_get_max_threads() > 1) {
copyThread->join();
}
#endif
HIP_CHECK(hipMemcpyAsync(d_Mvals, jacMat->nnzValues,
sizeof(Scalar) * nnzbs_prec * block_size * block_size,
hipMemcpyHostToDevice, stream));
} else {
HIP_CHECK(hipMemcpyAsync(d_Mvals, d_Avals,
sizeof(Scalar) * nnz, hipMemcpyDeviceToDevice, stream));
}
prec->update_system_on_gpu(d_Avals);
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(stream));
@ -528,58 +471,15 @@ template<class Scalar, unsigned int block_size>
bool rocsparseSolverBackend<Scalar,block_size>::
analyze_matrix()
{
std::size_t d_bufferSize_M, d_bufferSize_L, d_bufferSize_U, d_bufferSize;
Timer t;
ROCSPARSE_CHECK(rocsparse_set_pointer_mode(handle, rocsparse_pointer_mode_host));
ROCSPARSE_CHECK(rocsparse_create_mat_info(&ilu_info));
#if HIP_VERSION >= 50400000
ROCSPARSE_CHECK(rocsparse_create_mat_info(&spmv_info));
#endif
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_A));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_M));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_L));
ROCSPARSE_CHECK(rocsparse_set_mat_fill_mode(descr_L, rocsparse_fill_mode_lower));
ROCSPARSE_CHECK(rocsparse_set_mat_diag_type(descr_L, rocsparse_diag_type_unit));
ROCSPARSE_CHECK(rocsparse_create_mat_descr(&descr_U));
ROCSPARSE_CHECK(rocsparse_set_mat_fill_mode(descr_U, rocsparse_fill_mode_upper));
ROCSPARSE_CHECK(rocsparse_set_mat_diag_type(descr_U, rocsparse_diag_type_non_unit));
ROCSPARSE_CHECK(rocsparse_dbsrilu0_buffer_size(handle, dir, Nb, nnzbs_prec,
descr_M, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, &d_bufferSize_M));
ROCSPARSE_CHECK(rocsparse_dbsrsv_buffer_size(handle, dir, operation, Nb, nnzbs_prec,
descr_L, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, &d_bufferSize_L));
ROCSPARSE_CHECK(rocsparse_dbsrsv_buffer_size(handle, dir, operation, Nb, nnzbs_prec,
descr_U, d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, &d_bufferSize_U));
d_bufferSize = std::max(d_bufferSize_M,
std::max(d_bufferSize_L, d_bufferSize_U));
HIP_CHECK(hipMalloc((void**)&d_buffer, d_bufferSize));
// analysis of ilu LU decomposition
ROCSPARSE_CHECK(rocsparse_dbsrilu0_analysis(handle, dir, \
Nb, nnzbs_prec, descr_M, d_Mvals, d_Mrows, d_Mcols, \
block_size, ilu_info, rocsparse_analysis_policy_reuse, rocsparse_solve_policy_auto, d_buffer));
int zero_position = 0;
rocsparse_status status = rocsparse_bsrilu0_zero_pivot(handle, ilu_info, &zero_position);
if (rocsparse_status_success != status) {
printf("L has structural and/or numerical zero at L(%d,%d)\n", zero_position, zero_position);
return false;
}
// analysis of ilu apply
ROCSPARSE_CHECK(rocsparse_dbsrsv_analysis(handle, dir, operation, \
Nb, nnzbs_prec, descr_L, d_Mvals, d_Mrows, d_Mcols, \
block_size, ilu_info, rocsparse_analysis_policy_reuse, rocsparse_solve_policy_auto, d_buffer));
ROCSPARSE_CHECK(rocsparse_dbsrsv_analysis(handle, dir, operation, \
Nb, nnzbs_prec, descr_U, d_Mvals, d_Mrows, d_Mcols, \
block_size, ilu_info, rocsparse_analysis_policy_reuse, rocsparse_solve_policy_auto, d_buffer));
#if HIP_VERSION >= 60000000
ROCSPARSE_CHECK(rocsparse_dbsrmv_analysis(handle, dir, operation,
@ -593,6 +493,13 @@ analyze_matrix()
block_size, spmv_info));
#endif
if(!prec->analyze_matrix(&*mat)) {
std::ostringstream out;
out << "Warning: rocsparseSolver matrix analysis failed!";
OpmLog::info(out.str());
return false;
}
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(stream));
std::ostringstream out;
@ -609,28 +516,7 @@ template<class Scalar, unsigned int block_size>
bool rocsparseSolverBackend<Scalar,block_size>::
create_preconditioner()
{
Timer t;
bool result = true;
ROCSPARSE_CHECK(rocsparse_dbsrilu0(handle, dir, Nb, nnzbs_prec, descr_M,
d_Mvals, d_Mrows, d_Mcols, block_size, ilu_info, rocsparse_solve_policy_auto, d_buffer));
// Check for zero pivot
int zero_position = 0;
rocsparse_status status = rocsparse_bsrilu0_zero_pivot(handle, ilu_info, &zero_position);
if(rocsparse_status_success != status)
{
printf("L has structural and/or numerical zero at L(%d,%d)\n", zero_position, zero_position);
return false;
}
if (verbosity >= 3) {
HIP_CHECK(hipStreamSynchronize(stream));
std::ostringstream out;
out << "rocsparseSolver::create_preconditioner(): " << t.stop() << " s";
OpmLog::info(out.str());
}
return result;
return prec->create_preconditioner(&*mat);
} // end create_preconditioner()
template<class Scalar, unsigned int block_size>

View File

@ -26,6 +26,8 @@
#include <opm/simulators/linalg/bda/BdaSolver.hpp>
#include <opm/simulators/linalg/bda/WellContributions.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparsePreconditioner.hpp>
#include <rocblas/rocblas.h>
#include <rocsparse/rocsparse.h>
@ -57,29 +59,26 @@ private:
bool analysis_done = false;
std::shared_ptr<BlockedMatrix<Scalar>> mat{}; // original matrix
std::shared_ptr<BlockedMatrix<Scalar>> jacMat{}; // matrix for preconditioner
int nnzbs_prec = 0; // number of nnz blocks in preconditioner matrix M
rocsparse_direction dir = rocsparse_direction_row;
rocsparse_operation operation = rocsparse_operation_none;
rocsparse_handle handle;
rocblas_handle blas_handle;
rocsparse_mat_descr descr_A, descr_M, descr_L, descr_U;
rocsparse_mat_info ilu_info;
rocsparse_mat_descr descr_A;
#if HIP_VERSION >= 50400000
rocsparse_mat_info spmv_info;
#endif
hipStream_t stream;
rocsparse_int *d_Arows, *d_Mrows;
rocsparse_int *d_Acols, *d_Mcols;
Scalar *d_Avals, *d_Mvals;
Scalar *d_x, *d_b, *d_r, *d_rw, *d_p; // vectors, used during linear solve
rocsparse_int *d_Arows, *d_Acols;
Scalar *d_Avals;
Scalar *d_x, *d_b, *d_r, *d_rw, *d_p; // vectors, used during linear solve
Scalar *d_pw, *d_s, *d_t, *d_v;
void *d_buffer; // buffer space, used by rocsparse ilu0 analysis
int ver;
char rev[64];
std::unique_ptr<rocsparsePreconditioner<Scalar, block_size> > prec; // can perform blocked ILU0 and AMG on pressure component
/// Solve linear system using ilu0-bicgstab
/// \param[in] wellContribs WellContributions, to apply them separately, instead of adding them to matrix A
/// \param[inout] res summary of solver result
@ -119,14 +118,16 @@ public:
/// \param[in] tolerance required relative tolerance for rocsparseSolver
/// \param[in] platformID the OpenCL platform to be used
/// \param[in] deviceID the device to be used
/// \param[in] linsolver indicating the preconditioner, equal to the --linear-solver cmdline argument
rocsparseSolverBackend(int linear_solver_verbosity,
int maxit,
Scalar tolerance,
unsigned int platformID,
unsigned int deviceID);
unsigned int deviceID,
std::string linsolver);
/// For the CPR coarse solver
// rocsparseSolverBackend(int linear_solver_verbosity, int maxit, double tolerance, ILUReorder opencl_ilu_reorder);
rocsparseSolverBackend(int linear_solver_verbosity, int maxit, Scalar tolerance, bool opencl_ilu_reorder);
/// Destroy a openclSolver, and free memory
~rocsparseSolverBackend();
@ -144,10 +145,6 @@ public:
WellContributions<Scalar>& wellContribs,
BdaResult& res) override;
/// Solve scalar linear system, for example a coarse system of an AMG preconditioner
/// Data is already on the GPU
// SolverStatus solve_system(BdaResult &res);
/// Get result after linear solve, and peform postprocessing if necessary
/// \param[inout] x resulting x vector, caller must guarantee that x points to a valid array
void get_result(Scalar* x) override;

View File

@ -29,7 +29,7 @@
#undef HAVE_CUDA
#include <opm/simulators/linalg/bda/rocsparseWellContributions.hpp>
#include <opm/simulators/linalg/bda/rocm/rocsparseWellContributions.hpp>
#ifdef HIP_HAVE_CUDA_DEFINED
#define HAVE_CUDA HIP_HAVE_CUDA_DEFINED
@ -40,17 +40,9 @@
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/bda/MultisegmentWellContribution.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
#include <hip/hip_runtime.h>
#define HIP_CHECK(stat) \
{ \
if(stat != hipSuccess) \
{ \
OPM_THROW(std::logic_error, "HIP error"); \
} \
}
namespace Opm
{

View File

@ -9,7 +9,7 @@
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixmarket.hh>
#include <opm/simulators/linalg/bda/opencl/BISAI.hpp>
#include <opm/simulators/linalg/bda/opencl/openclBISAI.hpp>
BOOST_AUTO_TEST_CASE(testcsrtocscoffsetmap){

View File

@ -31,7 +31,8 @@
#include <dune/istl/bcrsmatrix.hh>
#include <opm/simulators/linalg/bda/opencl/CPR.hpp>
#include <opm/simulators/linalg/bda/opencl/openclCPR.hpp>
#include <opm/simulators/linalg/bda/Misc.hpp>
BOOST_AUTO_TEST_CASE(testsolvetransposed3x3)
{