Merge pull request #544 from osae/equil-init

Equil init
This commit is contained in:
Atgeirr Flø Rasmussen 2014-04-04 22:39:37 +02:00
commit cb9c36df65
12 changed files with 3848 additions and 0 deletions

View File

@ -0,0 +1,110 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/simulator/initStateEquil.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <boost/filesystem.hpp>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
void outputData(const std::string& output_dir,
const std::string& name,
const std::vector<double>& data)
{
std::ostringstream fname;
fname << output_dir << "/" << name;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << "initial.txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
std::copy(data.begin(), data.end(), std::ostream_iterator<double>(file, "\n"));
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
// Setup.
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
const std::string deck_filename = param.get<std::string>("deck_filename");
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile(deck_filename);
const double grav = param.getDefault("gravity", unit::gravity);
//EclipseGridParser deck(deck_filename);
GridManager gm(deck);
const UnstructuredGrid& grid = *gm.c_grid();
BlackoilPropertiesFromDeck props(deck, grid, param);
warnIfUnusedParams(param);
// Initialisation.
BlackoilState state;
initStateEquil(grid, props, deck, grav, state);
// Output.
const std::string output_dir = param.getDefault<std::string>("output_dir", "output");
outputData(output_dir, "pressure", state.pressure());
outputData(output_dir, "saturation", state.saturation());
outputData(output_dir, "rs", state.gasoilratio());
outputData(output_dir, "rv", state.rv());
}
catch (const std::exception& e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}

View File

@ -0,0 +1,829 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED
#define OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/linearInterpolation.hpp>
#include <opm/core/utility/RegionMapping.hpp>
#include <opm/core/utility/RootFinders.hpp>
#include <memory>
/*
---- synopsis of EquilibrationHelpers.hpp ----
namespace Opm
{
namespace Equil {
template <class Props>
class DensityCalculator;
template <>
class DensityCalculator< BlackoilPropertiesInterface >;
namespace Miscibility {
class RsFunction;
class NoMixing;
class RsVD;
class RsSatAtContact;
}
struct EquilRecord;
template <class DensCalc>
class EquilReg;
struct PcEq;
inline double satFromPc(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc,
const bool increasing = false);
struct PcEqSum
inline double satFromSumOfPcs(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc);
} // namespace Equil
} // namespace Opm
---- end of synopsis of EquilibrationHelpers.hpp ----
*/
namespace Opm
{
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace Equil {
template <class Props>
class DensityCalculator;
/**
* Facility for calculating phase densities based on the
* BlackoilPropertiesInterface.
*
* Implements the crucial <CODE>operator()(p,svol)</CODE>
* function that is expected by class EquilReg.
*/
template <>
class DensityCalculator< BlackoilPropertiesInterface > {
public:
/**
* Constructor.
*
* \param[in] props Implementation of the
* BlackoilPropertiesInterface.
*
* \param[in] c Single cell used as a representative cell
* in a PVT region.
*/
DensityCalculator(const BlackoilPropertiesInterface& props,
const int c)
: props_(props)
, c_(1, c)
{
}
/**
* Compute phase densities of all phases at phase point
* given by (pressure, surface volume) tuple.
*
* \param[in] p Fluid pressure.
*
* \param[in] z Surface volumes of all phases.
*
* \return Phase densities at phase point.
*/
std::vector<double>
operator()(const double p,
const std::vector<double>& z) const
{
const int np = props_.numPhases();
std::vector<double> A(np * np, 0);
assert (z.size() == std::vector<double>::size_type(np));
double* dAdp = 0;
props_.matrix(1, &p, &z[0], &c_[0], &A[0], dAdp);
std::vector<double> rho(np, 0.0);
props_.density(1, &A[0], &rho[0]);
return rho;
}
private:
const BlackoilPropertiesInterface& props_;
const std::vector<int> c_;
};
/**
* Types and routines relating to phase mixing in
* equilibration calculations.
*/
namespace Miscibility {
/**
* Base class for phase mixing functions.
*/
class RsFunction
{
public:
/**
* Function call operator.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
virtual double operator()(const double depth,
const double press,
const double sat = 0.0) const = 0;
};
/**
* Type that implements "no phase mixing" policy.
*/
class NoMixing : public RsFunction {
public:
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press. In "no mixing
* policy", this is identically zero.
*/
double
operator()(const double /* depth */,
const double /* press */,
const double sat = 0.0) const
{
return 0.0;
}
};
/**
* Type that implements "dissolved gas-oil ratio"
* tabulated as a function of depth policy. Data
* typically taken from keyword 'RSVD'.
*/
class RsVD : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] depth Depth nodes.
* \param[in] rs Dissolved gas-oil ratio at @c depth.
*/
RsVD(const BlackoilPropertiesInterface& props,
const int cell,
const std::vector<double>& depth,
const std::vector<double>& rs)
: props_(props)
, cell_(cell)
, depth_(depth)
, rs_(rs)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1e100;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double depth,
const double press,
const double sat_gas = 0.0) const
{
if (sat_gas > 0.0) {
return satRs(press);
} else {
return std::min(satRs(press), linearInterpolation(depth_, rs_, depth));
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
std::vector<double> depth_; /**< Depth nodes */
std::vector<double> rs_; /**< Dissolved gas-oil ratio */
double z_[BlackoilPhases::MaxNumPhases];
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRs(const double press) const
{
props_.matrix(1, &press, z_, &cell_, A_, 0);
// Rs/Bo is in the gas row and oil column of A_.
// 1/Bo is in the oil row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*opos + gpos] / A_[np*opos + opos];
}
};
/**
* Type that implements "vaporized oil-gas ratio"
* tabulated as a function of depth policy. Data
* typically taken from keyword 'RVVD'.
*/
class RvVD : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] depth Depth nodes.
* \param[in] rv Dissolved gas-oil ratio at @c depth.
*/
RvVD(const BlackoilPropertiesInterface& props,
const int cell,
const std::vector<double>& depth,
const std::vector<double>& rv)
: props_(props)
, cell_(cell)
, depth_(depth)
, rv_(rv)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1e100;
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RV
* value.
*
* \param[in] press Pressure at which to calculate RV
* value.
*
* \return Vaporized oil-gas ratio (RV) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double depth,
const double press,
const double sat_oil = 0.0 ) const
{
if (sat_oil > 0.0) {
return satRv(press);
} else {
return std::min(satRv(press), linearInterpolation(depth_, rv_, depth));
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
std::vector<double> depth_; /**< Depth nodes */
std::vector<double> rv_; /**< Vaporized oil-gas ratio */
double z_[BlackoilPhases::MaxNumPhases];
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRv(const double press) const
{
props_.matrix(1, &press, z_, &cell_, A_, 0);
// Rv/Bg is in the oil row and gas column of A_.
// 1/Bg is in the gas row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*gpos + opos] / A_[np*gpos + gpos];
}
};
/**
* Class that implements "dissolved gas-oil ratio" (Rs)
* as function of depth and pressure as follows:
*
* 1. The Rs at the gas-oil contact is equal to the
* saturated Rs value, Rs_sat_contact.
*
* 2. The Rs elsewhere is equal to Rs_sat_contact, but
* constrained to the saturated value as given by the
* local pressure.
*
* This should yield Rs-values that are constant below the
* contact, and decreasing above the contact.
*/
class RsSatAtContact : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] p_contact oil pressure at the contact
*/
RsSatAtContact(const BlackoilPropertiesInterface& props, const int cell, const double p_contact)
: props_(props), cell_(cell)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1e100;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
rs_sat_contact_ = satRs(p_contact);
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double /* depth */,
const double press,
const double sat_gas = 0.0) const
{
if (sat_gas > 0.0) {
return satRs(press);
} else {
return std::min(satRs(press), rs_sat_contact_);
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
double z_[BlackoilPhases::MaxNumPhases];
double rs_sat_contact_;
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRs(const double press) const
{
props_.matrix(1, &press, z_, &cell_, A_, 0);
// Rs/Bo is in the gas row and oil column of A_.
// 1/Bo is in the oil row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*opos + gpos] / A_[np*opos + opos];
}
};
/**
* Class that implements "vaporized oil-gas ratio" (Rv)
* as function of depth and pressure as follows:
*
* 1. The Rv at the gas-oil contact is equal to the
* saturated Rv value, Rv_sat_contact.
*
* 2. The Rv elsewhere is equal to Rv_sat_contact, but
* constrained to the saturated value as given by the
* local pressure.
*
* This should yield Rv-values that are constant below the
* contact, and decreasing above the contact.
*/
class RvSatAtContact : public RsFunction {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] p_contact oil pressure at the contact
*/
RvSatAtContact(const BlackoilPropertiesInterface& props, const int cell, const double p_contact)
: props_(props), cell_(cell)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1e100;
rv_sat_contact_ = satRv(p_contact);
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RV
* value.
*
* \param[in] press Pressure at which to calculate RV
* value.
*
* \return Dissolved oil-gas ratio (RV) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double /*depth*/,
const double press,
const double sat_oil = 0.0) const
{
if (sat_oil > 0.0) {
return satRv(press);
} else {
return std::min(satRv(press), rv_sat_contact_);
}
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
double z_[BlackoilPhases::MaxNumPhases];
double rv_sat_contact_;
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRv(const double press) const
{
props_.matrix(1, &press, z_, &cell_, A_, 0);
// Rv/Bg is in the oil row and gas column of A_.
// 1/Bg is in the gas row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*gpos + opos] / A_[np*gpos + gpos];
}
};
} // namespace Miscibility
/**
* Equilibration record.
*
* Layout and contents inspired by first six items of
* ECLIPSE's 'EQUIL' records. This is the minimum amount of
* input data needed to define phase pressures in an
* equilibration region.
*
* Data consists of three pairs of depth and pressure values:
* 1. main
* - @c depth Main datum depth.
* - @c press Pressure at datum depth.
*
* 2. woc
* - @c depth Depth of water-oil contact
* - @c press water-oil capillary pressure at water-oil contact.
* Capillary pressure defined as "P_oil - P_water".
*
* 3. goc
* - @c depth Depth of gas-oil contact
* - @c press Gas-oil capillary pressure at gas-oil contact.
* Capillary pressure defined as "P_gas - P_oil".
*/
struct EquilRecord {
struct {
double depth;
double press;
} main, woc, goc;
int live_oil_table_index;
int wet_gas_table_index;
int N;
};
/**
* Aggregate information base of an equilibration region.
*
* Provides inquiry methods for retrieving depths of contacs
* and pressure values as well as a means of calculating fluid
* densities, dissolved gas-oil ratio and vapourised oil-gas
* ratios.
*
* \tparam DensCalc Type that provides access to a phase
* density calculation facility. Must implement an operator()
* declared as
* <CODE>
* std::vector<double>
* operator()(const double press,
* const std::vector<double>& svol )
* </CODE>
* that calculates the phase densities of all phases in @c
* svol at fluid pressure @c press.
*/
template <class DensCalc>
class EquilReg {
public:
/**
* Constructor.
*
* \param[in] rec Equilibration data of current region.
* \param[in] density Density calculator of current region.
* \param[in] rs Calculator of dissolved gas-oil ratio.
* \param[in] rv Calculator of vapourised oil-gas ratio.
* \param[in] pu Summary of current active phases.
*/
EquilReg(const EquilRecord& rec,
const DensCalc& density,
std::shared_ptr<Miscibility::RsFunction> rs,
std::shared_ptr<Miscibility::RsFunction> rv,
const PhaseUsage& pu)
: rec_ (rec)
, density_(density)
, rs_ (rs)
, rv_ (rv)
, pu_ (pu)
{
}
/**
* Type of density calculator.
*/
typedef DensCalc CalcDensity;
/**
* Type of dissolved gas-oil ratio calculator.
*/
typedef Miscibility::RsFunction CalcDissolution;
/**
* Type of vapourised oil-gas ratio calculator.
*/
typedef Miscibility::RsFunction CalcEvaporation;
/**
* Datum depth in current region
*/
double datum() const { return this->rec_.main.depth; }
/**
* Pressure at datum depth in current region.
*/
double pressure() const { return this->rec_.main.press; }
/**
* Depth of water-oil contact.
*/
double zwoc() const { return this->rec_.woc .depth; }
/**
* water-oil capillary pressure at water-oil contact.
*
* \return P_o - P_w at WOC.
*/
double pcow_woc() const { return this->rec_.woc .press; }
/**
* Depth of gas-oil contact.
*/
double zgoc() const { return this->rec_.goc .depth; }
/**
* Gas-oil capillary pressure at gas-oil contact.
*
* \return P_g - P_o at GOC.
*/
double pcgo_goc() const { return this->rec_.goc .press; }
/**
* Retrieve phase density calculator of current region.
*/
const CalcDensity&
densityCalculator() const { return this->density_; }
/**
* Retrieve dissolved gas-oil ratio calculator of current
* region.
*/
const CalcDissolution&
dissolutionCalculator() const { return *this->rs_; }
/**
* Retrieve vapourised oil-gas ratio calculator of current
* region.
*/
const CalcEvaporation&
evaporationCalculator() const { return *this->rv_; }
/**
* Retrieve active fluid phase summary.
*/
const PhaseUsage&
phaseUsage() const { return this->pu_; }
private:
EquilRecord rec_; /**< Equilibration data */
DensCalc density_; /**< Density calculator */
std::shared_ptr<Miscibility::RsFunction> rs_; /**< RS calculator */
std::shared_ptr<Miscibility::RsFunction> rv_; /**< RV calculator */
PhaseUsage pu_; /**< Active phase summary */
};
/// Functor for inverting capillary pressure function.
/// Function represented is
/// f(s) = pc(s) - target_pc
struct PcEq
{
PcEq(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc)
: props_(props),
phase_(phase),
cell_(cell),
target_pc_(target_pc)
{
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
}
double operator()(double s) const
{
s_[phase_] = s;
props_.capPress(1, s_, &cell_, pc_, 0);
return pc_[phase_] - target_pc_;
}
private:
const BlackoilPropertiesInterface& props_;
const int phase_;
const int cell_;
const int target_pc_;
mutable double s_[BlackoilPhases::MaxNumPhases];
mutable double pc_[BlackoilPhases::MaxNumPhases];
};
/// Compute saturation of some phase corresponding to a given
/// capillary pressure.
inline double satFromPc(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc,
const bool increasing = false)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
const double s0 = increasing ? smaxarr[phase] : sminarr[phase];
const double s1 = increasing ? sminarr[phase] : smaxarr[phase];
// Create the equation f(s) = pc(s) - target_pc
const PcEq f(props, phase, cell, target_pc);
const double f0 = f(s0);
const double f1 = f(s1);
if (f0 <= 0.0) {
return s0;
} else if (f1 > 0.0) {
return s1;
} else {
const int max_iter = 30;
const double tol = 1e-6;
int iter_used = -1;
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
const double sol = ScalarSolver::solve(f, std::min(s0, s1), std::max(s0, s1), max_iter, tol, iter_used);
return sol;
}
}
/// Functor for inverting a sum of capillary pressure functions.
/// Function represented is
/// f(s) = pc1(s) + pc2(1 - s) - target_pc
struct PcEqSum
{
PcEqSum(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc)
: props_(props),
phase1_(phase1),
phase2_(phase2),
cell_(cell),
target_pc_(target_pc)
{
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
}
double operator()(double s) const
{
s_[phase1_] = s;
s_[phase2_] = 1.0 - s;
props_.capPress(1, s_, &cell_, pc_, 0);
return pc_[phase1_] + pc_[phase2_] - target_pc_;
}
private:
const BlackoilPropertiesInterface& props_;
const int phase1_;
const int phase2_;
const int cell_;
const int target_pc_;
mutable double s_[BlackoilPhases::MaxNumPhases];
mutable double pc_[BlackoilPhases::MaxNumPhases];
};
/// Compute saturation of some phase corresponding to a given
/// capillary pressure, where the capillary pressure function
/// is given as a sum of two other functions.
inline double satFromSumOfPcs(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
const double smin = sminarr[phase1];
const double smax = smaxarr[phase1];
// Create the equation f(s) = pc1(s) + pc2(1-s) - target_pc
const PcEqSum f(props, phase1, phase2, cell, target_pc);
const double f0 = f(smin);
const double f1 = f(smax);
if (f0 <= 0.0) {
return smin;
} else if (f1 > 0.0) {
return smax;
} else {
const int max_iter = 30;
const double tol = 1e-6;
int iter_used = -1;
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
const double sol = ScalarSolver::solve(f, smin, smax, max_iter, tol, iter_used);
return sol;
}
}
} // namespace Equil
} // namespace Opm
#endif // OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED

View File

@ -0,0 +1,673 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_INITSTATEEQUIL_HEADER_INCLUDED
#define OPM_INITSTATEEQUIL_HEADER_INCLUDED
#include <opm/core/simulator/EquilibrationHelpers.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/RegionMapping.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/parser/eclipse/Utility/EquilWrapper.hpp>
#include <opm/parser/eclipse/Utility/SimpleTable.hpp>
#include <array>
#include <cassert>
#include <utility>
#include <vector>
/**
* \file
* Facilities for an ECLIPSE-style equilibration-based
* initialisation scheme (keyword 'EQUIL').
*/
struct UnstructuredGrid;
namespace Opm
{
/**
* Compute initial state by an equilibration procedure.
*
* The following state fields are modified:
* pressure(),
* saturation(),
* surfacevol(),
* gasoilratio(),
* rv().
*
* \param[in] grid Grid.
* \param[in] props Property object, pvt and capillary properties are used.
* \param[in] deck Simulation deck, used to obtain EQUIL and related data.
* \param[in] gravity Acceleration of gravity, assumed to be in Z direction.
*/
void initStateEquil(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const EclipseGridParser& deck,
const double gravity,
BlackoilState& state);
void initStateEquil(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const Opm::DeckConstPtr newParserDeck,
const double gravity,
BlackoilState& state);
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace Equil {
/**
* Compute initial phase pressures by means of equilibration.
*
* This function uses the information contained in an
* equilibration record (i.e., depths and pressurs) as well as
* a density calculator and related data to vertically
* integrate the phase pressure ODE
* \f[
* \frac{\mathrm{d}p_{\alpha}}{\mathrm{d}z} =
* \rho_{\alpha}(z,p_{\alpha})\cdot g
* \f]
* in which \f$\rho_{\alpha}$ denotes the fluid density of
* fluid phase \f$\alpha\f$, \f$p_{\alpha}\f$ is the
* corresponding phase pressure, \f$z\f$ is the depth and
* \f$g\f$ is the acceleration due to gravity (assumed
* directed downwords, in the positive \f$z\f$ direction).
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] G Grid.
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] grav Acceleration of gravity.
*
* \return Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
*/
template <class Region, class CellRange>
std::vector< std::vector<double> >
phasePressures(const UnstructuredGrid& G,
const Region& reg,
const CellRange& cells,
const double grav = unit::gravity);
/**
* Compute initial phase saturations by means of equilibration.
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] props Property object, needed for capillary functions.
* \param[in] phase_pressures Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
* \return Phase saturations, one vector for each phase, each containing
* one saturation value per cell in the region.
*/
template <class Region, class CellRange>
std::vector< std::vector<double> >
phaseSaturations(const Region& reg,
const CellRange& cells,
const BlackoilPropertiesInterface& props,
const std::vector< std::vector<double> >& phase_pressures);
/**
* Compute initial Rs values.
*
* \tparam CellRangeType Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] grid Grid.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] oil_pressure Oil pressure for each cell in range.
* \param[in] rs_func Rs as function of pressure and depth.
* \return Rs values, one for each cell in the 'cells' range.
*/
template <class CellRangeType>
std::vector<double> computeRs(const UnstructuredGrid& grid,
const CellRangeType& cells,
const std::vector<double> oil_pressure,
const Miscibility::RsFunction& rs_func,
const std::vector<double> gas_saturation);
namespace DeckDependent {
inline
std::vector<EquilRecord>
getEquil(const EclipseGridParser& deck)
{
if (deck.hasField("EQUIL")) {
const EQUIL& eql = deck.getEQUIL();
typedef std::vector<EquilLine>::size_type sz_t;
const sz_t nrec = eql.equil.size();
std::vector<EquilRecord> ret;
ret.reserve(nrec);
for (sz_t r = 0; r < nrec; ++r) {
const EquilLine& rec = eql.equil[r];
EquilRecord record =
{
{ rec.datum_depth_ ,
rec.datum_depth_pressure_ }
,
{ rec.water_oil_contact_depth_ ,
rec.oil_water_cap_pressure_ }
,
{ rec.gas_oil_contact_depth_ ,
rec.gas_oil_cap_pressure_ }
,
rec.live_oil_table_index_
,
rec.wet_gas_table_index_
,
rec.N_
};
if (record.N != 0) {
OPM_THROW(std::domain_error,
"kw EQUIL, item 9: Only N=0 supported.");
}
ret.push_back(record);
}
return ret;
}
else {
OPM_THROW(std::domain_error,
"Deck does not provide equilibration data.");
}
}
inline
std::vector<EquilRecord>
getEquil(const Opm::DeckConstPtr newParserDeck)
{
if (newParserDeck->hasKeyword("EQUIL")) {
Opm::EquilWrapper eql(newParserDeck->getKeyword("EQUIL"));
const int nrec = eql.numRegions();
std::vector<EquilRecord> ret;
ret.reserve(nrec);
for (int r = 0; r < nrec; ++r) {
EquilRecord record =
{
{ eql.datumDepth(r) ,
eql.datumDepthPressure(r) }
,
{ eql.waterOilContactDepth(r) ,
eql.waterOilContactCapillaryPressure(r) }
,
{ eql.gasOilContactDepth(r) ,
eql.gasOilContactCapillaryPressure(r) }
,
eql.liveOilInitProceedure(r)
,
eql.wetGasInitProceedure(r)
,
eql.initializationTargetAccuracy(r)
};
if (record.N != 0) {
OPM_THROW(std::domain_error,
"kw EQUIL, item 9: Only N=0 supported.");
}
ret.push_back(record);
}
return ret;
}
else {
OPM_THROW(std::domain_error,
"Deck does not provide equilibration data.");
}
}
inline
std::vector<int>
equilnum(const EclipseGridParser& deck,
const UnstructuredGrid& G )
{
std::vector<int> eqlnum;
if (deck.hasField("EQLNUM")) {
const std::vector<int>& e = deck.getIntegerValue("EQLNUM");
eqlnum.reserve(e.size());
std::transform(e.begin(), e.end(), std::back_inserter(eqlnum),
std::bind2nd(std::minus<int>(), 1));
}
else {
// No explicit equilibration region.
// All cells in region zero.
eqlnum.assign(G.number_of_cells, 0);
}
return eqlnum;
}
inline
std::vector<int>
equilnum(const Opm::DeckConstPtr newParserDeck,
const UnstructuredGrid& G )
{
std::vector<int> eqlnum;
if (newParserDeck->hasKeyword("EQLNUM")) {
const std::vector<int>& e = newParserDeck->getKeyword("EQLNUM")->getIntData();
eqlnum.reserve(e.size());
std::transform(e.begin(), e.end(), std::back_inserter(eqlnum),
std::bind2nd(std::minus<int>(), 1));
}
else {
// No explicit equilibration region.
// All cells in region zero.
eqlnum.assign(G.number_of_cells, 0);
}
return eqlnum;
}
template <class InputDeck>
class InitialStateComputer;
template <>
class InitialStateComputer<Opm::EclipseGridParser> {
public:
InitialStateComputer(const BlackoilPropertiesInterface& props,
const EclipseGridParser& deck ,
const UnstructuredGrid& G ,
const double grav = unit::gravity)
: pp_(props.numPhases(),
std::vector<double>(G.number_of_cells)),
sat_(props.numPhases(),
std::vector<double>(G.number_of_cells)),
rs_(G.number_of_cells),
rv_(G.number_of_cells)
{
// Get the equilibration records.
const std::vector<EquilRecord> rec = getEquil(deck);
// Create (inverse) region mapping.
const RegionMapping<> eqlmap(equilnum(deck, G));
// Create Rs functions.
rs_func_.reserve(rec.size());
if (deck.hasField("DISGAS")) {
for (size_t i = 0; i < rec.size(); ++i) {
const int cell = *(eqlmap.cells(i).begin());
if (rec[i].live_oil_table_index > 0) {
if (deck.hasField("RSVD")) {
// TODO When this kw is actually parsed, also check for proper number of available tables
// For now, just use dummy ...
std::vector<double> depth; depth.push_back(0.0); depth.push_back(100.0);
std::vector<double> rs; rs.push_back(0.0); rs.push_back(100.0);
rs_func_.push_back(std::make_shared<Miscibility::RsVD>(props, cell, depth, rs));
} else {
OPM_THROW(std::runtime_error, "Cannot initialise: RSVD table " << (rec[i].live_oil_table_index) << " not available.");
}
} else {
if (rec[i].goc.depth != rec[i].main.depth) {
OPM_THROW(std::runtime_error,
"Cannot initialise: when no explicit RSVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
}
const double p_contact = rec[i].main.press;
rs_func_.push_back(std::make_shared<Miscibility::RsSatAtContact>(props, cell, p_contact));
}
}
} else {
for (size_t i = 0; i < rec.size(); ++i) {
rs_func_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
rv_func_.reserve(rec.size());
if (deck.hasField("VAPOIL")) {
for (size_t i = 0; i < rec.size(); ++i) {
const int cell = *(eqlmap.cells(i).begin());
if (rec[i].wet_gas_table_index > 0) {
if (deck.hasField("RVVD")) {
// TODO When this kw is actually parsed, also check for proper number of available tables
// For now, just use dummy ...
std::vector<double> depth; depth.push_back(0.0); depth.push_back(100.0);
std::vector<double> rv; rv.push_back(0.0); rv.push_back(0.0001);
rv_func_.push_back(std::make_shared<Miscibility::RvVD>(props, cell, depth, rv));
} else {
OPM_THROW(std::runtime_error, "Cannot initialise: RVVD table " << (rec[i].wet_gas_table_index) << " not available.");
}
} else {
if (rec[i].goc.depth != rec[i].main.depth) {
OPM_THROW(std::runtime_error,
"Cannot initialise: when no explicit RVVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
}
const double p_contact = rec[i].main.press + rec[i].goc.press;
rv_func_.push_back(std::make_shared<Miscibility::RvSatAtContact>(props, cell, p_contact));
}
}
} else {
for (size_t i = 0; i < rec.size(); ++i) {
rv_func_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
// Compute pressures, saturations, rs and rv factors.
calcPressSatRsRv(eqlmap, rec, props, G, grav);
// Modify oil pressure in no-oil regions so that the pressures of present phases can
// be recovered from the oil pressure and capillary relations.
}
typedef std::vector<double> Vec;
typedef std::vector<Vec> PVec; // One per phase.
const PVec& press() const { return pp_; }
const PVec& saturation() const { return sat_; }
const Vec& rs() const { return rs_; }
const Vec& rv() const { return rv_; }
private:
typedef DensityCalculator<BlackoilPropertiesInterface> RhoCalc;
typedef EquilReg<RhoCalc> EqReg;
std::vector< std::shared_ptr<Miscibility::RsFunction> > rs_func_;
std::vector< std::shared_ptr<Miscibility::RsFunction> > rv_func_;
PVec pp_;
PVec sat_;
Vec rs_;
Vec rv_;
template <class RMap>
void
calcPressSatRsRv(const RMap& reg ,
const std::vector< EquilRecord >& rec ,
const Opm::BlackoilPropertiesInterface& props,
const UnstructuredGrid& G ,
const double grav)
{
typedef Miscibility::NoMixing NoMix;
for (typename RMap::RegionId
r = 0, nr = reg.numRegions();
r < nr; ++r)
{
const typename RMap::CellRange cells = reg.cells(r);
const int repcell = *cells.begin();
const RhoCalc calc(props, repcell);
const EqReg eqreg(rec[r], calc,
rs_func_[r], rv_func_[r],
props.phaseUsage());
PVec press = phasePressures(G, eqreg, cells, grav);
const PVec sat = phaseSaturations(eqreg, cells, props, press);
const int np = props.numPhases();
for (int p = 0; p < np; ++p) {
copyFromRegion(press[p], cells, pp_[p]);
copyFromRegion(sat[p], cells, sat_[p]);
}
if (props.phaseUsage().phase_used[BlackoilPhases::Liquid]
&& props.phaseUsage().phase_used[BlackoilPhases::Vapour]) {
const int oilpos = props.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gaspos = props.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const Vec rs = computeRs(G, cells, press[oilpos], *(rs_func_[r]), sat[gaspos]);
const Vec rv = computeRs(G, cells, press[gaspos], *(rv_func_[r]), sat[oilpos]);
copyFromRegion(rs, cells, rs_);
copyFromRegion(rv, cells, rv_);
}
}
}
template <class CellRangeType>
void copyFromRegion(const Vec& source,
const CellRangeType& cells,
Vec& destination)
{
auto s = source.begin();
auto c = cells.begin();
const auto e = cells.end();
for (; c != e; ++c, ++s) {
destination[*c] = *s;
}
}
};
template <>
class InitialStateComputer<Opm::DeckConstPtr> {
public:
InitialStateComputer(const BlackoilPropertiesInterface& props,
const Opm::DeckConstPtr newParserDeck,
const UnstructuredGrid& G ,
const double grav = unit::gravity)
: pp_(props.numPhases(),
std::vector<double>(G.number_of_cells)),
sat_(props.numPhases(),
std::vector<double>(G.number_of_cells)),
rs_(G.number_of_cells),
rv_(G.number_of_cells)
{
// Get the equilibration records.
const std::vector<EquilRecord> rec = getEquil(newParserDeck);
// Create (inverse) region mapping.
const RegionMapping<> eqlmap(equilnum(newParserDeck, G));
// Create Rs functions.
rs_func_.reserve(rec.size());
if (newParserDeck->hasKeyword("DISGAS")) {
for (size_t i = 0; i < rec.size(); ++i) {
const int cell = *(eqlmap.cells(i).begin());
if (rec[i].live_oil_table_index > 0) {
if (newParserDeck->hasKeyword("RSVD") && rec[i].live_oil_table_index <= newParserDeck->getKeyword("RSVD")->size()) {
Opm::SimpleTable rsvd(newParserDeck->getKeyword("RSVD"),std::vector<std::string>{"vd", "rs"},rec[i].live_oil_table_index-1);
std::vector<double> vd(rsvd.getColumn("vd"));
std::vector<double> rs(rsvd.getColumn("rs"));
rs_func_.push_back(std::make_shared<Miscibility::RsVD>(props, cell, vd, rs));
} else {
OPM_THROW(std::runtime_error, "Cannot initialise: RSVD table " << (rec[i].live_oil_table_index) << " not available.");
}
} else {
if (rec[i].goc.depth != rec[i].main.depth) {
OPM_THROW(std::runtime_error,
"Cannot initialise: when no explicit RSVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
}
const double p_contact = rec[i].main.press;
rs_func_.push_back(std::make_shared<Miscibility::RsSatAtContact>(props, cell, p_contact));
}
}
} else {
for (size_t i = 0; i < rec.size(); ++i) {
rs_func_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
rv_func_.reserve(rec.size());
if (newParserDeck->hasKeyword("VAPOIL")) {
for (size_t i = 0; i < rec.size(); ++i) {
const int cell = *(eqlmap.cells(i).begin());
if (rec[i].wet_gas_table_index > 0) {
if (newParserDeck->hasKeyword("RVVD") && rec[i].wet_gas_table_index <= newParserDeck->getKeyword("RVVD")->size()) {
Opm::SimpleTable rvvd(newParserDeck->getKeyword("RVVD"),std::vector<std::string>{"vd", "rv"},rec[i].wet_gas_table_index-1);
std::vector<double> vd(rvvd.getColumn("vd"));
std::vector<double> rv(rvvd.getColumn("rv"));
rv_func_.push_back(std::make_shared<Miscibility::RvVD>(props, cell, vd, rv));
} else {
OPM_THROW(std::runtime_error, "Cannot initialise: RVVD table " << (rec[i].wet_gas_table_index) << " not available.");
}
} else {
if (rec[i].goc.depth != rec[i].main.depth) {
OPM_THROW(std::runtime_error,
"Cannot initialise: when no explicit RVVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
}
const double p_contact = rec[i].main.press + rec[i].goc.press;
rv_func_.push_back(std::make_shared<Miscibility::RvSatAtContact>(props, cell, p_contact));
}
}
} else {
for (size_t i = 0; i < rec.size(); ++i) {
rv_func_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
// Compute pressures, saturations, rs and rv factors.
calcPressSatRsRv(eqlmap, rec, props, G, grav);
// Modify oil pressure in no-oil regions so that the pressures of present phases can
// be recovered from the oil pressure and capillary relations.
}
typedef std::vector<double> Vec;
typedef std::vector<Vec> PVec; // One per phase.
const PVec& press() const { return pp_; }
const PVec& saturation() const { return sat_; }
const Vec& rs() const { return rs_; }
const Vec& rv() const { return rv_; }
private:
typedef DensityCalculator<BlackoilPropertiesInterface> RhoCalc;
typedef EquilReg<RhoCalc> EqReg;
std::vector< std::shared_ptr<Miscibility::RsFunction> > rs_func_;
std::vector< std::shared_ptr<Miscibility::RsFunction> > rv_func_;
PVec pp_;
PVec sat_;
Vec rs_;
Vec rv_;
template <class RMap>
void
calcPressSatRsRv(const RMap& reg ,
const std::vector< EquilRecord >& rec ,
const Opm::BlackoilPropertiesInterface& props,
const UnstructuredGrid& G ,
const double grav)
{
typedef Miscibility::NoMixing NoMix;
for (typename RMap::RegionId
r = 0, nr = reg.numRegions();
r < nr; ++r)
{
const typename RMap::CellRange cells = reg.cells(r);
const int repcell = *cells.begin();
const RhoCalc calc(props, repcell);
const EqReg eqreg(rec[r], calc,
rs_func_[r], rv_func_[r],
props.phaseUsage());
PVec press = phasePressures(G, eqreg, cells, grav);
const PVec sat = phaseSaturations(eqreg, cells, props, press);
const int np = props.numPhases();
for (int p = 0; p < np; ++p) {
copyFromRegion(press[p], cells, pp_[p]);
copyFromRegion(sat[p], cells, sat_[p]);
}
if (props.phaseUsage().phase_used[BlackoilPhases::Liquid]
&& props.phaseUsage().phase_used[BlackoilPhases::Vapour]) {
const int oilpos = props.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gaspos = props.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const Vec rs = computeRs(G, cells, press[oilpos], *(rs_func_[r]), sat[gaspos]);
const Vec rv = computeRs(G, cells, press[gaspos], *(rv_func_[r]), sat[oilpos]);
copyFromRegion(rs, cells, rs_);
copyFromRegion(rv, cells, rv_);
}
}
}
template <class CellRangeType>
void copyFromRegion(const Vec& source,
const CellRangeType& cells,
Vec& destination)
{
auto s = source.begin();
auto c = cells.begin();
const auto e = cells.end();
for (; c != e; ++c, ++s) {
destination[*c] = *s;
}
}
};
} // namespace DeckDependent
} // namespace Equil
} // namespace Opm
#include <opm/core/simulator/initStateEquil_impl.hpp>
#endif // OPM_INITSTATEEQUIL_HEADER_INCLUDED

View File

@ -0,0 +1,781 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_INITSTATEEQUIL_IMPL_HEADER_INCLUDED
#define OPM_INITSTATEEQUIL_IMPL_HEADER_INCLUDED
#include <opm/core/grid.h>
#include <opm/core/props/BlackoilPhases.hpp>
#include <cassert>
#include <cmath>
#include <functional>
#include <vector>
namespace Opm
{
namespace Details {
template <class RHS>
class RK4IVP {
public:
RK4IVP(const RHS& f ,
const std::array<double,2>& span,
const double y0 ,
const int N )
: N_(N)
, span_(span)
{
const double h = stepsize();
const double h2 = h / 2;
const double h6 = h / 6;
y_.reserve(N + 1);
f_.reserve(N + 1);
y_.push_back(y0);
f_.push_back(f(span_[0], y0));
for (int i = 0; i < N; ++i) {
const double x = span_[0] + i*h;
const double y = y_.back();
const double k1 = f_[i];
const double k2 = f(x + h2, y + h2*k1);
const double k3 = f(x + h2, y + h2*k2);
const double k4 = f(x + h , y + h*k3);
y_.push_back(y + h6*(k1 + 2*(k2 + k3) + k4));
f_.push_back(f(x + h, y_.back()));
}
assert (y_.size() == std::vector<double>::size_type(N + 1));
}
double
operator()(const double x) const
{
// Dense output (O(h**3)) according to Shampine
// (Hermite interpolation)
const double h = stepsize();
int i = (x - span_[0]) / h;
const double t = (x - (span_[0] + i*h)) / h;
// Crude handling of evaluation point outside "span_";
if (i < 0) { i = 0; }
if (N_ <= i) { i = N_ - 1; }
const double y0 = y_[i], y1 = y_[i + 1];
const double f0 = f_[i], f1 = f_[i + 1];
double u = (1 - 2*t) * (y1 - y0);
u += h * ((t - 1)*f0 + t*f1);
u *= t * (t - 1);
u += (1 - t)*y0 + t*y1;
return u;
}
private:
int N_;
std::array<double,2> span_;
std::vector<double> y_;
std::vector<double> f_;
double
stepsize() const { return (span_[1] - span_[0]) / N_; }
};
namespace PhasePressODE {
template <class Density>
class Water {
public:
Water(const Density& rho,
const int np,
const int ix,
const double norm_grav)
: rho_(rho)
, svol_(np, 0)
, ix_(ix)
, g_(norm_grav)
{
svol_[ix_] = 1.0;
}
double
operator()(const double /* depth */,
const double press) const
{
return this->density(press) * g_;
}
private:
const Density& rho_;
std::vector<double> svol_;
const int ix_;
const double g_;
double
density(const double press) const
{
const std::vector<double>& rho = rho_(press, svol_);
return rho[ix_];
}
};
template <class Density, class RS>
class Oil {
public:
Oil(const Density& rho,
const RS& rs,
const int np,
const int oix,
const int gix,
const double norm_grav)
: rho_(rho)
, rs_(rs)
, svol_(np, 0)
, oix_(oix)
, gix_(gix)
, g_(norm_grav)
{
svol_[oix_] = 1.0;
}
double
operator()(const double depth,
const double press) const
{
return this->density(depth, press) * g_;
}
private:
const Density& rho_;
const RS& rs_;
mutable std::vector<double> svol_;
const int oix_;
const int gix_;
const double g_;
double
density(const double depth,
const double press) const
{
if (gix_ >= 0) {
svol_[gix_] = rs_(depth, press);
}
const std::vector<double>& rho = rho_(press, svol_);
return rho[oix_];
}
};
template <class Density, class RV>
class Gas {
public:
Gas(const Density& rho,
const RV& rv,
const int np,
const int gix,
const int oix,
const double norm_grav)
: rho_(rho)
, rv_(rv)
, svol_(np, 0)
, gix_(gix)
, oix_(oix)
, g_(norm_grav)
{
svol_[gix_] = 1.0;
}
double
operator()(const double depth,
const double press) const
{
return this->density(depth, press) * g_;
}
private:
const Density& rho_;
const RV& rv_;
mutable std::vector<double> svol_;
const int gix_;
const int oix_;
const double g_;
double
density(const double depth,
const double press) const
{
if (oix_ >= 0) {
svol_[oix_] = rv_(depth, press);
}
const std::vector<double>& rho = rho_(press, svol_);
return rho[gix_];
}
};
} // namespace PhasePressODE
namespace PhaseUsed {
inline bool
water(const PhaseUsage& pu)
{
return bool(pu.phase_used[ Opm::BlackoilPhases::Aqua ]);
}
inline bool
oil(const PhaseUsage& pu)
{
return bool(pu.phase_used[ Opm::BlackoilPhases::Liquid ]);
}
inline bool
gas(const PhaseUsage& pu)
{
return bool(pu.phase_used[ Opm::BlackoilPhases::Vapour ]);
}
} // namespace PhaseUsed
namespace PhaseIndex {
inline int
water(const PhaseUsage& pu)
{
int i = -1;
if (PhaseUsed::water(pu)) {
i = pu.phase_pos[ Opm::BlackoilPhases::Aqua ];
}
return i;
}
inline int
oil(const PhaseUsage& pu)
{
int i = -1;
if (PhaseUsed::oil(pu)) {
i = pu.phase_pos[ Opm::BlackoilPhases::Liquid ];
}
return i;
}
inline int
gas(const PhaseUsage& pu)
{
int i = -1;
if (PhaseUsed::gas(pu)) {
i = pu.phase_pos[ Opm::BlackoilPhases::Vapour ];
}
return i;
}
} // namespace PhaseIndex
namespace PhasePressure {
template <class PressFunction,
class CellRange>
void
assign(const UnstructuredGrid& G ,
const std::array<PressFunction, 2>& f ,
const double split,
const CellRange& cells,
std::vector<double>& p )
{
const int nd = G.dimensions;
enum { up = 0, down = 1 };
std::vector<double>::size_type c = 0;
for (typename CellRange::const_iterator
ci = cells.begin(), ce = cells.end();
ci != ce; ++ci, ++c)
{
assert (c < p.size());
const double z = G.cell_centroids[(*ci)*nd + (nd - 1)];
p[c] = (z < split) ? f[up](z) : f[down](z);
}
}
template <class Region,
class CellRange>
void
water(const UnstructuredGrid& G ,
const Region& reg ,
const std::array<double,2>& span ,
const double grav ,
const double po_woc,
const CellRange& cells ,
std::vector<double>& press )
{
using PhasePressODE::Water;
typedef Water<typename Region::CalcDensity> ODE;
const PhaseUsage& pu = reg.phaseUsage();
const int wix = PhaseIndex::water(pu);
ODE drho(reg.densityCalculator(), pu.num_phases, wix, grav);
const double z0 = reg.zwoc();
const double p0 = po_woc - reg.pcow_woc(); // Pcow = Po - Pw
std::array<double,2> up = {{ z0, span[0] }};
std::array<double,2> down = {{ z0, span[1] }};
typedef Details::RK4IVP<ODE> WPress;
std::array<WPress,2> wpress = {
{
WPress(drho, up , p0, 100)
,
WPress(drho, down, p0, 100)
}
};
assign(G, wpress, z0, cells, press);
}
template <class Region,
class CellRange>
void
oil(const UnstructuredGrid& G ,
const Region& reg ,
const std::array<double,2>& span ,
const double grav ,
const CellRange& cells ,
std::vector<double>& press ,
double& po_woc,
double& po_goc)
{
using PhasePressODE::Oil;
typedef Oil<typename Region::CalcDensity,
typename Region::CalcDissolution> ODE;
const PhaseUsage& pu = reg.phaseUsage();
const int oix = PhaseIndex::oil(pu);
const int gix = PhaseIndex::gas(pu);
ODE drho(reg.densityCalculator(),
reg.dissolutionCalculator(),
pu.num_phases, oix, gix, grav);
const double z0 = reg.datum();
const double p0 = reg.pressure();
std::array<double,2> up = {{ z0, span[0] }};
std::array<double,2> down = {{ z0, span[1] }};
typedef Details::RK4IVP<ODE> OPress;
std::array<OPress,2> opress = {
{
OPress(drho, up , p0, 100)
,
OPress(drho, down, p0, 100)
}
};
assign(G, opress, z0, cells, press);
po_woc = -std::numeric_limits<double>::max();
po_goc = -std::numeric_limits<double>::max();
const double woc = reg.zwoc();
// Compute Oil pressure at WOC
if (z0 > woc) { po_woc = opress[0](woc); } // WOC above datum
else if (z0 < woc) { po_woc = opress[1](woc); } // WOC below datum
else { po_woc = p0; } // WOC *at* datum
const double goc = reg.zgoc();
// Compute Oil pressure at GOC
if (z0 > goc) { po_goc = opress[0](goc); } // GOC above datum
else if (z0 < goc) { po_goc = opress[1](goc); } // GOC below datum
else { po_goc = p0; } // GOC *at* datum
}
template <class Region,
class CellRange>
void
gas(const UnstructuredGrid& G ,
const Region& reg ,
const std::array<double,2>& span ,
const double grav ,
const double po_goc,
const CellRange& cells ,
std::vector<double>& press )
{
using PhasePressODE::Gas;
typedef Gas<typename Region::CalcDensity,
typename Region::CalcEvaporation> ODE;
const PhaseUsage& pu = reg.phaseUsage();
const int gix = PhaseIndex::gas(pu);
const int oix = PhaseIndex::oil(pu);
ODE drho(reg.densityCalculator(),
reg.evaporationCalculator(),
pu.num_phases, gix, oix, grav);
const double z0 = reg.zgoc();
const double p0 = po_goc + reg.pcgo_goc(); // Pcog = Pg - Po
std::array<double,2> up = {{ z0, span[0] }};
std::array<double,2> down = {{ z0, span[1] }};
typedef Details::RK4IVP<ODE> GPress;
std::array<GPress,2> gpress = {
{
GPress(drho, up , p0, 100)
,
GPress(drho, down, p0, 100)
}
};
assign(G, gpress, z0, cells, press);
}
} // namespace PhasePressure
template <class Region,
class CellRange>
void
equilibrateOWG(const UnstructuredGrid& G,
const Region& reg,
const double grav,
const std::array<double,2>& span,
const CellRange& cells,
std::vector< std::vector<double> >& press)
{
const PhaseUsage& pu = reg.phaseUsage();
double po_woc = -1, po_goc = -1;
if (PhaseUsed::oil(pu)) {
const int oix = PhaseIndex::oil(pu);
PhasePressure::oil(G, reg, span, grav, cells,
press[ oix ], po_woc, po_goc);
}
if (PhaseUsed::water(pu)) {
const int wix = PhaseIndex::water(pu);
PhasePressure::water(G, reg, span, grav, po_woc,
cells, press[ wix ]);
}
if (PhaseUsed::gas(pu)) {
const int gix = PhaseIndex::gas(pu);
PhasePressure::gas(G, reg, span, grav, po_goc,
cells, press[ gix ]);
}
}
} // namespace Details
namespace Equil {
template <class Region,
class CellRange>
std::vector< std::vector<double> >
phasePressures(const UnstructuredGrid& G,
const Region& reg,
const CellRange& cells,
const double grav)
{
std::array<double,2> span =
{{ std::numeric_limits<double>::max() ,
-std::numeric_limits<double>::max() }}; // Symm. about 0.
int ncell = 0;
{
// This code is only supported in three space dimensions
assert (G.dimensions == 3);
const int nd = G.dimensions;
// Define short-name aliases to reduce visual clutter.
const double* const nc = & G.node_coordinates[0];
const int* const cfp = & G.cell_facepos[0];
const int* const cf = & G.cell_faces[0];
const int* const fnp = & G.face_nodepos[0];
const int* const fn = & G.face_nodes[0];
// Define vertical span as
//
// [minimum(node depth(cells)), maximum(node depth(cells))]
//
// Note: We use a sledgehammer approach--looping all
// the nodes of all the faces of all the 'cells'--to
// compute those bounds. This necessarily entails
// visiting some nodes (and faces) multiple times.
//
// Note: The implementation of 'RK4IVP<>' implicitly
// imposes the requirement that cell centroids are all
// within this vertical span. That requirement is not
// checked.
for (typename CellRange::const_iterator
ci = cells.begin(), ce = cells.end();
ci != ce; ++ci, ++ncell)
{
for (const int
*fi = & cf[ cfp[*ci + 0] ],
*fe = & cf[ cfp[*ci + 1] ];
fi != fe; ++fi)
{
for (const int
*i = & fn[ fnp[*fi + 0] ],
*e = & fn[ fnp[*fi + 1] ];
i != e; ++i)
{
const double z = nc[(*i)*nd + (nd - 1)];
if (z < span[0]) { span[0] = z; }
if (z > span[1]) { span[1] = z; }
}
}
}
}
const int np = reg.phaseUsage().num_phases;
typedef std::vector<double> pval;
std::vector<pval> press(np, pval(ncell, 0.0));
const double z0 = reg.datum();
const double zwoc = reg.zwoc ();
const double zgoc = reg.zgoc ();
if (! ((zgoc > z0) || (z0 > zwoc))) {
// Datum depth in oil zone (zgoc <= z0 <= zwoc)
Details::equilibrateOWG(G, reg, grav, span, cells, press);
} else {
OPM_THROW(std::runtime_error, "Cannot initialise: the datum depth must be in the oil zone.");
}
return press;
}
template <class Region, class CellRange>
std::vector< std::vector<double> >
phaseSaturations(const Region& reg,
const CellRange& cells,
const BlackoilPropertiesInterface& props,
std::vector< std::vector<double> >& phase_pressures)
{
const double z0 = reg.datum();
const double zwoc = reg.zwoc ();
const double zgoc = reg.zgoc ();
if ((zgoc > z0) || (z0 > zwoc)) {
OPM_THROW(std::runtime_error, "Cannot initialise: the datum depth must be in the oil zone.");
}
if (!reg.phaseUsage().phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Cannot initialise: not handling water-gas cases.");
}
std::vector< std::vector<double> > phase_saturations = phase_pressures; // Just to get the right size.
double smin[BlackoilPhases::MaxNumPhases] = { 0.0 };
double smax[BlackoilPhases::MaxNumPhases] = { 0.0 };
const bool water = reg.phaseUsage().phase_used[BlackoilPhases::Aqua];
const bool gas = reg.phaseUsage().phase_used[BlackoilPhases::Vapour];
const int oilpos = reg.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int waterpos = reg.phaseUsage().phase_pos[BlackoilPhases::Aqua];
const int gaspos = reg.phaseUsage().phase_pos[BlackoilPhases::Vapour];
std::vector<double>::size_type local_index = 0;
for (typename CellRange::const_iterator ci = cells.begin(); ci != cells.end(); ++ci, ++local_index) {
const int cell = *ci;
props.satRange(1, &cell, smin, smax);
// Find saturations from pressure differences by
// inverting capillary pressure functions.
double sw = 0.0;
if (water) {
const double pcov = phase_pressures[oilpos][local_index] - phase_pressures[waterpos][local_index];
sw = satFromPc(props, waterpos, cell, pcov);
phase_saturations[waterpos][local_index] = sw;
}
double sg = 0.0;
if (gas) {
// Note that pcog is defined to be (pg - po), not (po - pg).
const double pcog = phase_pressures[gaspos][local_index] - phase_pressures[oilpos][local_index];
const double increasing = true; // pcog(sg) expected to be increasing function
sg = satFromPc(props, gaspos, cell, pcog, increasing);
phase_saturations[gaspos][local_index] = sg;
}
bool overlap = false;
if (gas && water && (sg + sw > 1.0)) {
// Overlapping gas-oil and oil-water transition
// zones can lead to unphysical saturations when
// treated as above. Must recalculate using gas-water
// capillary pressure.
const double pcgw = phase_pressures[gaspos][local_index] - phase_pressures[waterpos][local_index];
sw = satFromSumOfPcs(props, waterpos, gaspos, cell, pcgw);
sg = 1.0 - sw;
phase_saturations[waterpos][local_index] = sw;
phase_saturations[gaspos][local_index] = sg;
overlap = true;
}
phase_saturations[oilpos][local_index] = 1.0 - sw - sg;
// Adjust phase pressures for max and min saturation ...
double pc[BlackoilPhases::MaxNumPhases];
double sat[BlackoilPhases::MaxNumPhases];
if (sw > smax[waterpos]-1.0e-6) {
sat[waterpos] = smax[waterpos];
props.capPress(1, sat, &cell, pc, 0);
phase_pressures[oilpos][local_index] = phase_pressures[waterpos][local_index] + pc[waterpos];
} else if (overlap || sg > smax[gaspos]-1.0e-6) {
sat[gaspos] = smax[gaspos];
props.capPress(1, sat, &cell, pc, 0);
phase_pressures[oilpos][local_index] = phase_pressures[gaspos][local_index] - pc[gaspos];
}
if (sg < smin[gaspos]+1.0e-6) {
sat[gaspos] = smin[gaspos];
props.capPress(1, sat, &cell, pc, 0);
phase_pressures[gaspos][local_index] = phase_pressures[oilpos][local_index] + pc[gaspos];
}
if (sw < smin[waterpos]+1.0e-6) {
sat[waterpos] = smin[waterpos];
props.capPress(1, sat, &cell, pc, 0);
phase_pressures[waterpos][local_index] = phase_pressures[oilpos][local_index] - pc[waterpos];
}
}
return phase_saturations;
}
/**
* Compute initial Rs values.
*
* \tparam CellRangeType Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] grid Grid.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] oil_pressure Oil pressure for each cell in range.
* \param[in] rs_func Rs as function of pressure and depth.
* \return Rs values, one for each cell in the 'cells' range.
*/
template <class CellRangeType>
std::vector<double> computeRs(const UnstructuredGrid& grid,
const CellRangeType& cells,
const std::vector<double> oil_pressure,
const Miscibility::RsFunction& rs_func,
const std::vector<double> gas_saturation)
{
assert(grid.dimensions == 3);
std::vector<double> rs(cells.size());
int count = 0;
for (auto it = cells.begin(); it != cells.end(); ++it, ++count) {
const double depth = grid.cell_centroids[3*(*it) + 2];
rs[count] = rs_func(depth, oil_pressure[count], gas_saturation[count]);
}
return rs;
}
} // namespace Equil
namespace
{
/// Convert saturations from a vector of individual phase saturation vectors
/// to an interleaved format where all values for a given cell come before all
/// values for the next cell, all in a single vector.
std::vector<double> convertSats(const std::vector< std::vector<double> >& sat)
{
const int np = sat.size();
const int nc = sat[0].size();
std::vector<double> s(np * nc);
for (int c = 0; c < nc; ++c) {
for (int p = 0; p < np; ++p) {
s[np*c + p] = sat[p][c];
}
}
return s;
}
}
/**
* Compute initial state by an equilibration procedure.
*
* The following state fields are modified:
* pressure(),
* saturation(),
* surfacevol(),
* gasoilratio(),
* rv().
*
* \param[in] grid Grid.
* \param[in] props Property object, pvt and capillary properties are used.
* \param[in] deck Simulation deck, used to obtain EQUIL and related data.
* \param[in] gravity Acceleration of gravity, assumed to be in Z direction.
*/
void initStateEquil(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const EclipseGridParser& deck,
const double gravity,
BlackoilState& state)
{
typedef Equil::DeckDependent::InitialStateComputer<EclipseGridParser> ISC;
ISC isc(props, deck, grid, gravity);
const auto pu = props.phaseUsage();
const int ref_phase = pu.phase_used[BlackoilPhases::Liquid]
? pu.phase_pos[BlackoilPhases::Liquid]
: pu.phase_pos[BlackoilPhases::Aqua];
state.pressure() = isc.press()[ref_phase];
state.saturation() = convertSats(isc.saturation());
state.gasoilratio() = isc.rs();
state.rv() = isc.rv();
// TODO: state.surfacevol() must be computed from s, rs, rv.
}
void initStateEquil(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const Opm::DeckConstPtr newParserDeck,
const double gravity,
BlackoilState& state)
{
typedef Equil::DeckDependent::InitialStateComputer<Opm::DeckConstPtr> ISC;
ISC isc(props, newParserDeck, grid, gravity);
const auto pu = props.phaseUsage();
const int ref_phase = pu.phase_used[BlackoilPhases::Liquid]
? pu.phase_pos[BlackoilPhases::Liquid]
: pu.phase_pos[BlackoilPhases::Aqua];
state.pressure() = isc.press()[ref_phase];
state.saturation() = convertSats(isc.saturation());
state.gasoilratio() = isc.rs();
state.rv() = isc.rv();
// TODO: state.surfacevol() must be computed from s, rs, rv.
}
} // namespace Opm
#endif // OPM_INITSTATEEQUIL_IMPL_HEADER_INCLUDED

38
tests/capillary.DATA Normal file
View File

@ -0,0 +1,38 @@
WATER
OIL
GAS
TABDIMS
1 1 40 20 1 20 /
EQLDIMS
-- NTEQUL
1 /
PVDO
100 1.0 1.0
200 0.9 1.0
/
PVDG
100 0.010 0.1
200 0.005 0.2
/
SWOF
0.2 0 1 0.4
1 1 0 0.1
/
SGOF
0 0 1 0.2
0.8 1 0 0.5
/
DENSITY
700 1000 1
/
EQUIL
50 150 50 0.25 20 0.35 1* 1* 0
/

View File

@ -0,0 +1,128 @@
NOECHO
RUNSPEC ======
WATER
OIL
GAS
TABDIMS
1 1 40 20 1 20 /
DIMENS
1 1 20
/
WELLDIMS
30 10 2 30 /
START
1 'JAN' 1990 /
NSTACK
25 /
EQLDIMS
-- NTEQUL
1 /
FMTOUT
FMTIN
GRID ======
DXV
1.0
/
DYV
1.0
/
DZV
20*5.0
/
PORO
20*0.2
/
PERMZ
20*1.0
/
PERMY
20*100.0
/
PERMX
20*100.0
/
BOX
1 1 1 1 1 1 /
TOPS
0.0
/
PROPS ======
PVDO
100 1.0 1.0
200 0.9 1.0
/
PVDG
100 0.010 0.1
200 0.005 0.2
/
SWOF
0.2 0 1 0.9
1 1 0 0.1
/
SGOF
0 0 1 0.2
0.8 1 0 0.5
/
PVTW
--RefPres Bw Comp Vw Cv
1. 1.0 4.0E-5 0.96 0.0 /
ROCK
--RefPres Comp
1. 5.0E-5 /
DENSITY
700 1000 1
/
SOLUTION ======
EQUIL
45 150 50 0.25 45 0.35 1* 1* 0
/
RPTSOL
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RESTART=2' /
SUMMARY ======
RUNSUM
SEPARATE
SCHEDULE ======
RPTSCHED
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RESTART=3' 'NEWTON=2' /
END

38
tests/deadfluids.DATA Normal file
View File

@ -0,0 +1,38 @@
WATER
OIL
GAS
TABDIMS
1 1 40 20 1 20 /
EQLDIMS
-- NTEQUL
1 /
PVDO
100 1.0 1.0
200 0.5 1.0
/
PVDG
100 0.05 0.1
200 0.02 0.2
/
SWOF
0 0 1 0
1 1 0 0
/
SGOF
0 0 1 0
1 1 0 0
/
DENSITY
700 1000 10
/
EQUIL
5 150 5 0 2 0 1* 1* 0
/

131
tests/equil_livegas.DATA Normal file
View File

@ -0,0 +1,131 @@
NOECHO
RUNSPEC ======
WATER
OIL
GAS
VAPOIL
TABDIMS
1 1 40 20 1 20 /
DIMENS
1 1 20
/
WELLDIMS
30 10 2 30 /
START
1 'JAN' 1990 /
NSTACK
25 /
EQLDIMS
-- NTEQUL
1 /
FMTOUT
FMTIN
GRID ======
DXV
1.0
/
DYV
1.0
/
DZV
20*5.0
/
PORO
20*0.2
/
PERMZ
20*1.0
/
PERMY
20*100.0
/
PERMX
20*100.0
/
BOX
1 1 1 1 1 1 /
TOPS
0.0
/
PROPS ======
PVDO
100 1.0 1.0
200 0.9 1.0
/
PVTG
-- Pg Rv Bg Vg
100 0.0001 0.010 0.1
0.0 0.0104 0.1 /
200 0.0004 0.005 0.2
0.0 0.0054 0.2 /
/
SWOF
0.2 0 1 0.9
1 1 0 0.1
/
SGOF
0 0 1 0.2
0.8 1 0 0.5
/
PVTW
--RefPres Bw Comp Vw Cv
1. 1.0 4.0E-5 0.96 0.0 /
ROCK
--RefPres Comp
1. 5.0E-5 /
DENSITY
700 1000 1
/
SOLUTION ======
EQUIL
45 150 50 0.25 45 0.35 1* 1* 0
/
RPTSOL
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RS' 'RESTART=2' /
SUMMARY ======
RUNSUM
SEPARATE
SCHEDULE ======
RPTSCHED
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RS' 'RESTART=3' 'NEWTON=2' /
END

140
tests/equil_liveoil.DATA Normal file
View File

@ -0,0 +1,140 @@
NOECHO
RUNSPEC ======
WATER
OIL
GAS
DISGAS
TABDIMS
1 1 40 20 1 20 /
DIMENS
1 1 20
/
WELLDIMS
30 10 2 30 /
START
1 'JAN' 1990 /
NSTACK
25 /
EQLDIMS
-- NTEQUL
1 /
FMTOUT
FMTIN
GRID ======
DXV
1.0
/
DYV
1.0
/
DZV
20*5.0
/
PORO
20*0.2
/
PERMZ
20*1.0
/
PERMY
20*100.0
/
PERMX
20*100.0
/
BOX
1 1 1 1 1 1 /
TOPS
0.0
/
PROPS ======
PVTO
-- Rs Pbub Bo Vo
0 1. 1.0000 1.20 /
20 40. 1.0120 1.17 /
40 80. 1.0255 1.14 /
60 120. 1.0380 1.11 /
80 160. 1.0510 1.08 /
100 200. 1.0630 1.06 /
120 240. 1.0750 1.03 /
140 280. 1.0870 1.00 /
160 320. 1.0985 .98 /
180 360. 1.1100 .95 /
200 400. 1.1200 .94
500. 1.1189 .94 /
/
PVDG
100 0.010 0.1
200 0.005 0.2
/
SWOF
0.2 0 1 0.9
1 1 0 0.1
/
SGOF
0 0 1 0.2
0.8 1 0 0.5
/
PVTW
--RefPres Bw Comp Vw Cv
1. 1.0 4.0E-5 0.96 0.0 /
ROCK
--RefPres Comp
1. 5.0E-5 /
DENSITY
700 1000 1
/
SOLUTION ======
EQUIL
45 150 50 0.25 45 0.35 1* 1* 0
/
RPTSOL
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RS' 'RESTART=2' /
SUMMARY ======
RUNSUM
SEPARATE
SCHEDULE ======
RPTSCHED
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RS' 'RESTART=3' 'NEWTON=2' /
END

View File

@ -0,0 +1,65 @@
WATER
OIL
GAS
DISGAS
DIMENS
1 1 20
/
DXV
1.0
/
DYV
1.0
/
DZV
20*5.0
/
TOPS
4*0.0
/
PVTO
-- Rs Pbub Bo Vo
0 1. 1.0000 1.20 /
100 40. 1.0120 1.17 /
200 80. 1.0255 1.14 /
300 120. 1.0380 1.11 /
400 160. 1.0510 1.08 /
500 200. 1.0630 1.06 /
600 240. 1.0750 1.03 /
700 280. 1.0870 1.00 /
800 320. 1.0985 .98 /
900 360. 1.1100 .95 /
1000 400. 1.1200 .94
500. 1.1189 .94 /
/
PVDG
100 0.010 0.1
200 0.005 0.2
/
SWOF
0.2 0 1 0.9
1 1 0 0.1
/
SGOF
0 0 1 0.2
0.8 1 0 0.5
/
DENSITY
700 1000 1
/
EQUIL
45 150 50 0.25 45 0.35
/

View File

@ -0,0 +1,151 @@
NOECHO
RUNSPEC ======
WATER
OIL
GAS
DISGAS
VAPOIL
TABDIMS
1 1 40 20 1 20 /
DIMENS
1 1 20
/
WELLDIMS
30 10 2 30 /
START
1 'JAN' 1990 /
NSTACK
25 /
EQLDIMS
-- NTEQUL
1 /
FMTOUT
FMTIN
GRID ======
DXV
1.0
/
DYV
1.0
/
DZV
20*5.0
/
PORO
20*0.2
/
PERMZ
20*1.0
/
PERMY
20*100.0
/
PERMX
20*100.0
/
BOX
1 1 1 1 1 1 /
TOPS
0.0
/
PROPS ======
PVTO
-- Rs Pbub Bo Vo
0 1. 1.0000 1.20 /
20 40. 1.0120 1.17 /
40 80. 1.0255 1.14 /
60 120. 1.0380 1.11 /
80 160. 1.0510 1.08 /
100 200. 1.0630 1.06 /
120 240. 1.0750 1.03 /
140 280. 1.0870 1.00 /
160 320. 1.0985 .98 /
180 360. 1.1100 .95 /
200 400. 1.1200 .94
500. 1.1189 .94 /
/
PVTG
-- Pg Rv Bg Vg
100 0.0001 0.010 0.1
0.0 0.0104 0.1 /
200 0.0004 0.005 0.2
0.0 0.0054 0.2 /
/
SWOF
0.2 0 1 0.9
1 1 0 0.1
/
SGOF
0 0 1 0.2
0.8 1 0 0.5
/
PVTW
--RefPres Bw Comp Vw Cv
1. 1.0 4.0E-5 0.96 0.0 /
ROCK
--RefPres Comp
1. 5.0E-5 /
DENSITY
700 1000 1
/
SOLUTION ======
EQUIL
45 150 50 0.25 45 0.35 1 1 0
/
RSVD
0 0.0
100 100. /
RVVD
0. 0.
100. 0.0001 /
RPTSOL
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RS' 'RESTART=2' /
SUMMARY ======
RUNSUM
SEPARATE
SCHEDULE ======
RPTSCHED
'PRES' 'PGAS' 'PWAT' 'SOIL' 'SWAT' 'SGAS' 'RS' 'RESTART=3' 'NEWTON=2' /
END

764
tests/test_equil.cpp Normal file
View File

@ -0,0 +1,764 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
*/
#include "config.h"
/* --- Boost.Test boilerplate --- */
#if HAVE_DYNAMIC_BOOST_TEST
#define BOOST_TEST_DYN_LINK
#endif
#define NVERBOSE // Suppress own messages when throw()ing
#define BOOST_TEST_MODULE UnitsTest
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
/* --- our own headers --- */
#include <opm/core/simulator/initStateEquil.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/cart_grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/props/BlackoilPropertiesBasic.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/core/pressure/msmfem/partition.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/Units.hpp>
#include <array>
#include <iostream>
#include <limits>
#include <memory>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
BOOST_AUTO_TEST_SUITE ()
BOOST_AUTO_TEST_CASE (PhasePressure)
{
typedef std::vector<double> PVal;
typedef std::vector<PVal> PPress;
std::shared_ptr<UnstructuredGrid>
G(create_grid_cart3d(10, 1, 10), destroy_grid);
Opm::parameter::ParameterGroup param;
{
using Opm::unit::kilogram;
using Opm::unit::meter;
using Opm::unit::cubic;
std::stringstream dens; dens << 700*kilogram/cubic(meter);
param.insertParameter("rho2", dens.str());
}
typedef Opm::BlackoilPropertiesBasic Props;
Props props(param, G->dimensions, G->number_of_cells);
typedef Opm::Equil::DensityCalculator<Opm::BlackoilPropertiesInterface> RhoCalc;
RhoCalc calc(props, 0);
Opm::Equil::EquilRecord record =
{
{ 0 , 1e5 } , // Datum depth, pressure
{ 5 , 0 } , // Zwoc , Pcow_woc
{ 0 , 0 } // Zgoc , Pcgo_goc
};
Opm::Equil::EquilReg<RhoCalc>
region(record, calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage());
std::vector<int> cells(G->number_of_cells);
std::iota(cells.begin(), cells.end(), 0);
const double grav = 10;
const PPress ppress = Opm::Equil::phasePressures(*G, region, cells, grav);
const int first = 0, last = G->number_of_cells - 1;
const double reltol = 1.0e-8;
BOOST_CHECK_CLOSE(ppress[0][first] , 90e3 , reltol);
BOOST_CHECK_CLOSE(ppress[0][last ] , 180e3 , reltol);
BOOST_CHECK_CLOSE(ppress[1][first] , 103.5e3 , reltol);
BOOST_CHECK_CLOSE(ppress[1][last ] , 166.5e3 , reltol);
}
BOOST_AUTO_TEST_CASE (CellSubset)
{
typedef std::vector<double> PVal;
typedef std::vector<PVal> PPress;
std::shared_ptr<UnstructuredGrid>
G(create_grid_cart3d(10, 1, 10), destroy_grid);
Opm::parameter::ParameterGroup param;
{
using Opm::unit::kilogram;
using Opm::unit::meter;
using Opm::unit::cubic;
std::stringstream dens; dens << 700*kilogram/cubic(meter);
param.insertParameter("rho2", dens.str());
}
typedef Opm::BlackoilPropertiesBasic Props;
Props props(param, G->dimensions, G->number_of_cells);
typedef Opm::Equil::DensityCalculator<Opm::BlackoilPropertiesInterface> RhoCalc;
RhoCalc calc(props, 0);
Opm::Equil::EquilRecord record[] =
{
{
{ 0 , 1e5 } , // Datum depth, pressure
{ 2.5 , -0.075e5 } , // Zwoc , Pcow_woc
{ 0 , 0 } // Zgoc , Pcgo_goc
}
,
{
{ 5 , 1.35e5 } , // Datum depth, pressure
{ 7.5 , -0.225e5 } , // Zwoc , Pcow_woc
{ 5 , 0 } // Zgoc , Pcgo_goc
}
};
Opm::Equil::EquilReg<RhoCalc> region[] =
{
Opm::Equil::EquilReg<RhoCalc>(record[0], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
,
Opm::Equil::EquilReg<RhoCalc>(record[0], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
,
Opm::Equil::EquilReg<RhoCalc>(record[1], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
,
Opm::Equil::EquilReg<RhoCalc>(record[1], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
};
const int cdim[] = { 2, 1, 2 };
int ncoarse = cdim[0];
for (std::size_t d = 1; d < 3; ++d) { ncoarse *= cdim[d]; }
std::vector< std::vector<int> > cells(ncoarse);
for (int c = 0; c < G->number_of_cells; ++c) {
int ci = c;
const int i = ci % G->cartdims[0]; ci /= G->cartdims[0];
const int j = ci % G->cartdims[1];
const int k = ci / G->cartdims[1];
const int ic = (i / (G->cartdims[0] / cdim[0]));
const int jc = (j / (G->cartdims[1] / cdim[1]));
const int kc = (k / (G->cartdims[2] / cdim[2]));
const int ix = ic + cdim[0]*(jc + cdim[1]*kc);
assert ((0 <= ix) && (ix < ncoarse));
cells[ix].push_back(c);
}
PPress ppress(2, PVal(G->number_of_cells, 0));
for (std::vector< std::vector<int> >::const_iterator
r = cells.begin(), e = cells.end();
r != e; ++r)
{
const int rno = int(r - cells.begin());
const double grav = 10;
const PPress p =
Opm::Equil::phasePressures(*G, region[rno], *r, grav);
PVal::size_type i = 0;
for (std::vector<int>::const_iterator
c = r->begin(), ce = r->end();
c != ce; ++c, ++i)
{
assert (i < p[0].size());
ppress[0][*c] = p[0][i];
ppress[1][*c] = p[1][i];
}
}
const int first = 0, last = G->number_of_cells - 1;
const double reltol = 1.0e-8;
BOOST_CHECK_CLOSE(ppress[0][first] , 105e3 , reltol);
BOOST_CHECK_CLOSE(ppress[0][last ] , 195e3 , reltol);
BOOST_CHECK_CLOSE(ppress[1][first] , 103.5e3 , reltol);
BOOST_CHECK_CLOSE(ppress[1][last ] , 166.5e3 , reltol);
}
BOOST_AUTO_TEST_CASE (RegMapping)
{
typedef std::vector<double> PVal;
typedef std::vector<PVal> PPress;
std::shared_ptr<UnstructuredGrid>
G(create_grid_cart3d(10, 1, 10), destroy_grid);
Opm::parameter::ParameterGroup param;
{
using Opm::unit::kilogram;
using Opm::unit::meter;
using Opm::unit::cubic;
std::stringstream dens; dens << 700*kilogram/cubic(meter);
param.insertParameter("rho2", dens.str());
}
typedef Opm::BlackoilPropertiesBasic Props;
Props props(param, G->dimensions, G->number_of_cells);
typedef Opm::Equil::DensityCalculator<Opm::BlackoilPropertiesInterface> RhoCalc;
RhoCalc calc(props, 0);
Opm::Equil::EquilRecord record[] =
{
{
{ 0 , 1e5 } , // Datum depth, pressure
{ 2.5 , -0.075e5 } , // Zwoc , Pcow_woc
{ 0 , 0 } // Zgoc , Pcgo_goc
}
,
{
{ 5 , 1.35e5 } , // Datum depth, pressure
{ 7.5 , -0.225e5 } , // Zwoc , Pcow_woc
{ 5 , 0 } // Zgoc , Pcgo_goc
}
};
Opm::Equil::EquilReg<RhoCalc> region[] =
{
Opm::Equil::EquilReg<RhoCalc>(record[0], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
,
Opm::Equil::EquilReg<RhoCalc>(record[0], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
,
Opm::Equil::EquilReg<RhoCalc>(record[1], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
,
Opm::Equil::EquilReg<RhoCalc>(record[1], calc,
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
std::make_shared<Opm::Equil::Miscibility::NoMixing>(),
props.phaseUsage())
};
std::vector<int> eqlnum(G->number_of_cells);
{
std::vector<int> cells(G->number_of_cells);
std::iota(cells.begin(), cells.end(), 0);
const int cdim[] = { 2, 1, 2 };
int ncoarse = cdim[0];
for (std::size_t d = 1; d < 3; ++d) { ncoarse *= cdim[d]; }
partition_unif_idx(G->dimensions, G->number_of_cells,
G->cartdims, cdim,
&cells[0], &eqlnum[0]);
}
Opm::RegionMapping<> eqlmap(eqlnum);
PPress ppress(2, PVal(G->number_of_cells, 0));
for (int r = 0, e = eqlmap.numRegions(); r != e; ++r)
{
const Opm::RegionMapping<>::CellRange&
rng = eqlmap.cells(r);
const int rno = r;
const double grav = 10;
const PPress p =
Opm::Equil::phasePressures(*G, region[rno], rng, grav);
PVal::size_type i = 0;
for (Opm::RegionMapping<>::CellRange::const_iterator
c = rng.begin(), ce = rng.end();
c != ce; ++c, ++i)
{
assert (i < p[0].size());
ppress[0][*c] = p[0][i];
ppress[1][*c] = p[1][i];
}
}
const int first = 0, last = G->number_of_cells - 1;
const double reltol = 1.0e-8;
BOOST_CHECK_CLOSE(ppress[0][first] , 105e3 , reltol);
BOOST_CHECK_CLOSE(ppress[0][last ] , 195e3 , reltol);
BOOST_CHECK_CLOSE(ppress[1][first] , 103.5e3 , reltol);
BOOST_CHECK_CLOSE(ppress[1][last ] , 166.5e3 , reltol);
}
BOOST_AUTO_TEST_CASE (DeckAllDead)
{
std::shared_ptr<UnstructuredGrid>
grid(create_grid_cart3d(1, 1, 10), destroy_grid);
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile("deadfluids.DATA");
Opm::BlackoilPropertiesFromDeck props(deck, *grid, false);
Opm::Equil::DeckDependent::InitialStateComputer<Opm::DeckConstPtr> comp(props, deck, *grid, 10.0);
const auto& pressures = comp.press();
BOOST_REQUIRE(pressures.size() == 3);
BOOST_REQUIRE(int(pressures[0].size()) == grid->number_of_cells);
const int first = 0, last = grid->number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-3;
BOOST_CHECK_CLOSE(pressures[0][first] , 1.496329839e7 , reltol);
BOOST_CHECK_CLOSE(pressures[0][last ] , 1.50473245e7 , reltol);
BOOST_CHECK_CLOSE(pressures[1][last] , 1.50473245e7 , reltol);
}
BOOST_AUTO_TEST_CASE (CapillaryInversion)
{
// Test setup.
Opm::GridManager gm(1, 1, 40, 1.0, 1.0, 2.5);
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile("capillary.DATA");
Opm::BlackoilPropertiesFromDeck props(deck, grid, false);
// Test the capillary inversion for oil-water.
const int cell = 0;
const double reltol = 1.0e-7;
{
const int phase = 0;
const bool increasing = false;
const std::vector<double> pc = { 10.0e5, 0.5e5, 0.4e5, 0.3e5, 0.2e5, 0.1e5, 0.099e5, 0.0e5, -10.0e5 };
const std::vector<double> s = { 0.2, 0.2, 0.2, 0.466666666666, 0.733333333333, 1.0, 1.0, 1.0, 1.0 };
BOOST_REQUIRE(pc.size() == s.size());
for (size_t i = 0; i < pc.size(); ++i) {
const double s_computed = Opm::Equil::satFromPc(props, phase, cell, pc[i], increasing);
BOOST_CHECK_CLOSE(s_computed, s[i], reltol);
}
}
// Test the capillary inversion for gas-oil.
{
const int phase = 2;
const bool increasing = true;
const std::vector<double> pc = { 10.0e5, 0.6e5, 0.5e5, 0.4e5, 0.3e5, 0.2e5, 0.1e5, 0.0e5, -10.0e5 };
const std::vector<double> s = { 0.8, 0.8, 0.8, 0.533333333333, 0.266666666666, 0.0, 0.0, 0.0, 0.0 };
BOOST_REQUIRE(pc.size() == s.size());
for (size_t i = 0; i < pc.size(); ++i) {
const double s_computed = Opm::Equil::satFromPc(props, phase, cell, pc[i], increasing);
BOOST_CHECK_CLOSE(s_computed, s[i], reltol);
}
}
// Test the capillary inversion for gas-water.
{
const int water = 0;
const int gas = 2;
const std::vector<double> pc = { 0.9e5, 0.8e5, 0.6e5, 0.4e5, 0.3e5 };
const std::vector<double> s = { 0.2, 0.333333333333, 0.6, 0.866666666666, 1.0 };
BOOST_REQUIRE(pc.size() == s.size());
for (size_t i = 0; i < pc.size(); ++i) {
const double s_computed = Opm::Equil::satFromSumOfPcs(props, water, gas, cell, pc[i]);
BOOST_CHECK_CLOSE(s_computed, s[i], reltol);
}
}
}
BOOST_AUTO_TEST_CASE (DeckWithCapillary)
{
Opm::GridManager gm(1, 1, 20, 1.0, 1.0, 5.0);
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile("capillary.DATA");
Opm::BlackoilPropertiesFromDeck props(deck, grid, false);
Opm::Equil::DeckDependent::InitialStateComputer<Opm::DeckConstPtr> comp(props, deck, grid, 10.0);
const auto& pressures = comp.press();
BOOST_REQUIRE(pressures.size() == 3);
BOOST_REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
BOOST_CHECK_CLOSE(pressures[0][first] , 1.469769063e7 , reltol);
BOOST_CHECK_CLOSE(pressures[0][last ] , 1.545e7 , reltol);
BOOST_CHECK_CLOSE(pressures[1][last] , 1.546e7 , reltol);
const auto& sats = comp.saturation();
const std::vector<double> s[3]{
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.425893333333, 0.774026666666, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0.00736, 0.792746666666, 0.8, 0.8, 0.8, 0.8, 0.574106666666, 0.225973333333, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.79264, 0.007253333333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
for (int phase = 0; phase < 3; ++phase) {
BOOST_REQUIRE(sats[phase].size() == s[phase].size());
for (size_t i = 0; i < s[phase].size(); ++i) {
BOOST_CHECK_CLOSE(sats[phase][i], s[phase][i], reltol);
}
}
}
BOOST_AUTO_TEST_CASE (DeckWithCapillaryOverlap)
{
Opm::GridManager gm(1, 1, 20, 1.0, 1.0, 5.0);
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile("capillary_overlap.DATA");
Opm::BlackoilPropertiesFromDeck props(deck, grid, false);
Opm::Equil::DeckDependent::InitialStateComputer<Opm::DeckConstPtr> comp(props, deck, grid, 9.80665);
const auto& pressures = comp.press();
BOOST_REQUIRE(pressures.size() == 3);
BOOST_REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
const double reltol_ecl = 1.0;
BOOST_CHECK_CLOSE(pressures[0][first], 1.48324e+07, reltol_ecl); // eclipse
BOOST_CHECK_CLOSE(pressures[0][last], 1.54801e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][first], 1.49224e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][last], 1.54901e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[0][first] , 14832467.14, reltol); // opm
BOOST_CHECK_CLOSE(pressures[0][last ] , 15479883.47, reltol);
BOOST_CHECK_CLOSE(pressures[1][last ] , 15489883.47, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
const std::vector<double> s_ecl[3]{// eclipse
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22874042, 0.53397995, 0.78454906, 0.91542006, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.20039, 0.08458, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77125955, 0.46602005, 0.015063271, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
const std::vector<double> s_opm[3]{ // opm
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2289309090909091, 0.53406545454545451, 0.78458, 0.9154, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2002466666666666, 0.0846, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77106909090909093, 0.46593454545454549, 0.015173333333333336, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
for (int phase = 0; phase < 3; ++phase) {
BOOST_REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
BOOST_CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
BOOST_CHECK_CLOSE(sats[phase][i], s_opm[phase][i], reltol);
}
}
}
BOOST_AUTO_TEST_CASE (DeckWithLiveOil)
{
Opm::GridManager gm(1, 1, 20, 1.0, 1.0, 5.0);
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile("equil_liveoil.DATA");
Opm::BlackoilPropertiesFromDeck props(deck, grid, false);
Opm::Equil::DeckDependent::InitialStateComputer<Opm::DeckConstPtr> comp(props, deck, grid, 9.80665);
const auto& pressures = comp.press();
BOOST_REQUIRE(pressures.size() == 3);
BOOST_REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
const double reltol_ecl = 1.0;
BOOST_CHECK_CLOSE(pressures[0][first], 1.48324e+07, reltol_ecl); // eclipse
BOOST_CHECK_CLOSE(pressures[0][last], 1.54801e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][first], 1.49224e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][last], 1.54901e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[0][first], 1.483246714e7, reltol); // opm
BOOST_CHECK_CLOSE(pressures[0][last], 1.547991652e7, reltol);
BOOST_CHECK_CLOSE(pressures[1][first], 1.492246714e7, reltol);
BOOST_CHECK_CLOSE(pressures[1][last], 1.548991652e7, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
const std::vector<double> s_ecl[3]{ // eclipse
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22898, 0.53422, 0.78470, 0.91531, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.20073, 0.08469, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77102, 0.46578, 0.01458, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
const std::vector<double> s_opm[3]{ // opm
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2291709091, 0.5343054545, 0.78472, 0.91529, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2005866667, 0.08471, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.7708290909, 0.4656945455, 0.01469333333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
for (int phase = 0; phase < 3; ++phase) {
BOOST_REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
BOOST_CHECK_CLOSE(sats[phase][i], s_opm[phase][i], reltol);
BOOST_CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
}
std::cout << std::endl;
}
const auto& rs = comp.rs();
const std::vector<double> rs_opm {74.612335679539058, 74.649052116644228, 74.685786561426298, 74.722539022717172, // opm
74.759309509353145, 74.796098030174733, 74.8329045940269, 74.869729209758916,
74.906571886224327, 75.090675116639048, 75.0, 75.0,
75.0, 75.0, 75.0, 75.0,
75.0, 75.0, 75.0, 75.0};
const std::vector<double> rs_ecl {74.612228, 74.648956, 74.685707, 74.722473, // eclipse
74.759254, 74.796051, 74.832870, 74.875145,
74.969231, 75.090706, 75.000000, 75.000000,
75.000000, 75.000000, 75.000000, 75.000000,
75.000000, 75.000000, 75.000000, 75.000000};
for (size_t i = 0; i < rs_opm.size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
BOOST_CHECK_CLOSE(rs[i], rs_opm[i], reltol);
BOOST_CHECK_CLOSE(rs[i], rs_ecl[i], reltol_ecl);
}
}
BOOST_AUTO_TEST_CASE (DeckWithLiveGas)
{
Opm::GridManager gm(1, 1, 20, 1.0, 1.0, 5.0);
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile("equil_livegas.DATA");
Opm::BlackoilPropertiesFromDeck props(deck, grid, false);
Opm::Equil::DeckDependent::InitialStateComputer<Opm::DeckConstPtr> comp(props, deck, grid, 9.80665);
const auto& pressures = comp.press();
BOOST_REQUIRE(pressures.size() == 3);
BOOST_REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
const double reltol_ecl = 1.0;
BOOST_CHECK_CLOSE(pressures[0][first], 1.48215e+07, reltol_ecl); // eclipse
BOOST_CHECK_CLOSE(pressures[0][last], 1.54801e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][first], 1.49115e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][last], 1.54901e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[0][first], 1.482150311e7, reltol); // opm
BOOST_CHECK_CLOSE(pressures[0][last], 1.547988347e7, reltol);
BOOST_CHECK_CLOSE(pressures[1][first], 1.491150311e7, reltol);
BOOST_CHECK_CLOSE(pressures[1][last], 1.548988347e7, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
const std::vector<double> s_ecl[3]{ // eclipse
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.24285614, 0.53869015, 0.78454906, 0.91542006, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18311, 0.08458, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.75714386, 0.46130988, 0.032345835, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
const std::vector<double> s_opm[3]{ // opm
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.24310545, 0.5388, 0.78458, 0.91540, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18288667, 0.0846, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.75689455, 0.4612, 0.03253333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
for (int phase = 0; phase < 3; ++phase) {
BOOST_REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
BOOST_CHECK_CLOSE(sats[phase][i], s_opm[phase][i], 100.*reltol);
BOOST_CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
}
std::cout << std::endl;
}
const auto& rv = comp.rv();
const std::vector<double> rv_opm { // opm
2.4884509e-4, 2.4910378e-4, 2.4936267e-4, 2.4962174e-4,
2.4988100e-4, 2.5014044e-4, 2.5040008e-4, 2.5065990e-4,
2.5091992e-4, 2.5118012e-4, 2.5223082e-4, 2.5105e-4,
2.5105e-4, 2.5105e-4, 2.5105e-4, 2.5105e-4,
2.5105e-4, 2.5105e-4, 2.5105e-4, 2.5105e-4};
const std::vector<double> rv_ecl { // eclipse
0.24884584E-03, 0.24910446E-03, 0.24936325E-03, 0.24962222E-03,
0.24988138E-03, 0.25014076E-03, 0.25040031E-03, 0.25066003E-03,
0.25091995E-03, 0.25118008E-03, 0.25223137E-03, 0.25104999E-03,
0.25104999E-03, 0.25104999E-03, 0.25104999E-03, 0.25104999E-03,
0.25104999E-03, 0.25104999E-03, 0.25104999E-03, 0.25104999E-03};
for (size_t i = 0; i < rv_opm.size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
BOOST_CHECK_CLOSE(rv[i], rv_opm[i], 100.*reltol);
BOOST_CHECK_CLOSE(rv[i], rv_ecl[i], reltol_ecl);
}
}
BOOST_AUTO_TEST_CASE (DeckWithRSVDAndRVVD)
{
Opm::GridManager gm(1, 1, 20, 1.0, 1.0, 5.0);
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::ParserPtr parser(new Opm::Parser() );
Opm::DeckConstPtr deck = parser->parseFile("equil_rsvd_and_rvvd.DATA");
Opm::BlackoilPropertiesFromDeck props(deck, grid, false);
Opm::Equil::DeckDependent::InitialStateComputer<Opm::DeckConstPtr> comp(props, deck, grid, 9.80665);
const auto& pressures = comp.press();
BOOST_REQUIRE(pressures.size() == 3);
BOOST_REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
const double reltol_ecl = 1.0;
BOOST_CHECK_CLOSE(pressures[0][first], 1.48350e+07, reltol_ecl); // eclipse
BOOST_CHECK_CLOSE(pressures[0][last], 1.54794e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][first], 1.49250e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[1][last], 1.54894e+07, reltol_ecl);
BOOST_CHECK_CLOSE(pressures[0][first], 1.483499660e7, reltol); // opm
BOOST_CHECK_CLOSE(pressures[0][last], 1.547924516e7, reltol);
BOOST_CHECK_CLOSE(pressures[1][first], 1.492499660e7, reltol);
BOOST_CHECK_CLOSE(pressures[1][last], 1.548924516e7, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
const std::vector<double> s_ecl[3]{ // eclipse
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22206347, 0.52871972, 0.78150368, 0.91819441, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.19656529, 0.081805572, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77793652, 0.47128031, 0.021931054, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
const std::vector<double> s_opm[3]{ // opm
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22232000, 0.52882909, 0.78153000, 0.91817000, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.19636333, 0.08183000, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77768000, 0.47117091, 0.02210667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
for (int phase = 0; phase < 3; ++phase) {
BOOST_REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
BOOST_CHECK_CLOSE(sats[phase][i], s_opm[phase][i], 100.*reltol);
BOOST_CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
}
std::cout << std::endl;
}
const auto& rs = comp.rs();
const std::vector<double> rs_opm { // opm
74.624983020822540, 74.659590408801634, 74.694380353364522, 74.729353362649505,
74.764509945812975, 74.799850613032362, 74.835375875509555, 74.87108624547416,
74.906982236186707, 75.088917653469309, 52.5, 57.5,
62.5, 67.5, 72.5, 76.45954840804761,
76.70621044909619, 76.952877357524045, 77.199549133522638, 77.446225777283587};
const std::vector<double> rs_ecl { // eclipse
74.625114, 74.659706, 74.694481, 74.729439,
74.764580, 74.799904, 74.835419, 74.875252,
74.968628, 75.088951, 52.500000, 57.500000,
62.500000, 67.500000, 72.500000, 76.168388,
76.349953, 76.531532, 76.713142, 76.894775,};
const auto& rv = comp.rv();
const std::vector<double> rv_opm { // opm
2.50e-6, 7.50e-6, 1.25e-5, 1.75e-5,
2.25e-5, 2.75e-5, 3.25e-5, 3.75e-5,
4.25e-5, 2.51158386e-4, 2.52203372e-4, 5.75e-5,
6.25e-5, 6.75e-5, 7.25e-5, 7.75e-5,
8.25e-5, 8.75e-5, 9.25e-5, 9.75e-5};
const std::vector<double> rv_ecl { // eclipse
0.24999999E-05, 0.74999998E-05, 0.12500000E-04, 0.17500000E-04,
0.22500000E-04, 0.27500000E-04, 0.32500000E-04, 0.37500002E-04,
0.42500000E-04, 0.25115837E-03, 0.25220393E-03, 0.57500001E-04,
0.62500003E-04, 0.67499997E-04, 0.72499999E-04, 0.77500001E-04,
0.82500002E-04, 0.87499997E-04, 0.92499999E-04, 0.97500000E-04};
for (size_t i = 0; i < rv_opm.size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
BOOST_CHECK_CLOSE(rs[i], rs_opm[i], 100*reltol);
BOOST_CHECK_CLOSE(rs[i], rs_ecl[i], reltol_ecl);
BOOST_CHECK_CLOSE(rv[i], rv_opm[i], 100.*reltol);
BOOST_CHECK_CLOSE(rv[i], rv_ecl[i], reltol_ecl);
}
}
BOOST_AUTO_TEST_SUITE_END()